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Abstract. We introduce non-associative linear logic, which may be seen as the classical
version of the non-associative Lambek calculus. We define its sequent calculus, its theory
of proof-nets, for which we give a correctness criterion and a sequentialization theorem,
and we show proof search in it is polynomial.
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1. Introduction

During the last ten years or so, the study of substructural logics like the
Lambek calculus has enjoyed a remarkable revival, there being two reasons
for this. One is the resurgence of interest in the study of categorial gram-
mars because of their applications in natural language processing. Since
its introduction [15, 16] the Lambek calculus has been the core logic of the
great majority of categorial grammatical formalisms. The other reason is
the discovery of linear logic [12].

Linear logic has brought many new insight into the study of proof theory
and logic formalisms in general, and among these, the one that matters most
for us, is that an intuitionistic logical system whose structural rules are
sufficiently restricted! is absolutely compatible with an involutive negation.
In purely formal terms, the addition of such a negation, that turns the
intuitionistic system into a “classical” one, is a conservative extension of the
old system. So there are more logics around than we ever thought. But
the real interest of what could be only a formal game, is that, as usual
in mathematics and physics, the discovery of symmetry in the world is a
tremendous help in understanding it. The extension of an intuitionistic
substructural system to a classical one gives us new ways of looking at the
old one. The theory of proof-nets is only an example of this: not only do we
have a very compact and intrinsic way of presenting proofs, but we can use
it to solve problems that were intractable before.

The relationship between the original, associative Lambek calculus L
[15] and linear logic has already been explored extensively in the litterature
[5, 10, 14, 21, 22, 23]. One interesting thing about it is that it can be

! So far this has meant: without weakening or contraction, but it is probable that this
can be relaxed.
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extended in two ways into a system with negation. In one case, which is often
called the Girard-Yetter calculus [28], negation has the usual property of
involutiveness. But one can also have a conservative extension of L that has
two negations, that are not involutive, but that cancel each other, this being
sufficient for defining a classical one-sided sequent calculus. This has been
explored in detail by Abrusci [2]. This latter case is more natural from the
point of view of category theory, since it corresponds to the most elementary
notion (the one with the fewest assumptions) of a dualizing object in a
monoidal biclosed category. Both approaches give rise to a theory of proof-
nets, with the usual correctness criterion. One interesting feature of non-
commutative linear logic is that the geometric aspect of proof-nets is even
more pronounced than in the commutative case: the concepts associated
with planarity of graphs become essential. This geometric side of things has
made itself useful in problems like proof search [9, 20].

On the other hand, very little has been done in the way of proof-nets for
the non-associative Lambek calculus, NL [16]. This system, whose reason
for being is the description/generation of trees instead of strings, has not
received the same amount of attention as its associative ancestor, although
its linguistic interes, the common denominator of all linguistic calculi, has
been stressed by Moortgat [17]. It has been studied from the point of view
of generative power by Buszkowski [8] and Kandulski [11], and benefits from
a completeness theorem due to Szczerba [26]. From the point of view of
non-associative proof-nets, there is the paper by Moortgat and Oehrle [19],
which is inside an intuitionistic framework (but the use of polarities is very
indicative that the classical world is not very far away), and lacks a correct-
ness criterion in the tradition of linear logic; it is fair to say that it is closer
to the theory of categorical combinators for the lambda calculus. During the
long gestation time between the first draft of this paper and its present form
we also learned about the work of Puite and Moot [18], also for the intu-
tionistic calculus, but in this case there is a correctness criterion, expressed
via rewriting.

So the aim of this paper is to present a classical version of NL, which we
will call CNL, along with its associated theory of proof-nets, that includes
a correctness criterion. CNL has one involutive negation, which surely is
the simplest way of “going classical”; we are aware that there might be
other ways of doing so, and obtaining finer systems. NL can easily be
embedded into CNL, via a the usual definition of its implications. One
thing that tells us we are doing something right is that the technique of
polarities allows us to consider NL as a subsystem of CNL the latter being
a conservative extension of the former. CNL is also formally simpler than
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NL, and indeed makes explicit some symmetries that were latent in NL but
not directly visible. Indeed, the discovery of CNL is due to the observation
that the algebra of contexts which is necessary to define the sequent calculus
of NL can be turned on its head, so to speak, by forgetting the difference
between the input of a context marker (the places where types/formulas are
plugged) and its output (the resulting context). One result of this is that
the distinction between several introduction rules of NL disappear, as we
will see. In addition, as soon as this step is taken, everything acquires a
very geometric flavor, very much in the spirit of linear logic. This includes
a theory of proof-nets, where the usual “splitting lemma” is much easier to
prove than usual, given the more constrained character of the logic.

We should mention that this paper is mainly concerned with the cut
free fragment of CNL. This does not mean that CNL does not satisfy
cut-elimination; it does. Nevertheless, the correctness criterion we give is
defined on the cut-free proof-structure only. The cut-link is very well known
to be problematic when non-commutativity is involved, and the only work
we know about that has a full correctness criterion, compatible with every
cut-elimination step, is by Abrusci and Maringelli [3]. As is standard in
this context, our work, however, allows a weak form of the cut-elimination
property to be proved: whenever two cut-free proof-nets are connected by a
cut, this cut may be eliminated and the resulting cut-free proof-structure is
correct.

Another interesting property of our calculus is that proof search in it is
polynomial. Tt was already known that the implicative fragment of NL was
polynomial [1], and here again we have an example of simplification by the
use of a generalization that shows more symmetries. We should mention
that the complexity of the original L is still an open problem, and that the
study of calculi that are related to it (both “from above”, and “from below”)
is worthwile for the insights it may bring in one of the few gray areas left in
the complexity theory of pure calculi.

We would like to thank Richard Moot and Quintijn Puite for the very
close and helpful reading they gave to an early version of this paper.

This paper is dedicated to Jim Lambek for the occasion of his 75th
birthday. The intellectual debt this work owes him should already be blatant,
and in addition we should say how much we have learned about mathematical
elegance, taste and clarity through the study of his work.
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2. Frames, sequent trees and pre-nets

The syntax we present has both a traditional syntactical side (formulas,
sequents), and a geometric one where sequents are given a tree-like presen-
tation. We will call these specialized trees sequent trees. The fact that trees
are a very natural way of presenting sequents is due to the presence of stuc-
tured contexts in the sequent calculus. The geometric presentation has the
advantage of being more intrinsic, everything being in normal form from the
start.

We intend to present the system from that geometric point of view first.
First let us point out that the word “tree” has different meanings, according
to the community that uses it. The most common definition in graph theory?
is as follows: a tree is a non-directed graph (and in this paper everything
will be finite) which is connected and acyclic.

In other word there is a finite set of nodes (often called vertices), and
edges, each edge connecting two different vertices, and the lack of direction
is the same as saying that given nodes a,b we do not make the difference
between edge ab and edge ba. The defining properties of “treeness”, con-
nectedness and acyclicity, can be rephrased as:

Given any two nodes a and b, there is a unique path connecting a to b

The notion of path should be obvious, but anyway we will be more precise
very soon.

The trees as defined above are the ones that contain the least structure.
They can be enriched in very many ways; for instance it is very often the case
that a tree has a notion of “up” and “down”. For example, in the syntactic
tree of a formula/type in logic, the variables or constants are thought of as
being “above” (they are the leaves) and the formula itself (or its outermost
connector) is thought of being “at the bottom” (it is the root).

Given a non-directed tree it is easy to turn it into one that has a root:
choose any node a, and decree it is the root. This will give an ordering to
the rest of the nodes, such that for any b the set of nodes below it will always
be a linear order with @ at the bottom ... a tree ordering. Also note that
given a non-directed tree, the choice of any edge ab gives rise to two such
rooted trees, one with root a and one with root b: they are the connected
components obtained by removing the edge.

In this paper we want to consider trees that are hybrids of the rooted and
non-directed varieties. The vertices of our trees will always be labeled by
node types, the equivalent of symbols in syntax, and the same way symbols

* The graph-theoretic notions and terminology we use in this paper follows [6].
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have arities in ordinary syntax, a node type has a wvalence associated to it
‘once and for all: in a tree a node decorated by a symbol of valence n will have
exactly n edges connected to it. In a sequent tree an ordinary syntactical
symbol of arity n corresponds to a node of valence n+1, the increment being
due to the need to take the “business end” of the symbol in consideration.
In particular the constants and variables of logic become nodes of valence
1. We will call these “atomic nodes” terminal nodes. The edges connecting
nodes will be called wires; a wire is connected to a node via a port, in other
words a node has exactly as many ports as its valence.

As is traditional in linear logic the language has a set of type variables
and negavariables V = {«a, 3, ... N .}, and from now on they will be
the only node types with valence one:

CNONN-NGN

The minimal system for non-associative linear logic, i.e. the par-tensor frag-
ment, need three other node types, all of valence three:

Y vy v

that are respectively called tensor, par and contezt.

We will denote this set of three node types by Ny, but the theory of
trees that follows is valid for for any set A of node types, provided they all
have valences > 2.

Given a node type of Njs which is a connector, i.e. a Tensor or a Par, it
has a distinguished port, the principal port,> marked by a “v” which is the
root of the subformula it represents, i.e., its “business end” (the same goes for
variables whose only port is principal). The other two ports (which we call
the auziliary ports) are connected to the two daughter subformulas. They
also have a notion of “left daughter” and “right daughter”. This left-right
distinction is a bit too strict in general because a node does not necessarily
have a principal port. Therefore, we replace this notion of “bottom + left
& right” by a cyclic order on the ports, i.e., a cyclic permutation,® whose
intuitive meaning is “next node when going counterclockwise” (see Figure 1).

3 The terminology of ports and principal ports is taken from Lafont’s interaction nets
[13], the present work being very much in that spirit.

* A cyclic permutation 7 on a finite set A is a bijection w: A ~ A such that for any
a,b € A, " (a) = b for some natural number n.
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Then a node type that has a principal port can use this cyclic order
to know which of the auxiliaries is to the left (the one that immediately
precedes the principal port for the cyclic order), and which is to the right
(the one that immediately follows). The nodes that do not have a principal
port (here there is only Context)® also have that cyclic order, and so, while
being without a notion of top/bottom, they nevertheless have an orientation.

This distinction will hold if Ny is replaced by a larger N' D Ny, as we
have mentioned above: so in that more general case we assume that every
node type n € N is given, in addition to its valence val(n) > 2, a cyclic
order on its set of ports, and some nodes (which are called connector nodes)
are given a principal port, while those without a principal port are called
context nodes. The notion of auxiliary port of a connector node generalizes
accordingly, and it is easy to see that connector nodes of valence n + 1
can be seen as type constructors of arity n, the cyclic order along with the
choice of the principal port allowing a precise definition of ¢-th daughter, for
1<i<n.

In what follows we work with a given set A, of node types, with the
necessary choice of valences and principal ports, but the reader can imagine
that N is just M.

DEFINITION 2.1. Given a set N of nodes types as above, an N -frame is
defined to be a connected acyclic simple graph G such that:

e each vertex of G is assigned a node type belonging to N U V;

e the number of edges incident to a vertex v is equal to the valence of the
node type assigned to v;

e cach edge incident to a vertex v is assigned one of the ports of the node
type assigned to v, and this port assignment is such that any two different
edges are assigned different ports.

5 The idea of using a tree which is only “partially directed” for describing contexts in
a classical calculus was presented by the second author in a Roma Workshop in February
1998. This idea turns out to be fruitful in more than just the non-associative case, as has
been shown by Ruet for non-commutative linear logic [25]
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We now may be more precise about the notions of node and wire. Given
a N-frame T, a node of T is a vertex v of the graph underlying T together
with the node type assigned to this vertex v. Similarly, a wire corresponds
to an edge of the underlying graph together with the ports that are assigned
to this edge. This notion of wire may be formalised as an unordered pair of
triples {(v1,t1,p1), (v2,t2,p2)}, where v and vy are two different vertices, #;
and %2 are the node types that are respectively assigned to v; and ve, and
p1 and p» are ports of ¢; and ¢s respectively.

Sometimes, we will want to describe frames that have one or two wires
that are not connected to a terminal. This is done by introducing a special
new terminal symbol (*) that means “ignore me, the wire I’'m connected to
is actually free”.

It should be clear that a frame is already a kind of tree, but it does not yet
have all the necessary properties to be considered a well-formed syntactical
object. Now if in general our trees are not directed we intend to make the
difference between directed paths and non-directed ones, which we will call
segments.

DEFINITION 2.2. Let T be an N -frame, and a # b distinct nodes in it. The
path from a to b, denoted [a,b], is the uniquely defined sequence of nodes
a = agp,ai,...,a, = bsuch that, for all 1 <4 <, a;_; is connected to a; by
a wire.

DEFINITION 2.3. With the same notation as above, the segment (a, b) is the
set of nodes in path [a, b]. :

In other words a segment is obtained by forgetting the order of traversal
of a path. We get that (a,b) = (b,a) always, but [a,b] = [b, a] never, since
by definition a # b. Notice also that a segment can be turned into a path in
exactly two ways, depending on which end is chosen as the starting point.
Clearly, there is a one-one-correspondence between the wires of a frame and
its segments that have only two nodes. Consequently, if a and b are two
nodes connected by a wire, we will write (a,b) (or, equivalently, (b,a)) for
this wire. Then a two-node path will be called a directed wire. Also, if in a,
segment (a,b) the node a has a principal port such that the wire attached to
this principal port connects a to a node that belongs to (a, b}, we say that a
points towards b.

Given a frame, the cyclic orders on the ports induced a cyclic order on
the set of terminals of the frame on Figure 2.

Notice how, given a terminal node a the next terminal is obtained: walk
from node a with your left hand to the frame, following the cyclic order on
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Figure 2.

the ports, until you reach a terminal (this assumes that the frame is drawn
as a planar graph in such a way that the cyclic orders on the ports of the
nodes follow the counterclockwise orientation).

We can extend that cyclic order to the set of all directed wires. Given
a two-node path [a,b], where b is not a terminal, its immediate successor in
that big cyclic order is the unique two-node path [b,c] such that the wire
(b, c) immediately follows (a,b) on the cyclic order of ports on b. If b is a
terminal, then the immediate successor of [a,b] is [b,a]. This amounts to
walking around the whole frame, always keeping your left hand on it, doing
counterclockwise turns around terminals. Every wire will be touched twice,
once for each of its directions.

There are also notions of subframes for which the cyclic order restricts
naturally. Let T be an N-frame and a, b, ¢ € T three distinct nodes. Looking
at the intersection I = (a,b) N (a,c), three things may happen:

e I = {a}, meaning that (a,b), (a,c) go through different ports of a. We
define C(a, b, ¢) = a.

e I = {a,b) meaning that (a,b) C (a,c). We define C(a,b,c) = b.
e ] = (a,c), meaning that (a,b) D (a,c). We define C(a,b,c) =c.
e I =(a,d), for d # b,c. We define C(a,b,c) =d.

So we have defined a ternary partial operation C(—,—, —) on 7. What
is remarkable (and easy to show) is that the value of C(a,b,c) is totally
independent of the order of the three parameters a,b,c. It is the “center
node” in the tree structure of the triangle determined by the three distinct
a,b,c. In particular, if they form a line, C(a,b,c) will pick out the node in
{a, b, c} which is between the other two.
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DEFINITION 2.4. Let T be an N-frame. A subframe of T is given by a subset
S of the set of nodes of T such that,

e given any a € S and any port of a there is b € S and a segment {a,b) of
T that goes through that port.

e given three (distinct) a,b,¢ € S, then C(a,b,c) € S.

A subframe S has a frame structure on its own which is obtained by
forgetting some of the nodes of T, thus turning some segments of 7' into
wires of S, but in such a way that there are enough remaining nodes for
their valence rules to be respected. Thus a subframe inherits both a tree
structure and cyclic ordering from 7.

PROPOSITION 2.5. Let the node types N all be of valence > 3 and let T
be an N-frame, A its set of terminals, and S a (nonempty) subframe of T.
Then S is entirely determined by S N A, in the sense that it is the smallest
subframe containing all its terminals.

PRrOOF. Clearly, SN A has to have more than one element, since the valence
rules could not be respected otherwise. If it has only two elements, the
only way the valence rules can be respected is if S = SN A is made of two
terminals, and then the result holds trivially. So let us assume that SN A
contains at least three elements. Then we know that for all a,b,c € SN A we
have that C(a, b, c) € S. Conversely, Let d € S not be a terminal, and choose
a port p of it. We claim there is a € SN A such that (d, a) goes through that
port. By definition we can find a segment (d, d;) of T whose other extremity
diisin S. If di € SN A we stop. If not we choose another port of d;
than the one that links it to d and we repeat the procedure, getting dy such
that (dy,d2) goes through that new port. This way construct a sequence
di,da,...d;, with (d,d;) C (d,d;;+1), and this cannot go infinitely (or loop)
so we end up with a d,, € SN A, such that (d,d,) goes through the chosen
port p of d. By assumption d has at least three ports pi,ps,p3, S0 we can
find a1, a2,a3 € SN A such that (d,a;) goes through port p;, and then we
necessarily have d = C(a1, a2, a3). We have shown that every d € S can be
captured from the information contained in § N A, and this concludes the
proof. [

Remark 2.6. If all the nodes of A have valence exactly three, more is true.
Indeed, one may prove that any subset of the terminals with at least three
elements uniquely determines a subframe. More precisely, let T be an N-
frame, A its set of terminals, and B C A be any subset of terminals con-
taining at least three elements. Then there exists a unique subframe S such
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that SN A = B. This stronger property is not valid when valences greater
than three are allowed.

On the other hand, Proposition 2.5 does not hold when there are nodes
whose valence is two. This is due to the fact that, in this case, there may
be subframes with more than two nodes but with only two terminals.

Here is a natural way of constructing subframes:

DEFINITION 2.7. Let T be a frame and a # b € T nodes. We define the
following subsets:

a)p ={z€T|(z,a)N{a,b) ={a}}U{a}
a)(b:a)bUb>a

Thus a )( b is the set of all nodes “that are away from {(a,b)”, with a);
being those that “hide away from b behind a,” and b), those that “hide
away from a behind b.” It is not hard to see a ){ b is a subframe, because
a segment (z,y) with z,y € a )( b which is not entirely contained in a }{ b
necessarily has to contain the whole of (a,b). One particular case is when
a, b are neighbours: then a){b is the whole of T', which has been split in two.

We can now state the missing well-formedness condition:

DEFINITION 2.8. An N -frame is said to be an N -sequent tree if, given any
connector node in it, its auxiliary ports are connected to the principal port
of a connector or terminal node. It is said to be a N -quasi-sequent tree
if one of the wires is actually free, and the corresponding (*) is connected
to a context node or a principal port. A N -quasi-sequent is said to be a
N -formula tree if that free wire is connected to a principal port.

Thus, in a well-formed tree, to any connector node one can associate
a formula (in ordinary syntax, the subformula for which the connector is
outermost), given by the nodes (necessarily connectors or variables) that
are “upstream” from it, going up principal ports. This also works for a
terminal node, the formula that it defines being itself.

DEFINITION 2.9. A context wire is a wire which is connected to a context
node, or to two principal ports.

PROPOSITION 2.10. A N -sequent tree without context nodes has exactly one
context wire.

ProOF. Take any node ag, and look at the neighbour a; towards which it
points. Then either
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e q; points towards ay and we have found a context wire, or

e a; does not point towards ag, so it points toward another neighbouring
node, call it as.

Then we can start again, replacing ag above by aj, constructing a path
[ag,a1,...,an ...], stopping only when a,,1 points towards a,. Since the
tree is finite this has to stop, otherwise we’ll have a loop (if one reaches a
terminal, the search is obviously over).

For uniqueness, let (a1,a2) and (b1,b2) be two context wires in a frame
without context node. There is a (unique) path/segment connecting one
a; with one b;, in such a way that the other two nodes (call them aj, b;)
are not in it. Then the principal port of the a;, b; are pointing outside the
segment, and thus somewhere in there there have to be two atoms and a
wire between them such that no principal port is involved, contradicting the
well-formedness condition. [

In the same way, one can show that given two context nodes, the path
between them has to contain only context nodes. This is because a connector
node in that path has to point away from one of the two context nodes,
contradicting well-formednesss. Thus the set of all context nodes has to be
either connected or empty: it is a subtree of the sequent tree.

Remark 2.11. Let a,b be two terminal nodes. We know there is a unique
path between them, and that the extremities ¢ and b point towards the
interior of that path. And well-formedness ensures that this path can only
have two possible shapes:

e there is a middle made of context wires and context nodes, and all the
other nodes point towards this middle.

e there are no context wires in the path, but still the path can be divided in
two segments that both point inwards, with exactly one connector node z
at the middle which is being pointed to by its neighbours via z’s auxiliary
ports.

PROPOSITION 2.12. Let T be an N -sequent tree, and S C T a subframe.
Then S is a sequent tree.

PROOF. Given a connector node z € S, an auxiliary port of it, and the node
y connected to it in S, we get by induction that because T is a sequent tree
and z = zo a connector node, the path [z,y] = {zo,z1,...,2Zn} is such that
x; is always connected via an auxiliary port to a principal port of z;,1. Thus
it is also the case for [zg, z,]s = {z,y}. |
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We will be rather pedantic about the presentation of pairings and bi-
jective pairings, since this notion is going to have more than the usual list
of incarnations. The readers who are a little familiar with linear logic are
expecting to meet the usual pairings given by axiom links, and they will not
be disappointed.

DEFINITION 2.13. Let S be a set. A pairing on it is given by a binary
relation p such that

Uniqueness z pyand z py impliesy =7
Antireflexivity z py implies = # y,
Symmetry z py implies y p z.

A pairing is said to be total, or bijective if in addition every z has a y such
that z py.

Thus, given a total pairing p, defining p(z) as the unique y such that
z p y allows p to be seen as a bijection on S which is involutive (p(p(z)) = )
but has no fixed point. In general a pairing is only a partial bijection with
these properties.

DEFINITION 2.14. A pre-net is a pair (T, 7), where T is a Njs-sequent tree,
and 7 a bijective pairing on its set of terminals, sending a variable to its
negation. A sub-pre-net of T is a subframe § C T whose terminals are
closed under the action of 7. Given a a terminal of T, the pair (a,7(a)) is
called an aziom link.

The most standard term for a pre-nets is proof structure, but some people
prefer our terminology for structures that are not necessarily associated with
a proof.

In [14, 22] the atomic formulas are thought of lying on a circle, as they
do here, but the axiom links are drawn inside while the syntactic trees of
formulas ar drawn outside of the circle. Given the presence of context nodes,
the reverse has to be done here. From a purely formal point of view there is
absolutely no difference between these two approaches, since when a circle
divides the sphere (obtained by adding a point at infinity to the plane) the
distinction between inside and outside is arbitrary. But from the practical
point of view of drawing figures, things are very different .. ..
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3. The sequent calculus

In this section we present a more traditional syntax in terms of a sequent
calculus that we call CNL. The formulas of this calculus obey the following
grammar, where V is the aforementioned alphabet of atomic propositions:

Fou= V| (FQF) | (FBF)

It is clear that there is a one-one correspondence between these formulas and
the formula tree of Definition 2.8. Let A, B, C, ... range over formulas,
we write [A] to denote the uniquely determined formula tree corresponding

to A.
We then define a notion of quasi-sequent:

QS == F | (QS8,QS)

and let I'y A, ... range over quasi-sequents. Remember that a formula
tree has a unique port that is not connected to any other node, namely the
principal port of the root of the tree. The correspondence [—] naturally
extends to the quasi-sequents as follows:

[ — [4]

N
[T, 4)] = kﬁ) )

where [I'] and [A] are connected to a new context node through their re-
spective unconnected ports, the unconnected port of this new context node
becoming the unique unconnected port of [(I", A)]. This allows us to con-
struct quasi-sequent trees in the sense of Definition 2.8.

Finally, the notion of sequent is defined as follows:

S == 0§,08

Notice that there is not such a thing as an empty quasi-sequent. Conse-
quently, any sequent contains at least two formulas.® Although the notations
are quite close, there is a fundamental difference between a quasi-sequent
(', A) and the corresponding sequent I', A. Indeed, the correspondence

5 This is the classical counterpart of the intutionistic sequents of the original Lambek
calculus whose succedents consist of exactly one formula, and whose antecedents are not
allowed to be empty. Interestingly, here this condition is imposed by the geometrical
nature of the sequent trees
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[—] is extended to the sequents by defining [I", A] to be the sequent tree
-obtained by connecting the unconnected port of [I'] to the unconnected port
of [A]. Then, contrarily to the quasi-sequent trees, such sequent trees do not
have any unconnected port. Because of this difference, the correspondence
[—], when extended to sequents, is no longer one-one.

PROPOSITION 3.1. Let I', A and © be quasi-sequents. The following identi-
ties hold:

1. [, 4] =[A4, I

2. [(T, 4),0] = [I',(4,0)]

PROOF.

[, Al = [T [Al=[4,1]
~—

[T — 4]

~~1
(T, 4), 6] = K? j [T, (4, 0)]

[e]

In fact the identities of the above proposition characterize exactly what
is quotiented out on the set of sequents by [—].

PROPOSITION 3.2. Let “~7” be the least equivalence relation between sequents
such that:

1. I,A~AT
2. (FvA),@Nra(A7®)

If S1 and Sy are two sequents such that [S1] = [S2] then S; ~ Sa.

PROOF. Let S; = Iy, Ay, and let [a,b] be the directed context wire that
connects [I1] to [A1] in [S1]. Similarly, let So = I, Ay, and let [¢,d] be
the directed context wire that connects [I2]] to [Az]. By connectedness and
acyclicity, there is a unique minimal segment s that contains both (a, b) and
(c,d). Let |s| be the number of nodes in s. We proceed by induction on |s|.

If |s| = 2, there are two cases. Either [a,b] = [c,d] and we are done,
or [a,b] = [d,c¢]. In this second case, we have I = Ag and A; = Ib.
Consequently, S1 ~ S5 by Identity 1.
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If |s| > 2, there are also two cases. First, assume that (c,d) is in [I}].
Then, we must have I = (I11,I12). There are two subcases:

e (c,d) is in [I11] (including the case where (c,d) is the free wire of [I';]).
Then, we have:
§1 = (I'n, I'2), 41
~ I'1, (2, 41)
~ Sy by induction hypothesis.

e (c,d) is in [I2] (including the case where (c,d) is the free wire of [I'2]).
Then, we have:
81 = (I'1, I'2), 41
~ Ay, (I'y, I'12)
~ (41, 'M1), Iz
~ S92 by induction hypothesis.

The second case, where (c,d) is in [4;], is symmetric. [ ]

We are now in a position of giving the rules of the sequent calculus.
Axiom

- a0t (1d)
Logical rules
~ AT’ ~ B, A — (A,B), I’
(®-Intro) ————————  (®-Intro)
~ (A®B),(4,T) ~ (A®B), I
Structural rules
I, A — I',(A4,0) — (I',4),0
(Perm) —— (R-Shift) ——— (L-Shift)
— AT — (I',A),© ~ I,(4,0)

The above inference rules may be intrepreted as sequent tree construction
rules by using the correspondence [—]:

(a) @ (1d)
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18]
N
.

A A
AR 14]

-Intr ntr
(5] O (@-Tntro)

-
o

St A

() (5

[4] [] [4]

In this system, the structural rules do not play any part because of proposi-
tion 3.1. Now, if we interpreted the axioms of CNL as defining a pairing on
the terminals, any CNL-derivation may be interpreted as a pre-net. Con-
sider, for instance, the following derivation:

— o,at

(Perm)
- 8,8t ~ at,a

- (B®at), (e, BY)
- (B®ar),a),p"
(#3-Intro)
- (B®a™) B a),p* - oot

(®-Intro)

(R-Shift)

(®-Intro)
o, = ((B®a™)Ba)®a),(ar,B)

(Perm) (Perm)
-at,a =yt = (@5 84),(B®a’) R a)® )

(®-Intro) (?8-Intro)

= (ot ®7),(r"0) (et BB, (Beat)Ra)®a)

(e @1 ® (e 38, (Ba")Ba)®a), (v, @)

(®-Intro)

It corresponds to the pre-net on Figure 3, where the pairing on the terminals
is pictured as dotted lines.

Though any CNL-derivation may be interpreted as a pre-net, it is not
the case that to any pre-net corresponds a CNL-derivation. It is therefore
necessary, in order to define an adequate notion of proof-net, to give some
criterion that allows the correct pre-nets (i.e., the ones that correspond to
CNL-derivations) to be discriminated from the other ones. This is the goal
of the next section.
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4. Stating correctness

Well-bracketed pairings on terminals play a central role in the theory of non-
commutative proof-nets [14, 22]. In this theory of non-associative proof-nets,
well-bracketed pairings defined on all the nodes of the proof-nets will be used.

DEFINITION 4.1. A well-bracketing on an N-frame T is a bijective pairing p
on its set of nodes such that given any node a, the segment (a, p(a)) is such
that for any node b € (a, p(a)) we also have p(b) € (a, p(a)).

PROPOSITION 4.2. If p is a well-bracketing on N -frame T, then for any
nodes a € T the path [a,p(a)] is well-bracketed in the usual sense by the
restriction of p on it.

PROOF. The proof is very easy, if not trivial. [

We can also define well-bracketings in the universe of cyclic orders as
opposed to trees, as in [14, 22]. Let A be a set equipped with a cyclic order,
p a total pairing on it and a € A. The pair a, p(a) does not uniquely define
a “segment” on A, but almost so, cutting the circle in two halves, which we



372 Ph. de Groote, F. Lamarche

can denote
la, p(a)] = the z € A between a and p(a) when going counterclockwise
lp(a),a] = the z € A between p(a) and @ when going counterclockwise.

DEFINITION 4.3. Given A, p as above, we say p is a well-bracketing of the
cyclic order A when, for any a,b € A, we always have b, p(b) both in |a, p(a) ]
or both in |p(a),a].

In other words, b, p(b) are always on the same side of a, p(a).
There is yet another kind of pairing we will consider.

DEFINITION 4.4. A pairing p on a Nys-frame is said to be dualizing if when-
ever a is a ® then p(a) is either a @ or a (¢), and whenever a is a terminal
node, thus typed by a variable or negavariable, then p(a) is the negation of
the same variable.

Thus a dualizing pairing is an extension of the notion of axiom linkage
for a pre-net, linking opposite nodes as well as opposite variables.

DEFINITION 4.5. Let (T, 7) be a pre-net. On the set of nodes of T' define a
relation p;

there are axiom links (a,a’) and (b,b') such that
z pry iff z,y are the extremities of the intersection segment
(a,a’) N (b, b).

This relation p; is certainly symmetric, and it is easy to see that it
extends the pairing given by the axiom links, since one can take a,a’ and
b, b’ above to be the same axiom link.

Despite its trivial proof the following is an important observation.

LEMMA 4.6 (Gluing Lemma). Let (T,7) be a pre-net, and S1,Ss C T two
sub-pre-nets such that

1. If A is the set of terminals of T then (S1US3)N A= A.

2. given 1 # j € {1,2}, (a,a’) € 7, (b,¥') € 7j such that (z,y) = (a,d') N
(b,b') is nonempty and z,y € Sy U Sy, there is (c,c) € 7; such that
(z,y) = (a,a) N {c,c).

Then the relation p, restricted to S1 U Sy is the union of pr,, pr,-

PROOF. We want to show that, given z,y € S; U Sy, we have z p, y iff
T pr, Y OT T pr, y and this is trivial to show using the conditions. [
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DEFINITION 4.7. A pre-net (T, 7) is said to be correct, or a proof-net, if the
relation p, defined as above from its axioms is a dualizing well-bracketing”
of the sequent tree, such that in addition

PTR any ®-node z points towards its matching @- or (&)-node p(z).

WBy given any pair (a,a’), (b,b’) of axiom links such that the intersection
(a,a’y N {b,b') is nonempty, the axiom links form a well-bracketing on
the four-element cyclic order on {a,a’,b,b'} obtained by restriction
from the one on terminals.

This is a very strong definition, that makes sense only in the non-
associative world. We should mention that if condition WB4 were removed
we would get a theory of proof-nets for commutative, non-associative linear
logic, whose intuitionistic version has been studied under the name NLP[27].
This condition can be pictured by saying that, given any pair of axiom links
(a,a’}, (b,b') as above, if (z,z') is their intersection segment, then (a,a’) lies
- on one side of (z,z') while (b,') lies on the other side.

-

Note that WBy4 is weaker than saying that the whole pairing p is a well-
bracketing on the cyclic ordering of the full set of terminals, thus easier to
verify, but it turns out as we will soon see that in correct nets we always do
get a well-bracketing on the terminals.

The Gluing lemma can be interpreted as a simple compatibility condition
that eases the assembly of two subnets that are correct individually, by giving
a minimal procedure for checking that the net obtained by taking the frame
completion of the union will be correct. Naturally part of that procedure,
which is not stated explicitly in the lemma, is checking that the pairing
extends to the nodes that are in the sum pre-net but not in the subframes.

7 Since for the time being all our node types have valence 3, the axiom of Antireflexivity
will always automatically hold here, but this is not necessarily the case for extended
systems, i.e., when modalities are added.
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THEOREM 4.8 (Sequentialization). A pre-net which is constructed from the
sequent calculus is correct and the aziom links form a well-bracketing of the
cyclic order on terminals; moreover the converse holds: any proof-net can
be obtained via the sequent calculus.

5. Proving sequentialization

DEFINITION 5.1. Let T be a sequent tree and z a connector node. If z’s
principal port is connected to a context wire we say z is a conclusive con-
nector.

PROPOSITION 5.2. If (T, 1) is a proof-net and x a conclusive connector of
it, and (z,y) its context wire, there exists an aziom link (a,a’) € T such that

(z,y) € (a,d).

PROOF. Look at p,(z). There has to be a pair of axiom links (a;,a;), s = 1,
2, that justifies this pairing relation. It is then easy to see that z,y, has to
belong to at least one of the (a;,al). |

5.1. Necessity

It should be obvious that the pre-net obtained from an axiom is a proof-net.
Also, a @-introduction does not change the structure of the well-bracketing
and cyclic order at all, and thus preserves correctness. So the only case that
needs a real proof is tensor-introduction.

Let (T, 7) be the pre-net obtained by doing a tensor introduction on the
correct pre-nets (S1,71), (S2,72), thus adding a ®-node z and a (»)-node y.
By induction we assume that the 7; are well-bracketings for their cyclic or-
ders. In each of the §; there is a context wire (a;, b;) such that a1, ag are con-
nector nodes, and such that z,y have been inserted in between, with z on the
side of the a;, thus producing in T' the paths [a1, z,y, b1] and [a2 , 2, ¥, b2], and
z pointing towards y. It is easy to see that both inclusion maps S; — T turn
the S; into subframes of T', and thus sub-pre-nets because the axiom links do
not change. It is also easy to see that the conditions of the Gluing Lemma
apply, the second one being vacuous because a nonempty intersection of an
axiom link in S and one in Sy can only be (z,y) and these are not in S;USs.
Therefore the pairing relation p, restricted to S; U Sy is the union of 7y, 7o.

Because of the previous remark we can show z p y, by choosing ax-
iom links (¢;,d;) € S; for ¢ = 1,2, whose intersection in nonempty. Such
links exist because of Proposition 5.2 and the fact that a;,as are conclusive
connectors in S, Sp. Thus we have shown that p, is a dualizing pairing.
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@*i\m y/G‘
@J \‘

Condition PTR still holds on the subnets Si, S2, since the addition of z,y
inside segments cannot affect it, and the introduction rule has ensured that
PTR holds for z,y.

As for cyclic order the shape of the introduction rule obviously preserves
it, S1 and S, splitting the circle in two “disjoint but connected intervals”,
and we also get the weaker WBy4 at the same time.

5.2. Sufficiency

Let (T, 7) be a proof-net that has a conclusive @. Replacing it by a context
node obviously produces a net which is still correct, since well-formedness
is respected and nothing changes at the level of well-bracketings. So this
can be done until there is no conclusive @ left. One possibility then is that
there is no connector node left at all. Then there can be no context node
either since p, maps context nodes to tensors. So in this case the frame
can only be two variables connected by a context wire, and the presence of
a dualizing 7 guarantees they are each other’s negation: we have an axiom
link, and we are done.

The other possibility is that there are connector nodes left, but the only
ones that point to a context wire are tensors, and from now on we assume
this.

So assume z is a ®-node that not only points to an immediate neighbour
y which is a (¢)-node, but in addition such that y = p,(z). Let a; be the
left daughter node of z (the meaning should be obvious), and let as be its
right daughter. By the definition of the pairing p, there are axiom links
(€1,d1) and (e, d2) such that (z,y) = (c1,d1)N{ca,d2). We can choose them
in such a way that (a;,z) C (c;,z), for : = 1,2. There are also neighbours
b1,by of y, and condition WBy tells us that [a;, z,y, b;] has to be a subpath
of [¢;,d;],7 = 1,2 (see previous picture), instead of [c1, d2] or [c2,d1].
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Let now, for ¢ = 1, 2 S; = a;), (b;, as in 2.7." As we have said there
these subsets are subframes. We claim that the terminals of both 51,5
are closed under the pairing 7, turning them into sub-pre-nets. Let a € S
(say) and assume for a contradiction that 7(a) € S2. Obviously (a,7(a))
has to contain at least one of z,y, and in particular we have to have that
(a,7(a)) N {c1,d1) is nonempty. Let (u,v) be that intersection. It cannot be
that {u,v} = {z,y}, because then both a,7(a) would be in S3. It cannot
be that {u,v} N{z,y} is empty because then we would have {u,v} D {z,y}
and this would show a,7(a) are both in S;. So {u,v} N {z,y} contains only
one or either z,y, which we will show is also impossible. If for example
u = z,y # v, by the definition of p, we have p,(z) = v, which contradicts
the assumption p,(z) = y. The other cases are treated exactly the same
way.

The fact that S;,.S2 are sub-pre-nets tells us 7' can be obtained by ap-
plying tensor-introduction to them, and the Gluing Lemma tells us they are
correct subnets. Thus, it is only fair to call a conclusive ® which is paired
by pr to its neighbour a splitting tensor. All that is left to do is prove the
traditional Splitting Lemma; given the constraints on the non-associative
calculus, the proof is comparatively trivial.

LEMMA 5.3 (Splitting Lemma). Ewvery proof-net all whose conclusive con-
nectors are tensors has a splitting tensor.

PROOF. Let z be a tensor that points to a context wire, and look at p,(z).
Either p,(z) is z’s neighbour and we are done, or not. If not, look at
{(pr(z),z). There are more than one context nodes in that segment, given
that the node z in there which is 2’s neighbour is a context node. Let
(2',2) be the largest sub segment all whose elements are context nodes,
and let w € (p,(z),2') be the immediate neighbour of 2. It is necessarily
a tensor node, by well-formedness it is pointing towards 2/, and we claim
pr(w) = 2/, showing that w is a splitting tensor. If not, the inside of the
segment {t € (w, pr(w)) | t # w, p,(w) } contains only context nodes, but is
also closed under p;, a contradiction. [

This terminates the proof, given that any correct net can be decomposed
using the rules of the calculus backwards into smaller nets.

6. Polynomiality

In this section, we prove that the decidability problem for non-associative
mutltiplicative linear logic is polynomial. The fact that the provability of a
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given formula is decidable is almost obvious. Nevertheless a naive bottom-
up proof-search strategy based on the sequent calculus CNL would waste
a lot of time because of the structural rules. Moreover, because of these
structural rules, the backward application of the inference rules of CNL is
not deterministic. For instance, the following sequent:

(B Ba)@a),((a" @ (a® (o ®h)),e)

has two essentially different derivations:

-,
(Perm)
oot - B,8"
B - (®-Intro)
e ep), G o
(o ®B),8%), (Porm)
o, (0" ®B),8%) _
. - — (R-Shift)
C e (Perm) - (o 9 4)),5 (%®-Intro)
-ata — (a®(a" ®p)),B"
(®-Intro)
- (0" ®(a®(a" ®p))), (8", a) (Porm)
CGLa e @ Ep) T et
= (87 %a), (e (@B (e ®h) - oata
(®-Intro)
(B Ba)®@at),(a,(a" ®(a® (o ®P))))
and
- a,at
(Perm)
- a,o = B, 8"
(®-Intro)
- (e ®p),(8",0)
- ~ (Perm) .
- (6.a).a” 8 f) (33-Intro) ®%  (Perm)
- (8" Ba),(a"®p) - ata
(®-Intro)
- (BT Ba)®a’),(o,(a” ®8)) (Perm)
et @@ ep) G B o) | T
-at,a - (@B (" ®h), (8" Ba)®a’)
(®-Intro)
- (o @ (@® (o ©h),((B* Ba)®ar),a) orm)
- (8" Ba)®a’),a),(a @ (a® (o ®f))) L. Shift)

- (8" Ba)@a’),(a(a" ®(a® (o ®H))))
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It is then easy to construct, from the above examplé, sequents with an expo-
nential number of possible proofs for which any brute force algorithm based
on CNL would answer in exponential time. For this reason, we introduce an
alternative sequent calculus, called C-CNL, that does not need any struc-
tural rules. This sequent calculus manipulates contexts that are formulas
with a “hole”:

C == []|(C®F) | (F®C) | (CBF) | (FRC)

where [] stands for the empty context, i.e. the context consisting only of a
hole. We let €[], Z[], ... range over contexts, and we write ¥ [A] for the
formula obtained by filling the hole of a context %€ [] with a formula A.

Identity rules

- a,at  (Id;) - at,a (Idy)
Logical rules
- AB +C,D - AB +~C,D
(®%-Introy) (®%-Intros)
~ (A®C),(D® B) — (D% B),(A®C)
— A,B + ¥[] — A B ~ ¥[]
(Contl) (Contz)
~ ¢4, B — B, ¢[A]

Context derivation rules
+— [] (Empty-Cont)
- A,B + €[] v 9] - AB + %[ ~ 9[]

(®%-Cont;) (®%-Conty)
~ (F|2]]® A] % B) - (BBFIA® 2[])

Remark that the above calculus manipulates sequents made of exactly
two formulas. We know, from the sequentialization theorem, that a proof-
net with a conclusive @-node is correct if and only if the proof-net obtained
by replacing this @-node with a (¢)-node is correct. In the realm of the
sequent calculus, this means that Rule (%®-Intro) is invertible, which allows
to reduce the provability of any sequent to the provability of an equivalent
two-formula sequent.

It remains to prove that CNL and C-CNL are theorem equivalent.
Let us write “~cn1,” and ““~c-cn1.” respectively for CNL- and C-CNL-
derivability. We first prove the soundness of C-CNL with respect of CNL.
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 PROPOSITION 6.1. Let A, B, and C be formulas, and let I' be a quasi-
sequent.

1. If —C-CNL A,B then —CNL A,B.
2. If vcnL C, T then w1, E[C], I, for any contest &[] such that

c-cNL 6]

PROOF. Property 1 is proved by induction on the structure of the C-CNL-
derivation of A, B, using Property 2 to handle the cases of Rules (Cont;)
and (Contg).

Property 2 is proved by induction on the C-CNL-derivation of &[],
using induction hypothesis 1 when needed. The case of the empty context
is straightforward. Let &[] = (¥[2[] ® A] % B) be obtained as a conclusion
of Rule (®%-Cont;). We proceed as follows:

—C, I’
—  _ Ind. Hyp.
~ 9(C), T ~ A B
®-Intro
— 9[C]1® A, (B, T)
- €lIClo AL (B,T) | "
-Shift
— (¢[2[C1® A, B), I’
Z-Intro

— (F[2[C]1® A] B B), I’

The case where &7] is obtained as a conclusion of Rule (®%-Conts) is similar.
u

In order to prove the completeness of C-CNL with respect to CNL,
we introduce an intermediate calculus that we called 2-CNL. This calculus
mimics the rules of CNL and shares with C-CNL the property of manipu-
lating only two-formula sequents.

Identity and logical rules
- A B + C,D

|—an‘ -1Nntr
, (1d) T AeC). (DB D) (®%-Intro)

Structural rules

~ A B — A (B®C) + (A% B),C
(Perm’) ~ ——— (R-Shift') ——— (L-Shift’)

+ B, A + (A% B),C - A, (BR®C)

The similarity between CNL and 2-CNL yields immediately the follow-
ing property.
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LEMMA 6.2. Let A and B be two formulas. If vcn1, A, B then —ocn1, A, B.

PROOF. Let I' denote the formula obtained by replacing, in the tree of for-
mulas I', each comma by 2. It is straightforward that any CNL-derivation
of a sequent — I', A may be transformed into a 2-CNL-derivation of the
sequent — I, A. [

The next step is to prove that any 2-CNL-derivation may be turned into
a C-CNL-derivation. To this end, we first establish the following technical
lemma.

LEMMA 6.3. Let &[] and ][] be two contexts such that —c-cni &[] and
—c-oNL F[]. Then, —c-cni S1F]]].

PrOOF. The proof is performed by induction on the C-CNL-derivation of
&[]. The case of Axiom (Empty-cont) is obvious. If &[] = (¥[2]|® A] B B)
is obtained as a conclusion of Rule (®%-Cont;), we have that — Z[[F[]] is
C-CNL-derivable, by induction hypothesis. Hence:

- AB %] + 9[F]]
— (¢12[#[]] © A] B B)

(®?S’-Cont1)

The case of Rule (®%-Contz) is similar. ]

Now, we say that a C-CNL-derivation is normal if the two following
conditions hold:

1. it is not the case that the right premise of any occurrence of Rule (Cont; )
or (Conts) is obtained by Axiom (Empty-Cont);

2. it is not the case that the left premise of any occurrence of Rule (Cont)
or Rule (Conty) is obtained as the conclusion of an occurrence of Rule

(COIltl).

It is immediate, from Lemma 6.3 that any C-CNL-derivation may be turned
into a normal C-CNL-derivation. This property is used to prove the next
lemma, which shows how to transform a 2-CNL-derivation into a C-CNL-
derivation.

LEMMA 6.4. Let A and B be formulas. If vo.cnL A, B then —c-onL A, B.

PrOOF. We show that any 2-CNL rule is C-CNL-admissible. This is ob-
vious for Rule (®%-Intro), which identical to Rule (®%-Intro;). The case of
Rule (Perm’) is also straightforward because of the symmetry of C-CNL.
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Consequently, it remains to show that both Rules (R-Shift’) and (L-Shift’)
are C-CNL-admissible. We establish the admissibility of Rule (R-Shift’),
the case of Rule (L-Shift’) being similar.

We have to show that — (A4 % B),C is C-CNL-derivable whenever +
A, (B ® C) is. We proceed by induction on the structure of the normal
C-CNL-derivations. There are three cases.

1. The sequent— A, (B#C) is obtained as a conclusion of Rule (®%3 -Intro, ):
1L I

+ A,C  + Ay, B
— (4 ®A2),(B780)

(®%8-Intro;)

The derivation may be transformed as follows:

15
5 AE B +[ I
- A0 :,(([]@9,42)?33) (®3-Cont:)
(Contl)

— ((Al ® Ag) B B),C

2. The sequent — A, (B8 C) is obtained as a conclusion of Rule (Cont, ).
We distinguish between two subcases.

2.1. The left premise of Rule (Conty) is obtained as a conclusion of Rule
(®%3 -Introy ):

I I
I3

— A,C  + Ay B :
(®%8-Intro; ) .
— (A1 ® 42),(BBC) ~ %]

(Cont;)
+ E[(A1 ® A2)], (BB C)
The derivation may be transformed as follows:
I e
15 . :
. (®%-Cont;)
— A, C — (Z]([] ® A2)] ® B)

(Contl)
— (F(A ® A2)] B B),C
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2.2. The left premise of Rule (Conty) is obtained as a conclusion of Rule
(Contz). This case may be reduced to Case 3, below, by permuting the two
inference rules.

3. The sequent v A,(B# C) is obtained as a conclusion of Rule (Conty).
We distinguish between two subcases.

3.1.  The right premise of Rule (Conty) is obtained as a conclusion of Rule
(®%2-Conty ):

15 113 1
I : : :
: - By, ¢ ~ %] - []
- (®7?—Cont1)
— B, A — (¢[2[]® B2] B C) (Gonty)
on
— A, (¢[2[B] ® B2] 3 C) ?
The derivation may be transformed as follows:
Hl 17_4
: : I3
+ By, A - @H :
1) (Cont;) .
; ~ 9[Bi], A el ]
: (®73’-Cont2)
+ By, C — (AR LI[Bi]@[])
(Contl)

— (AR €[2[B1] @ By)),C

3.2. The right premise of Rule (Contz) is obtained as a conclusion of Rule
(®%3-Conity ):

Hz 11.3 1]_4
15 : : :
. +~C,B %] +r I[]
: (®7§’-Cont2)
- (s, A — (BB E[C1® 2[]]) (Conta)
on
— A, (BB Z[C, ® 7[Cs))) ?
The derivation may be transformed as follows:
In 11
1, : :
: +— Cy A ~ 9[]
. (Cont;) I
L ClaB L @[02]7*’4 .
(®%-Intro;) .
— (€1 ® 9|C5)), (AR B) ?[]
(COHtQ)I

+ (A% B),%[C1 @ 2|C1]])
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We obtain the completeness of C-CNL with respect to CNL as an
immediate consequence of this lemma.

PROPOSITION 6.5. Let A and B be two formulas. If ~cn1 A,B then
+c-cNL 4, B.

ProoF. By Lemmas 6.2 and 6.4. ]
Finally, we may prove the main result of this section.

THEOREM 6.6. Non-associative mutltiplicative linear logic is decidable in
polynomial time.

PRrROOF. By Propositions 6.1 and 6.5, any sequent “I’, A” is provable if and
only if the corresponding two-formula sequent “I", A” is C-CNL-derivable.
Now, any possible C-CNL-derivation of “I', A” will be made of two sorts
of expressions:

1. sequents of the form ~ A, B, where A is a subformula of I and B a
subformula of A or, conversely, A is a subformula of A and B a subformula
of T.

2. expressions of the form - %[] such that ¥[C] is a subformula of either
T or A, for some formula C.

The number of expressions of the form — A, B is bounded by |I'| x| A|, where
|I'| and |A| are the length of I' and A respectively. Similarly, the number of
expressions of the form + %] is bounded by |I'|?2 + |A|>. Consequently, a
naive proof-search algorithm based on C-CNL will terminate in polynomial
time if its search space is organised in such a way that different possible
derivations share the sub-derivations they have in common. | |

7. Relation to the non-associative Lambek calculus NL

The non-associative Lambek calculus NL [16] may be seen as the intuition-
istic fragment of CNL. Its formula obey the following grammar:

Fou= V| (F\F) | (F/F) | (FeF)

where V° = {a, f3,...} is the alphabet of variables.

The deduction relation of NL may be specified by means of a calculus
whose sequents have the form I' + A, the antecedent I' being a quasi-
sequent made of NL formulas, and the succedent A consisting of a single
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formula. Let I' be a NL quasi-sequent in which occurs some formula A
at a given position. One writes I'[A] to emphasize this occurrence of the
formula A in I', and one writes I'[B] to denote the quasi-sequent obtained
by replacing this given occurrence of A by the occurrence of a formula B.

Ar A (1d)

- A A[B]l+C (L) (AF) (\-R)
A[(I',(A\B))] - C ~ (A\ B)
'-A A[B]+C (/L) E___)_ (/R)
A[((B/A), )]+ C — (B/A)
I''(A,B)]+~ C I'-A A+ B

(1) (+R)
I'/(AeB)]+ C (I'yA) ~ (AeB)

Any NL formula, quasi-sequent or sequent may be translated into a
CNL formula, quasi-sequent or sequent as follows:

(= AP =« [AP,[T]°

where:
(I, 4)]* = (4%, 1)
[0]* = ot [a]° =
[(A\B)]" = (B*® A°) [(A\ B)]° = (4* % B°)
[(A/B)]' (B°® A%) [(A/B)]° = (A° & B®)
[(AeB)]* =(B*® A% [(AeB)° =(4°® B°)

The soudness of this translation may be established by a routine induc-
tion that we leave to the reader.

PrOPOSITION 7.1. Let I' be a NL quasi-sequent and A be a NL formula
such that I' v A is NL-derivable. Then [I' — A]° is CNL-derivable.

The converse of this proposition allows CNL to be seen as a conservative
extension of NL. In order to prove this property, we first establish two
technical lemmas. Let A’ be a CNL formula. We say that A’ is positively
polarizable (respectively, negatively polarizable) if there exists a NL-formula
A such that A’ = A° (respectively, A’ = A*). A first lemma shows that
there is a unique way of polarizing a CNL formula, if any.
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LEMMA 7.2. Let A’ be a CNL-formula. Then there exist ot most one NL-
formula A such that either A’ = A° or A' = A®.

PrOOF. The proof is done by an easy induction on the structure of the for-
mula A’. The base case, when A’ is a variable or a negavariable is straight-
forward. The inductive cases are summarized by the following tables that
gives the possibility of polarizing a formula in terms of the possibility of
polarizing its direct sub-formulas.

Blo|e R | ole
) o o|o|e
e [o|e o |

We say that a CNL quasi-sequent consisting of one formula A is nega-
tively polarizable if A, as a formula, is negatively polarizable. On the other
hand, if A is positively polarizable, we say that the quasi-sequent consist-
ing of A is intuitionistically polarizable. Then, we say that a quasi-sequent
(I, A) is negatively polarizable if both I' and A are negatively polarizable,
and we say that it is intuitionistically polarizable if I (respectively, A) is
intuitionistically polarizable while A (respectively, I') is negatively polariz-
able. Similarly, we say that a sequent I', A is intuitionistically polarizable
if one of the two quasi-sequent it consists of is intuitionistically polarizable
while the other is negatively polarizable.

LEMMA 7.3. Any instance of any inference rule of CNL is such that its
premise(s) is (are) intuitionistically polarizable whenever its conclusion is.

PROOF. The proof consists in a straightforward case analysis. ]

PROPOSITION 7.4. Let I' be a NL quasi-sequent and A be a NL formula
such that [I' — A]° is CNL-derivable. Then I' — A is NL-derivable.

PROOF. Let IT be a CNL-derivation of [I' +~ A]°. By applying the trans-
lation [[—] to each sequent in IT (which is not the conclusion of a structural
rule), we obtain an inductive construction [II] of the sequent tree corre-
sponding to [I" + A]°.

Any sequent tree involved in [II], say w, may be transformed into a
NL-sequent as follows. By Lemmas 7.3, 7 is intuitionistically polarizable.
Therefore, there exists one formula tree in 7, say T, that is positively po-
larizable and that is maximal with respect to subformula ordering. Let a
be the root of T and let b be the node to which the principal port of a
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is connected. Because of the maximality of T, the wire connecting a to b
must be a context wire. Consequently, we have that a), = T and that b),
is a quasi-sequent tree that is negatively polarizable. Hence, by lemma, 7.2,
there exist a unique NL formula B and a unique NL quasi-sequent A such
that B° = a), and A® = b),. This allows 7 to be transformed into the NL
sequent A +~ B.

It is not difficult to see that applying the above transformation to all the
sequent trees occurring in [II] yields a valid NL-derivation of I' — A. m

Propositions 7.1 and 7.4 allows proof-nets to be constructed for NL by
interpreting the NL-derivations as CNL-derivations, and by transforming
the latter into proof-nets. The proof-nets that are in the range of this con-
struction may be characterized as follows:

1. assign polaraties to the ports of the nodes as follows:
O\ @ /O

where o is called the output polarity and e the input polarity;

2. stipulate the typing condition that the wires must connect output to
input.
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