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Abstract. This paper describes a method of proving strong normalization based
on an extension of the conservation theorem. We introduce a structural notion of
reduction that we call βS , and we prove that any λ-term that has a βIβS-normal
form is strongly β-normalizable. We show how to use this result to prove the
strong normalization of different typed λ-calculi.
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We present a method of proving strong normalization for several typed λ-calculi. This
method is based on a extension of the conservation theorem.

The conservation theorem for λI [1, Chap. 11, §3.]), says that all the β-reducts of
a λI-term that is not strongly β-normalizable are not strongly β-normalizable. As a
corollary, any λI-term that has a β-normal form is strongly β-normalizable. This is one
of the few results relating strong normalization to (weak) normalization.

The above property, of course, fails for λK-terms. The conservation theorem, when
formulated for λK, concerns only the βI -reducts of the λK-terms and not all its β-reducts.
Hence, we lose the corollary and we cannot use the theorem to turn a proof of normal-
ization into a proof of strong normalization.

In this paper, we state and prove a version of the corollary that holds for λK-terms.
To this end, we introduce a new notion of reduction (βS) that allows the contraction of
the βK-redexes to be delayed. We prove that any λ-term that has a βIβS-normal form is
strongly βIβS-normalizable. Then, it turns out by postponement that any λ-term that
has a βIβS-normal form is strongly β-normalizable. This is the central result of the paper
and we show how to use it to prove the strong normalization of different typed λ-calculi.

The typed calculi we consider are calculi à la Church [3]. Yet we do not consider
that the type discipline is part of the term formation rules. We rather consider that the
typing rules allow well-typed terms to be singled out from the set of raw terms. Therefore
our technical framework is the untyped λ-calculus and our strong normalization proofs
rely on the so-called erasing trick. Nevertheless, we show in Section 6 how to extend our
results to Barendregt’s set T of pseudo-terms.

The paper is organized as follows. Section 2 is reminder of well-known definitions
concerning the untyped λ-calculus. In Section 3, we introduce the notion of reduction βS

and we establish the postponement property of βK-contractions with respect to βS- and
βI -contractions. In Section 4, we prove the conservation theorem for βIβS-reductions.
To this end, we use labeled λ-terms à la Lévy. In Section 5, we obtain, as a corollary of
the postponement and conservation properties, that βIβS-normalization implies strong
β-normalization. This result is used in section Section 6 to prove the strong normal-
ization of Church’s simply typed λ-calculus. Then we show how to extend the proof to
Barendregt’s λ-cube. We present our conclusions in Section 7.



2 Basic Definitions

In this section we remind the reader of some basic notions about the type-free λ-calculus.
The definitions we give, which are taken from [1], concern mainly the concepts of reduc-
tion and normalization. The reader familiar with this material may proceed directly to
Section 3.

Type-free λ-terms are built up on an infinite numerable set of variable V according
to the following definition.

Definition 1. The set Λ of λ-terms is inductively defined as follows:

i. x ∈ V ⇒ x ∈ Λ,
ii. x ∈ V,M ∈ Λ⇒ λx.M ∈ Λ,
iii. M,N ∈ Λ⇒ (M N) ∈ Λ.

The symbol λ is a binding operator and the notions of free and bound occurrences of
a variable are as usual in logic. In particular, the free occurrences of x in M are bound
in λx.M . The set of variables occurring free in a λ-term M is denoted FV(M). The
λ-terms that can be transformed into each other by renaming their bound variables are
identified. We also consider that some variable convention prevents us from clashes of
variables (see [1, page 26], also [5] for a formal treatment).

Definition 2. Any binary relation R ⊂ Λ × Λ is called a notion of reduction. If R
is a notion of reduction and (M,N) ∈ R, M is called a R-redex and N is called the
contractum of M .

Given some notion of reduction R, one defines the following binary relations between
λ-terms: the relation of R-contraction (→R), the relation of R-reduction (→→R), the
relation of strict R-reduction ( +→R), and the relation of R-conversion (←←→→R).

Definition 3. Let R be a notion of reduction. The corresponding contraction relation
is the least relation containing R, and compatible with the λ-term formation rules. This
relation is inductively defined by the following rules:

i. M →R N if (M,N) ∈ R, ii.
M →R N

λx.M →R λx.N
,

iii.
M →R N

(M O)→R (N O)
, iv.

M →R N

(O M)→R (O N)
.

The relation of R-reduction (→→R), is the transitive, reflexive closure of the relation of
R-contraction; the relation of strict R-reduction ( +→R) is the transitive closure of the
relation of R-contraction; the relation of R-conversion (←←→→R) is the transitive, reflexive,
symmetric closure of the relation of R-contraction.

Any notion of reduction induces also the corresponding concepts of normal form,
normalization, and strong normalization.

Definition 4. Let R be a notion of reduction. A λ-term M is called a R-normal form
if and only if there does not exist N ∈ Λ such that M →R N .

Definition 5. Let R be a notion of reduction. A λ-term M is called R-normalizable if
and only if there exists a R-normal form N such that M →→R N .
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Definition 6. Let R be a notion of reduction. A λ-term M is called strongly R-normal-
izable if and only if there exists an upper bound to the length n of any sequence of
R-contractions starting in M :

M ≡M0 →R M1 →R . . .→R Mn.

M [x:=N ] denotes the result of substituting a λ-term N for the free occurrences of a
variable x in a λ-term M . This operation is defined as follows.

Definition 7.

i. x[x:=N ] ≡ N ,
ii. y[x:=N ] ≡ y if x 6≡ y,
iii. λy. M [x:=N ] ≡ λy. M [x:=N ],
iv. (M O)[x:=N ] ≡ (M [x:=N ]O[x:=N ]).

The principal notion of reduction of the λ-calculus is the notion of reduction β.

Definition 8. The notion of reduction β is defined by the following contraction rule:

β : (λx.M N)→M [x:=N ].

3 The Notions of Reduction βI, βK, and βS

A β-redex (λx.M N) is called an I-redex if x ∈ FV(M) and a K-redex otherwise. This
distinction allows the notion of β-reduction to be split into the two notions of βI - and
βK-reduction.

Definition 9. The notions of reduction βI and βK are respectively defined by the fol-
lowing contraction rules:

βI : (λx.M N)→M [x:=N ] if x ∈ FV(M),
βK : (λx.M N)→M if x 6∈ FV(M).

A possible strategy to prove strong normalization when dealing with two different
notions of reduction is to take advantage of some postponement property. For instance,
the postponement of η-contractions with respect to β-contractions is a well known prop-
erty (see [1, page 386]) from which it follows that any strongly β-normalizable λ-term is
strongly βη-normalizable.

The postponement strategy may be used when two notions of reduction, say R1 and
R2, are such that

1. any term of interest is strongly R1-normalizable,
2. any term of interest is strongly R2-normalizable,
3. the contraction of a R2-redex cannot create a R1-redex.

In the case of βI and βK , Conditions 1 and 2 are satisfied. Indeed, we have that

1. any M ∈ Λ that is βI -normalizable is strongly βI -normalizable—this is an easy
consequence of the conservation theorem for λI (see [1, Chap. 11, §3.]),

2. any M ∈ Λ is strongly βK-normalizable—this is obvious because the length of any
βK-contractum is strictly less than the length of the corresponding βK-redex.
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Unfortunately, neither βI -contractions nor βK-contractions may be postponed. This is
shown by the following counterexamples:

(λx. (xM) λy. z)→βI
(λy. z M) a βK-redex is created,

((λy. λx. xM) N)→βK
(λx. xN) a βI -redex is created.

In order to fix this problem, we are going to introduce a third notion of reduction,
namely βS . This notion of reduction is such that

1. if M →→βS
N then M ←←→→β N ,

2. βK-contractions may be postponed with respect of βIβS-contractions,
3. the conservation theorem holds for βI and βS .

The first of these three properties is immediate. The second one and the third one will
be established respectively as Lemma 3 and Theorem 4.

Definition 10. The notion of reduction βS is defined by the following contraction rule:

βS : ((λx.M N) O)→ (λx. (M O) N) if x 6∈ FV(M).

Notice that we have by the variable convention that x 6∈ FV(O).

Lemma 1. (postponement of βK-contractions) Let R ∈ {βI , βS}. Let M,N,O ∈ Λ be
such that

M →βK
N and N →R O

Then there exists P ∈ Λ such that

M
+→βIβS

P and P →→βK
O

Proof. The proof is by induction on the derivation of M →βK
N , distinguishing subcases

according to the way N →R O. The details are given in Appendix A. ut

4 The Conservation Theorem for βI and βS

In this section we establish the main technical result of this paper, namely that any
βIβS-normalizable λ-term is strongly βIβS-normalizable. To this end we use labeled λ-
terms à la Lévy (see [1, Chap. 14]).

Definition 11. The set ΛIN of labeled λ-terms is inductively defined as follows:

i. n ∈ IN, x ∈ V ⇒ (x)n ∈ ΛIN,
ii. n ∈ IN, x ∈ V,M ∈ ΛIN ⇒ λx.Mn ∈ ΛIN,
iii. n ∈ IN,M ∈ ΛIN, N ∈ ΛIN ⇒ (M N)n ∈ ΛIN.

We use M,N,O, . . . as metavariable ranging on labeled λ-terms. We use the notation
Mn or (M)n to stress that the outermost label of a labeled λ-term M is n. Thus, according
to this last convention, the meta-expressions M , Mn, and (M)n used in a same context
stand exactly for the same labeled λ-term. We also write M+m or (M)+m for the labeled
λ-term obtained by adding m to the outermost label of a labeled λ-term M . Thus, if the
outermost label of M is n, then (M)+m denotes the same term than (M)n+m.

Let M ∈ ΛIN. We write |M | for the (unlabeled) λ-term obtained by erasing all the
labels in M . Therefore, for M ∈ ΛIN, we have |M | ∈ Λ.
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Now, let M ∈ Λ. We identify M with the labeled λ-term M ′ such that (i) |M ′| ≡M ,
(ii) all the labels in M ′ are 0. Therefore, we have that Λ ⊂ ΛIN.

Labels will be used as counters to record the number of contracted redexes when
reducing a term. This idea motivates the next two definitions. The first one generalizes
the operation of substitution on labeled λ-terms. The second one introduces labeled
versions of the notions of reduction βI and βS .

Definition 12. The substitution M [x:=N ] of a labeled λ-term M for the free occurrences
of a variable x in a labeled λ-term N is defined as follows.

i. (x)m[x:=Nn] ≡ (N)m+n,
ii. (y)m[x:=Nn] ≡ (y)m if x 6≡ y,
iii. λy. Mm[x:=Nn] ≡ λy. M [x:=Nn]m,
iv. (M O)m[x:=Nn] ≡ (M [x:=Nn]O[x:=Nn])m.

The labeled versions of the notions of reduction βI and βS are called respectively β+
I

and β+
S .

Definition 13. The notions of reduction β+
I and β+

S are respectively defined by the fol-
lowing contraction rules:

β+
I : (λx.Mm N)n → (M [x:=N ])+(m+n+1) if x ∈ FV(M),

β+
S : ((λx.Mm N)n O)o → (λx. (M O) N)m+n+o+1 if x 6∈ FV(M).

To adapt the definition of contraction is straightforward.

Definition 14. Let R ⊂ ΛIN × ΛIN. The relation of R-contraction is inductively defined
by the following rules:

i. M →R N if (M,N) ∈ R, ii.
M →R N

λx.Mn →R λx.Nn
,

iii.
M →R N

(M O)n →R (N O)n
, iv.

M →R N

(O M)n →R (O N)n
.

The definitions of R-reduction, strict R-reduction, and R-conversion are unchanged.

The notion of reduction β+
I ∪ β+

S satisfies the Church-Rosser property.

Theorem 1. (Church-Rosser) Let M,N,O ∈ ΛIN be such that

M →→β+
I

β+
S

N and M →→β+
I

β+
S

O.

Then there exists P ∈ ΛIN such that

N →→β+
I

β+
S

P and O →→β+
I

β+
S

P .

Proof. One uses the lemma of Hindley-Rossen: first one establishes that β+
I and β+

S are
individually Church-Rosser; then one shows that β+

I and β+
S commute. This can be done

using the method of Tait and Martin-Löf. The details are given in Appendix B. ut

The next step is to define the weight of a term as the sum of all its labels.

Definition 15. The weight Θ[M ] of a labeled λ-term M is defined as follows.
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i. Θ[(x)n] = n,
ii. Θ[λy. Mn] = n + Θ[M ],
iii. Θ[(M N)n] = n + Θ[M ] + Θ[N ].

We are now in the position of proving the conservation theorem for βI and βS . The
proof consists of three easy lemmas.

Lemma 2. Let R ∈ {β+
I , β+

S }, and let M,N ∈ ΛIN be such that M
+→R N . Then Θ[M ] <

Θ[N ].

Proof. The statement is proven for one-step reduction by a straightforward induction on
the definition of contraction. Notice, in the case of β+

I , the part played by the proviso
x ∈ FV(M). ut

Lemma 3. (Conservation for β+
I and β+

S ) Let M ∈ ΛIN be β+
I β+

S -normalizable. Then M
is strongly β+

I β+
S -normalizable.

Proof. Since M is β+
I β+

S -normalizable, it has at least one β+
I β+

S -normal form. On the
other hand, by the Church-Rosser property, M has at most one β+

I β+
S -normal form. So,

let M∗ be the unique β+
I β+

S -normal form of M . Then, according to Lemma 4, we have that
the length of any sequence of β+

I β+
S -reduction starting in M is bounded by Θ[M∗]−Θ[M ].

ut

Lemma 4. Let M,N ∈ Λ be such that M →βIβS
N . Then there exist M∗, N∗ ∈ ΛIN

such that |M∗| ≡M , |N∗| ≡ N , and M∗ →β+
I

β+
S

N∗.

Proof. Follows from the fact that Λ ⊂ ΛIN and that, if P →β+
I

β+
S

Q, then |P | →βIβS
|Q|.
ut

Theorem 2. (Conservation for βI and βS) Let M ∈ Λ be βIβS-normalizable. Then M
is strongly βIβS-normalizable.

Proof. Follows from Lemma 4 and Lemma 4. ut

5 Main Result

Our goal is to take advantage of the result established in the previous section when
dealing with the notion of reduction β.

Theorem 4 may be seen as a generalized version of the conservation theorem. Indeed
the usual conservation theorem [1, Chap. 11, §3.] appears as a particular case of The-
orem 4. Nevertheless, we may go further in the generalization and state the following
theorem, which is the central result of this paper.

Theorem 3. (Generalized conservation) Let M ∈ Λ be βIβS-normalizable. Then M is
strongly β-normalizable.

Proof. Suppose that there exists a λ-term M ∈ Λ that is βIβS-normalizable but
that is not strongly β-normalizable. Then there exists an infinite sequence of terms
M0,M1,M2, . . . ∈ Λ such that

M ≡M0 and ∀i ∈ IN,Mi →β Mi+1.
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This sequence must be such that

∀k ∈ IN,∃l ∈ IN, l ≥ k and Ml →βI
Ml+1

otherwise there would exist an infinite sequence of βK-contractions, which is absurd. But
then, by Lemma 3, it is possible to construct an infinite sequence of βIβS-contractions
starting in M , and this contradicts the fact that, by Theorem 4, M is strongly βIβS-
normalizable. ut

6 Application to Typed λ-Calculi

In this section we show how to use Theorem 5 to prove the strong normalization of
several typed λ-calculi. We first establish the strong normalization of Church’s simply
typed λ-calculus. Then we discuss how to extend the proof to Barendregt’s λ-cube by
following the edges of the cube in the three possible directions.

6.1 Church’s Simply Typed λ-Calculus

We first define the raw syntax of simple types and simply typed λ-terms.
Let A be a set of symbols called atomic types. The set S of simple types is inductively

defined as follows.

Definition 16.

i. a ∈ A ⇒ a ∈ S,
ii. α, β ∈ S ⇒ (α→ β) ∈ S

Let V be the set of variables of type α. We define the set Λ→ of raw simply typed
λ-terms.

Definition 17. The set Λ→ of raw simply typed λ-terms is inductively defined as follows:

i. x ∈ V ⇒ x ∈ Λ→,
ii. x ∈ V, α ∈ S,M ∈ Λ→ ⇒ (λx :α. M) ∈ Λ→,
iii. M,N ∈ Λ→ ⇒ (M N) ∈ Λ→.

If M ∈ Λ→ and α ∈ S, an expression of the form M : α is called a statement. M
is called the subject of the statement and α is called the predicate. A statement whose
subject is a variable is called a declaration. A sequence of declarations whose subjects
are all distinct is called a typing context. We will use Γ,∆, . . . as metavariables ranging
over typing contexts.

The notion of well-typed term is defined by providing a proof system to derive typing
judgements of the shape

Γ − M : α

where Γ is a typing context, M ∈ Λ→, and α ∈ S.

Definition 18.

Γ − x : α if x : α ∈ Γ (variable)
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Γ, x : α − M : β

Γ − (λx :α. M) : (α→ β)
(abstraction)

Γ − M : (α→ β) Γ − N : α

Γ − (M N) : β
(application)

We now establish the normalization of Church’s simply typed λ-calculus by giving a
proof due to Turing [9].

Theorem 4. (Normalization) Let Γ be a context, and let M ∈ Λ→ and α ∈ S be such
that

Γ − M : α

then M has a β-normal form.

Proof. One defines the order of a β-redex ((λx :α. M) N) as the length of the type assigned
to (λx :α. M). Now, consider some β-contraction P →β Q where the contracted redex is
((λx :α. M) N). The redexes in Q are of six kinds:

1. redexes occurring in P disjointly with ((λx :α. M) N); these redexes are unchanged;
2. redexes occurring in M , and possibly modified by the substitution M [x:=N ]; their

orders are unchanged;
3. new redexes ((λy :α1. N1) Oi), if N ≡ (λy :α1. N1) and (xOi) occurs in M ; the order

of these redexes is the length of the type assigned to N , which is less than the order
of ((λx :α. M) N);

4. a new redex ((λy :α1.M1[x:=N ])O), if M ≡ (λy :α1.M1) and ((λx :α. M) N) occurs
in P as the left subterm of an application (((λx :α. M) N) O); the order of this redex
is the length of the type assigned to M , which is less than the order of ((λx :α. M) N);

5. a new redex ((λy :α1. N1) O), if N ≡ (λy :α1. N1), M ≡ x, and ((λx :α. x) N) occurs
in P as the left subterm of an application (((λx :α. x) N) O); the order of this redex is
the length of the type assigned to N , which is less than the order of ((λx :α. M) N);

6. redexes occurring in N and possibly multiplied by the substitution M [x:=N ]; their
orders are kept unchanged.

The normalization procedure runs as follows: contract one of the β-redexes of highest
order that is innermost, and repeat this process until no more redex remains.

Since the contracted redex, say ((λx :α. M) N), is chosen innermost, the order of any
redex occurring in N is strictly less than the order of the contracted redex. Therefore,
at each step, the orders of the created or multiplied redexes (of kind 3, 4, 5, and 6)
are strictly less than the order of the redex that disappears. The theorem follows by an
induction up to ω2. ut

Normalization concerns only the existence of normal forms. Hence, to prove a nor-
malization theorem, it sufficient to exhibit one normalization procedure. Strong normal-
ization is, in general, more complex to establish. One has to show that any reduction
strategy is normalizing. This is why Theorem 5 is interesting: it allows one to reduce a
proof of strong normalization to a proof of normalization. This is illustrated by the proof
of the next theorem.

Theorem 5. (Strong normalization) Let Γ be a context, and let M ∈ Λ→ and α ∈ S be
such that

Γ − M : α

then M is strongly β-normalizable.
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Proof. According to Theorem 5, it is sufficient to show that M has a βIβS-normal form.
First one defines the order of a βS-redex (((λx :α. M) N) O) as the length of the type

assigned to (λx :α. M). Then, it is straightforward to replay the proof of Theorem 6.1. ut

A technical advantage of the above proof, as opposed to a proof à la Tait (see [15,
App. 2]) is that our proof is arithmetizable. We will come back to this point in the
conclusions.

6.2 Barendregt’s λ-Cube

Barendregt’s λ-cube is a system of eight typed λ-calculi ordered by inclusion. The simplest
of these calculi is Church’s simply typed λ-calculus and the more complex is Coquand’s
Constructions [4]. The others systems include Girard’s system F [12, 13], its higher order
version Fω, and the system LF [14], which is a variant of aut-qe [6].

A complete description of the λ-cube, together with examples, may be found in [3,
2]. We just give briefly the main definitions.

The set T of raw types and of raw typed λ-terms is defined at once. This set is called
the set of pseudo-terms.

Definition 19. The set T of pseudo-terms is inductively defined as follows:

i. 2 ∈ T ,
ii. ∗ ∈ T ,
iii. x ∈ V ⇒ x ∈ T ,
iv. x ∈ V,M,N ∈ T ⇒ (λx :M.N) ∈ T ,
v. x ∈ V,M,N ∈ T ⇒ (Πx :M.N) ∈ T ,
vi. M,N ∈ T ⇒ (M N) ∈ T .

The two constants 2 and ∗ are called sorts. We let s, s1 and s2 range over sorts.
The statements are of the form M : N , with M,N ∈ T . The notions of declaration and
typing context are defined as previously. Type assignment is defined as follows.

Definition 20.
i. − ∗ : 2, ii.

Γ − M : s

Γ, x : M − x : M
,

iii.
Γ − M : N Γ − O : s

Γ, x : O − M : N
, iv.

Γ − M : (Πx :O.P ) Γ − N : O

Γ − (M N) : P [x:=N ]
,

v.
Γ − M : N Γ − O : s

Γ − M : O
if N ←←→→β O,

vi.
Γ − M : s1 Γ, x : M − N : s2

Γ − (Πx :M.N) : s2
,

vii.
Γ − M : s1 Γ, x : M − N : O Γ, x : M − O : s2

Γ − (λx :M.N) : (Πx :M.O)
.

Rules vi and vii are parametrized by the pair of sorts (s1, s2). By taking this pair to
be (∗, ∗), one gets a new formulation of Church’s simply typed λ-calculus (λ→). To see
this, one defines (α → β) as (Πx :α. β) where the variable x does not occur in β. For a
precise correspondence between this new formulation and Definition 6.1, see [3].

By taking (s1, s2) to be (2, ∗), (2,2), or (∗,2), one gets respectively terms depending
on types, types depending on types, and types depending on terms. This corresponds to
the three possible directions of the edges of the λ-cube.
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Terms Depending on Types. By allowing for terms depending on types, one obtains
systems containing Girard’s system F. Therefore it is vain to seek for some arithmetizable
proof [13]. The method of reducibility candidates [8] is somehow required.

This method, due to Girard, extends Tait’s technique and yields strong normaliza-
tion proofs. Therefore, it may be unclear how one can take advantage of Theorem 5 in
this context. Nevertheless, when one is simply interested in normalization (as opposed
to strong normalization), there exists a simplification of the method, which is due to
Scedrov [18].

In the course of (one version of) the strong normalization proof of system F, one
defines the notion of saturated set [8]. A saturated set S is a set of strongly normalizable
λ-terms such that1:

1. if x is a variable and M1, . . . ,Mn are strongly normalizable λ-terms, then
((xM1) . . .Mn) ∈ S,

2. if N1 is a strongly normalizable λ-term and if ((M [x:=N1]N2) . . . Nn) ∈ S, then
(((λx.M N1) N2) . . . Nn) ∈ S.

Scedrov notices that normalizable λ-terms, as opposed to strongly normalizable λ-terms,
are closed under β-expansion. Therefore, when adapting the above definition to the case
of normalization, one may drop Condition 2. The same idea may be used to establish
βIβS-normalization.

Types Depending on Types. Our proof technique relies on the so-called erasing trick.
To prove that a typed λ-term M is strongly normalizable, we prove that the untyped
λ-term that is obtained by erasing the type information from M is strongly-normalizable.

Types depending on types introduces redexes at the type level. For instance, one may
derive the following:

` (Πx :∗. ∗) : 2

` (λa :∗. a) : (Πx :∗. ∗)
b : ∗ ` (λx : ((λa :∗. a) b). x) : (Πx :b. b)

Nevertheless, the erasing trick may still be used because the strong normalization at
the type level may be established independently of the strong normalization at the term
level. This is even true for Fω [8].

Types Depending on Terms. With types depending on terms, the erasing trick fails.
Thus we cannot reason in the framework of untyped λ-calculus any more. We have to
work with the complete set of pseudo-terms T .

To adapt Theorem 5 to the set T is not straightforward. The problem is that even
the usual version of the conservation theorem fails for T . There exist pseudo-terms that
are βI -normalizable but not strongly βI -normalizable as shown by the following coun-
terexample:

((λx :Ω. x) y)→βI
y

where Ω ≡ ((λx :y. x x) (λx :y. x x)).
Nevertheless, a version of Theorem 5 may be stated for pseudo-terms by following an

idea due to Nederpelt [17]. This idea consists in adapting the notion of reduction βI as
follows.
1 The conditions that we give are due to Mitchell. For a comparison between the different

versions of Girard’s method see the comprehensive article of Gallier [8].
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βTI : ((λx :M.N) O)→ ((λx :M.N [x:=O])O) if x ∈ FV(M).

On the other hand, our notion of reduction βS may be kept unchanged (except for the
syntax).

βTS : (((λx :M.N) O) P )→ ((λx :M. (N P ))O) if x 6∈ FV(N).

With this new definitions, Theorem 5 holds for pseudo-terms.

7 Conclusions

The technique we have developed in this paper yields rather transparent proofs of strong
normalization (transparency, of course, is chiefly a matter of style—or even a matter of
taste).

As we already mentioned, the strong normalization proof that we have given for
Church’s simply typed λ-calculus is arithmetizable. Other arithmetizable proofs exist,
among which the one by Gandy [10] is may be the best known. Gandy’s proof is based
on a semantic interpretation of the simply typed λ-terms and is, therefore, quite different
form our proof. Nevertheless, it is interesting to note that he transforms βK-redexes into
βI -redexes.

The untyped λ-terms typable in Nederpelt’s calculus correspond exactly to the simply
typable λ-terms [7]. Therefore Nederpelt’s proof [17] may also be seen as an arithmetiz-
able proof for Church’s simply typed λ-calculus. As we explained in Section 6, our proof
technique is close to the one of Nederpelt. The main difference is that Nederpelt does not
use the notion of reduction βS , but generalizes further the notion of reduction βTI . This
yields some technical complications when proving the Church-Rosser property. Another
difference is that Nederpelt’s proof is tailormade for his own calculus. Nevertheless, Ned-
erpelt says in his thesis [17] that his proof may be turn in a general method of proving
strong normalization from normalization. This statement is worked out by Klop in [16].
Indeed Klop provides a generalization of Nederpelt’s method for a large class of reduction
systems. The present work may also be seen as an exploration of Nederpelt’s statement.

Van Daalen, in his thesis [19], gives also an arithmetizable proof of strong normaliza-
tion for simply typed λ-calculus. His proof, which is totally syntactic, does not use any
other notion of reduction than β, and is based on a strong substitution lemma.

We have briefly explained how to extend the strong normalization proof of simply
typed λ-calculus to Barendregt’s λ-cube. The ideas that we have developed are immedi-
ately applicable to the direct successors of λ→, namely λ2, λω, and λP. To put these ideas
together into a modular proof of strong normalization for the calculus of Constructions
(in the spirit of [11]) will be the subject of future work.

References

1. H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised
edition, 1984.

2. H.P. Barendregt. Introduction to Generalised Type Systems. Journal of Functional Pro-
gramming, 1(2):125–154, 1991.

3. H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbai, and T. Maibaum,
editors, Handbook of Logic in Computer Science. Oxford University Press, 1992.

4. Th. Coquand. Metamathematical investigations of a calculus of constructions. In
P. Odifreddi, editor, Logic and Computer Science, pages 91–122. Academic Press, 1990.

11



5. N.G. de Bruijn. Lambda calculus notations with nameless dummies, a tool for automatic
formula manipulation, with an application to the Church-Rosser theorem. Indigationes
Mathematicae, 34:381–392, 1972.

6. N.G. de Bruijn. A survey of the project Automath. In J.P. Seldin and J.R. Hindley, editors,
to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
579–606. Academic Press, 1980.
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A Postponement of βK-Contractions

Lemma 5. Let M,N,O ∈ Λ be such that M →βK
N . Then M [x:=O]→βK

N [x:=O].

Proof. By induction on the derivation of M →βK
N . ut

Lemma 6. Let M,N,O ∈ Λ be such that M →βK
N . Then O[x:=M ]→→βK

O[x:=N ].

Proof. By induction on the structure of O. ut

Proof of Lemma 3.

We treat the case R = βI , the other case being similar. The proof is by induction on the
derivation of M →βK

N .

1. M ≡ (λx.M1 M2), N ≡M1, and x 6∈ FV(M1)
Take P ≡ (λx.O M2).

12



2. M ≡ λx.M1, N ≡ λx.N1 and M1 →βK
N1.

O must be of the form λx.O1, with N1 →βI
O1. Apply the induction hypothesis.

3. M ≡ (M1 M2), N ≡ (N1 M2) and M1 →βK
N1.

There are three subcases according to the way N →βI
O.

(a) O ≡ (O1 M2) and N1 →βI
O1.

Apply the induction hypothesis.
(b) O ≡ (N1 O2) and M2 →βI

O2.
Take P ≡ (M1 O2).

(c) N1 ≡ λx.N11 and O ≡ N11[x:=M2].
There are two subcases according to the form of M1.
i. M1 ≡ λx.M11 and M11 →βK

N11.
Take P ≡M11[x:=M2]. Indeed, M11[x:=M2]→βK

N11[x:=M2], by Lemma A.
ii. M1 ≡ (λy. λx.N11 M11) and y 6∈ FV(λx.N11).

Take P ≡ (λy. N11[x:=M2]M11). Indeed we have:

((λy. λx.N11 M11) M2) →βS
(λy. (λx.N11 M2) M11)

→βI
(λy. N11[x:=M2]M11)

→βK
N11[x:=M2].

4. M ≡ (M1 M2), N ≡ (M1 N2) and M2 →βK
N2.

This case is similar to case (3), using Lemma A instead of Lemma A. ut

B The Church-Rosser Property for β+
I and β+

S

The Church-Rosser Property for β+
S

The contraction of a β+
S -redex does not multiply the other β+

S -redexes. For this reason,
the relation of β+

S -contraction satisfies the Church-Rosser property.

Lemma 7. Let M,N,O ∈ ΛIN be such that M →β+
S

N and M →β+
S

O. Then there exists
P ∈ ΛIN such that N →β+

S
P and O →β+

S
P .

Proof. By induction on the derivation of M →β+
S

N , distinguishing subcases according
to the way M →β+

S
O. ut

Lemma 8. Let M,N,O ∈ ΛIN be such that M →→β+
S

N and M →→β+
S

O. Then there
exists P ∈ ΛIN such that N →→β+

S
P and O →→β+

S
P .

Proof. By a diagram chase, using Lemma B. ut

The Church-Rosser Property for β+
I

To prove that β+
I is Church-Rosser, we use the Tait–Martin-Löf method. We first define

the binary relation →→
1

on ΛIN.

Definition 21. The binary relation →→
1

is defined on ΛIN by the following system.

i. M →→
1

M ,

13



ii.
M →→

1
N

λx.Mn →→
1

λx.Nn
, iii.

M →→
1

O N →→
1

P

(M N)n →→
1

(O P )n
,

iv.
M →→

1
O N →→

1
P

(λx.Mm N)n →→
1

(O[x:=P ])+(m+n+1)
if x ∈ FV(M).

Lemma 9. Let M,N ∈ ΛIN be such that M →→
1

N . Then M+n →→
1

N+n.

Proof. By induction on the derivation of M →→
1

N . ut

Lemma 10. Let M,N,O ∈ ΛIN be such that M →→
1

N . Then O[x:=M ]→→
1

O[x:=N ].

Proof. By induction on the structure of O, using Lemma B when O ≡ (x)n. ut
Lemma 11. Let M,N,O, P ∈ ΛIN be such that M →→

1
N and O →→

1
P .

Then M [x:=O]→→
1

N [x:=P ].

Proof. By induction on the derivation of M →→
1

N , using Lemma B for the case M →→
1

M .
ut

Lemma 12. Let M,N,O ∈ ΛIN be such that M →→
1

N and M →→
1

O. Then there exists

P ∈ ΛIN such that N →→
1

P and O →→
1

P .

Proof. By induction on the derivation of M →→
1

N .

1. M ≡ N .
Take P ≡ O.

2. M ≡ λx.Mn
1 , N ≡ λx.Nn

1 , and M1 →→
1

N1.
We must have O ≡ λx.On

1 , with M1 →→
1

O1. Apply the induction hypothesis.
3. M ≡ (M1 M2)n, N ≡ (N1 N2)n, M1 →→

1
N1, and M2 →→

1
N2.

There are two subcases according to the way M →→
1

O.
(a) O ≡ (O1 O2)n, M1 →→

1
O1, and M2 →→

1
O2.

Apply the induction hypothesis.
(b) M1 ≡ λx.Mm

11, O ≡ (O11[x:=O2])+(m+n+1), M11 →→
1

O11, and M2 →→
1

O2.
Then we must have N1 ≡ λx.Nm

11, with M11 →→
1

N11. Therefore, by induc-

tion hypothesis, there exists P11, P2 ∈ ΛIN such that N11 →→
1

P11, O11 →→
1

P11,
N2 →→

1
P2 and O2 →→

1
P2. Hence, by Lemmas B and B, we may take

P ≡ (P11[x:=P2])+(m+n+1).
4. M ≡ (λx.Mm

1 M2)n, N ≡ (N1[x:=N2])+(m+n+1), M1 →→
1

N1, and M2 →→
1

N2.
There are two subcases according to the way M →→

1
O.

(a) O ≡ (λx.Om
1 O2)n, M1 →→

1
O1, and M2 →→

1
O2.

This case is symmetric to Case (3.b).
(b) N ≡ (O1[x:=O2])+(m+n+1), M1 →→

1
O1, and M2 →→

1
O2.

Apply the induction hypothesis and use Lemmas B and B.
ut

Lemma 13. Let M,N,O ∈ ΛIN be such that M →→β+
I

N and M →→β+
I

O. Then there
exists P ∈ ΛIN such that N →→β+

I
P and O →→β+

I
P .

Proof. Because →→β+
I

is the transitive closure of →→
1

. ut
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Commutation of β+
I and β+

S

Lemma 14. Let M,N ∈ ΛIN be such that M →β+
S

N . Then M+n →β+
S

N+n.

Proof. By induction on the derivation of M →β+
S

N . ut

Lemma 15. Let M,N,O ∈ ΛIN be such that M →β+
S

N . Then M [x:=O]→β+
S

N [x:=O].

Proof. By induction on the derivation of M →β+
S

N . ut

Lemma 16. Let M,N,O ∈ ΛIN be such that M →β+
S

N . Then O[x:=M ]→β+
S

O[x:=N ].

Proof. By induction on the structure of O, using Lemma B for the case O ≡ (x)n. ut

To establish the commutation of β+
I - and β+

S -reductions, we prove what some authors
call the trapezium property, by analogy with the diamond property.

Lemma 17. Let M,N,O ∈ ΛIN be such that M →β+
I

N and M →β+
S

O. Then there
exists P ∈ ΛIN such that N →→β+

S
P and O →β+

I
P .

Proof. By induction on the derivation of M →β+
I

N .

1. M ≡ (λx.Mm
1 M2)n and N ≡ (M1[x:=M2])+(m+n+1).

There are two subcases according to the way M →β+
S

O.
(a) O ≡ (λx.Om

1 M2)n and M1 →β+
S

O1.
By lemma B, we may take P ≡ (O1[x:=M2])+(m+n+1)

(b) O ≡ (λx.Mm
1 O2)n and M2 →β+

S
O2.

By lemma B, we may take P ≡ (M1[x:=O2])+(m+n+1)

2. M ≡ λx.Mn
1 , N ≡ λx.Nn

1 and M1 →β+
I

N1.
O must be of the form λx.On

1 , with M1 →β+
S

O1. Apply the induction hypothesis.
3. M ≡ (M1 M2)o, N ≡ (N1 M2)o and M1 →β+

I
N1.

There are three subcases according to the way M →β+
S

O.
(a) O ≡ (O1 M2)o and M1 →β+

S
O1.

Apply the induction hypothesis.
(b) O ≡ (M1 O2)o and M2 →β+

S
O2.

Take P ≡ (N1 O2)o.
(c) M1 ≡ (λx.Mm

11M12)n, x 6∈ FV(M11), and O ≡ (λx. (M11M2)M12)m+n+o+1.
We must have N1 ≡ (λx.Nm

11 N12)n with M11 →β+
I

N11 and M12 ≡ N12, or with
M11 ≡ N11 and M12 →β+

I
N12. Take P ≡ (λx. (N11 M2) N12)m+n+o+1.

4. M ≡ (M1 M2)o, N ≡ (M1 N2)o and M2 →β+
I

N2.
This case is similar to Case (3).

ut

Lemma 18. Let M,N,O ∈ ΛIN be such that M →→β+
I

N and M →→β+
S

O. Then there
exists P ∈ ΛIN such that N →→β+

S
P and O →→β+

I
P .

Proof. By a diagram chase, using Lemma B. ut

Proof of Theorem 4.

By Lemma B, Lemma B, and Lemma B. ut
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