
A Simple Calculus of Exception Handling

Philippe de Groote

INRIA-Lorraine – CRIN – CNRS
615, rue du Jardin Botanique - B.P. 101

54602 Villers lès Nancy Cedex – FRANCE
e-mail: degroote@loria.fr

Abstract. We introduce a simply-typed λ-calculus (λ→exn) featuring an ML-like ex-
ception handling mechanism. This calculus, whose type system corresponds to clas-
sical logic through the Curry-Howard isomorphism, satifies several interesting prop-
erties: among other, Church-Rosser, subject reduction, and strong-normalisation.
Moreover, its typing system ensures that the reduction of well-typed expressions can-
not give rise to uncaught exceptions.

1 Introduction

In:
M. Dezani-Ciancaglini and G. Plotkin (Eds)
Proceedings of the Second International Conference on Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science, Vol. 902, Springer-Verlag (1995), pp. 201-215.

During the last four years, several authors have introduced various calculi that extend the
Curry-Howard isomorphism to classical logic and therefore provide a computational inter-
pretation of classical proofs [3, 4, 10, 12, 14, 16, 21]. In this paper we propose yet another
such calculus that we call λ→exn .

The originality of λ→exn derives from its basis on an exception handling mechanism à
la ML. Moreover, from a programming point of view, λ→exn satifies the interesting property
that well-typed programs cannot give rise to uncaught exceptions. This result is achieved
by introducing a conservative extention of ML-like operational semantics.

The paper is organised as follows.
Section 2 performs an informal type-theoretic analysis of ML-like exception handling.

This analysis results in an interpretation of the type of exceptions as the absurdity type,
and yields a typing system that corresponds to classical logic.

In Section 3, we define formally the syntax of λ→exn and its typing relation.
The ML-like operational semantics of exceptions does not completely match the typing

system of λ→exn . We discuss this issue, which is related to the subject reduction property, in
Section 4.

In Section 5, we provide λ→exn with a modified operational semantics. This modified
semantics is such that λ→exn satisfies the Church-Rosser and subject reduction property.
Consequently, when evaluating a well-typed program, any raised exception is eventually
handled.

In Section 6, we investigate the relation between the ML-like and the modified seman-
tics. We prove that, for non-exceptional values, the modified semantics is equivalent to the
ML-like semantics.

Section 7 introduces a CPS-interpretation of λ→exn and shows that there exists a logical
embedding of λ→exn into the simply-typed λ-calculus.

In Section 8, we establish the strong normalisation of λ→exn .
We discuss related work and conclusions in Section 9.

2 Informal Analysis of ML-like Exception handling

The notion of exception and the one of data type constructor in Standard ML are unified.
This unification, which follows a proposal by MacQueen [1], is based on the special datatype
exn whose values are exceptions. Indeed the following standard ML declaration:

exception foo of int;

amounts to the declaration of the constructor foo whose type is int → exn.
Values of type exn are first-class citizens, they may be stored, be passed as parameters,

returned as results, etc. In addition, and in contrast to other values, they may also be turned
into packets by being raised (see [13] for details).

The typing and reduction rules of the operator raise are the following:

Γ − M : exn
Γ − (raise M) : α

V (raise M) → (raise M) (for V a value)

(raise M) N → (raise M) (for N any expression)

These rules correspond respectively to the deduction rule and the proof reduction rules
that are used in natural deduction for falsity [9].

⊥
α

...
α → β

...
⊥
α

β
→

...
⊥
β

...
⊥

α → β

...
α

β
→

...
⊥
β

Therefore it makes sense to identify, through the Curry-Howard isomorphism, the type
of exceptions (exn) with the logical notion of falsity (⊥). Let us accept this identification
and proceed further with the type-theoretic analysis of exception handling.

Packets, i.e. raised exceptions, are propagated and then possibly handled. The typing
rule for exception handlers is akin to the following:

Γ − M : α Γ − N : exn → α

Γ − M handle N : α

This rule is certainly sound, but not satisfactory. On the one hand, we would like to
have a rule that allows exception declarations to be discarded. This is mandatory if we want
to preserve the logical consistency of the type system because of the identifification of the
type of exception with false. On the other hand, as it is stated, this rule does not properly
reflect the standard ML exception handling mechanism. Indeed in standard ML the right
hand side of the operator handle is not an expression but a match.

A solution to these two issues is to use the let construct to declare exception construc-
tors locally and to consider the following typing rule:

Γ, y : α → exn − M : β Γ, x : α − N : β

Γ − let exception y of α in M handle (y x) ⇒ N end : β

This rule, which is consistent with the definition of standard ML, corresponds to the elim-
ination of the disjunction for the particular case of the excluded middle. Therefore it is
sound with respect to classical logic. This is not too surprising because it is known, since
Griffin’s work [12], that there is a strong connection between classical logic and sequential
control.

The fact that the above rule is classical allows us to write classical programs in the
sense of [12]. This is illustrated by the following example.

Example 2.1 In classical logic, conjunction can be defined in terms of implication and
negation as follows: α∧ β = ¬(α → ¬β). This definition allows a classical pairing operator,
together with the associated projections, to be defined:

fun pair (x:int) (y:int) = fn (f:(int->int->exn)) => (f x y);

fun proj1 (p:(int -> int -> exn) -> exn) =

let exception y of int

in

(raise (p (fn x => (raise y x))))

handle

(y x) => x

end;

fun proj2 (p:(int -> int -> exn) -> exn) =

let exception y of int

in

(raise (p (fn x => y)))

handle

(y x) => x

end;

The types that a compiler infers for these three pieces of code are the following:

val pair = fn : int -> int -> (int -> int -> exn) -> exn

val proj1 = fn : ((int -> int -> exn) -> exn) -> int

val proj2 = fn : ((int -> int -> exn) -> exn) -> int

Finally, the execution of the programs yields the expected results:

- proj1 (pair 1 2);

val it = 1 : int

- proj2 (pair 1 2);

val it = 2 : int

3 Definition of a Simple Calculus of Exception Handling

We define a simple calculus (λ→exn) of exception handling based on the ideas discussed in the
previous section.

Definition 3.1 The types of λ→exn are given by the following grammar:

τ ::= a | ⊥ | (τ → τ)

where “a” range over a finite set of ground types, and ⊥ is a distinguished ground type.

We let the lowercase Greek letters (α, β, γ, . . .) range over types, and we write ¬α as
an abbreviation for (α → ⊥).

Definition 3.2 The expressions of λ→exn are built upon two distinct alphabets of vari-
ables: the λ-variables and the exception variables. The raw syntax of the expressions is the
following.

T ::= c | x | y | λx. T | (T T) |
(raise T) | let y : ¬α in T handle (y x) ⇒ T end

where c ranges over possible constants, x ranges over λ-variables, and y over exception
variables.

We use uppercase Roman letters (A,B, C, . . .) to denote expressions, and we adopt the
usual notational conventions [5, pp. 22–23]. The notions of free and bound (occurrences of)
variables are defined as usual. In particular, the scoping rule for the handle construct is the
following: in an expression of the form

let y : ¬α in A handle (y x) ⇒ B end,

the exception variable y is bound in the subexpression A, and the λ-variable x is bound
in the subexpression B. We also assume that some implicit convention (e.g. [5, p. 26])
prevents clashes between free and bound variables, and we let A[x:=B] denote the usual
capture-avoiding substitution.

When writing proofs, we use a more compact notation for the raise and the handle
constructs. We write

R (A) for (raise A).

Similarly, we write

〈x.A | y. B 〉 for let x : ¬α in A handle (x y) ⇒ B end,

α being left implicit. We also write

〈 (xi). A | (yi. Bi) 〉 for 〈x1. 〈x2. · · · 〈xn. A | yn. Bn 〉 · · · | y2. B2 〉 | y1. B1 〉,
the number n of nested constructs being left implicit.

λ→exn is a call-by-value language. We thus have to define the notion of value.

Definition 3.3 The notion of value is defined as follows:

V ::= c | x | y | λx. T | (y V)

Note that there is a significant difference between λ-variables and exception variables.
The latter act as datatype constructors. Therefore, the application of an exception variable
to a value is a value. From now on, the uppercase Roman letter V (with possible subscripts)
will range over values.

Finally the typing rules of our calculus are the ones of the simply typed λ-calculus
together with the rules discussed in the previous section for the raise and the handle
constructs.

Definition 3.4 Define a typing environment to be a function, undefined almost every-
where, that assigns types to λ-variables and that assigns types of the form ¬α to exception
variables. Let Γ,∆, . . . range over typing environments, and let σ be a given function that
assigns a type to each constant.

The typing rules of the calculus are the following:

Γ − c : σ(c)

Γ − x : Γ(x) Γ − y : Γ(y)

Γ, x : α − B : β

Γ − λx.B : α → β

Γ − A : α → β Γ − B : α

Γ − A B : β

Γ − A : ⊥
Γ − (raise A) : α

Γ, y : ¬α − A : β Γ, x : α − B : β

Γ − let y : ¬α in A handle (y x) ⇒ B end : β

As we noted, the typing rules of λ→exn , as a logical system, are consistent with respect
to classical logic. It is quite easy to show that the system is also complete. We thus have
the following proposition.

Proposition 3.5 Consider the calculus λ→exn without constants. Given a type α, there
exists an expression A such that − A : α if and only if α, seen as a proposition, is a
classical tautology.

4 Consistency Problems with ML-like Operational Semantics

Let the function σ that assigns types to constants be consistent, in the sense that its range
is a consistent set of propositions. Then Proposition 3.5 ensures that closed expressions of
type ⊥ cannot exist. This property, in turn, ensures that the execution of a program cannot
give rise to an uncaught exception, provided that the calculus satisfies the subject reduction
property.

Unfortunately this is not the case with an ML-like semantics. Indeed, consider the
following example:

Example 4.1 The following piece of code defines another classical pairing operator:

fun var_pair x y = let exception P of (int -> int -> exn)

in P handle (P g) => raise (g x y)

end;

It is easy to check that the expression

proj_1 (var_pair 1 2)

is a well-typed expression of type int. The execution of this expression, however, gives rise
to an uncaught exception.

The dynamic semantics of standard ML is given in a natural semantics style [13]. Ta-
ble 1 adapts this semantics to λ→exn , in terms of reduction rules. The problem with subject

(λx. M) V → M [x:=V] (βV)

V1 (raise V) → (raise V) (raise left)

(raise V) M → (raise V) (raise right)

(raise (raise V)) → (raise V) (raise idem)

let y : ¬α in V handle (y x) ⇒ N end → V (handle simp)

let y : ¬α in (raise y V) handle (y x) ⇒ N end

→ N [x:=V] (handle/raise 1)

let y : ¬α in (raise z V) handle (y x) ⇒ N end

→ (raise z V) if z 6= y (handle/raise 2)

Table 1. ML-like Reduction Rules

reduction is related to the last three rules: bound variables may become free by reduction.1

Take for instance Rule (handle simp): any free occurrence of y in V is bound in the redex
but becomes free in the contractum.

5 Modified Operational Semantics

To circumvent the problem related to the ML-like semantics, we must modify the three last
rules of Table 1. This idea gives rise to the modified operational semantics specified by

(λx. M) V → M [x:=V] (βV)

V1 (raise V) → (raise V) (raise left)

(raise V) M → (raise V) (raise right)

(raise (raise V)) → (raise V) (raise idem)

let y : ¬α in V handle (y x) ⇒ N end

→ V if y 6∈ FV (V) (handle simp)

let y1 : ¬α1; y2 : ¬α2; . . . ; yn : ¬αn

in (raise yi V)handle (yn x) ⇒ Nn

...
| (y2 x) ⇒ N2

| (y1 x) ⇒ N1

end

→ let y1 : ¬α1; y2 : ¬α2; . . . ; yn : ¬αn

in Ni[x:=V]handle (yn x) ⇒ Nn

...
| (y2 x) ⇒ N2

| (y1 x) ⇒ N1

end

(handle/raise)

V (let y : ¬α in M handle (y x) ⇒ N end)
→ let y : ¬α in V M handle (y x) ⇒ V N end (handle left)

(let y : ¬α in M handle (y x) ⇒ N end) O
→ let y : ¬α in M O handle (y x) ⇒ N O end (handle right)

(raise let y : ¬α in M handle (y x) ⇒ N end)
→ let y : ¬α in (raise M) handle (y x) ⇒ (raise N) end (raise/handle)

Table 2. Modified Reduction Rules

the reduction rules of Table 2. The three first rules of the modified semantics correspond
exactly to the ML-like rules. The fourth rule comes with a proviso that ensures that bound
variables may not become free by reduction. Rule (handle/raise) is more general that the
corresponding rules in the ML-like semantics. In particular, this new rule allows handlers
to be used more than once. Finally, the three last rules are necessary to ensure that the
execution of programs will not be stuck. These three last rules, which may seem intricate, are
nothing but the commuting conversions of disjunction that are used in natural deduction [11].
For instance, Rule (handle left) corresponds to the following proof reduction:

...
B → C

[¬A] A
...

...
B B

B

C
→

...
B → C

[¬A]
...
B

C

...
B → C

[A]
...
B

C

C

Before investigating further the properties of the modified semantics, we must first

1 This subject reduction problem is not actually related to the exception handling mechanism of
standard ML but rather to the possibility of declaring locally a datatype constructor. Take, for
instance the ML expression: let datatype foo = c in c end. The New-Jersey SML compiler
evaluates this expression to the constructor c of type ?.foo. Here, the question mark suggests
that the datatype foo has been declared in some unknown module, that is in a lost environment.

determine in what sense the reduction rules of Table 2 specify an operational semantics
for λ→exn . The problem is that we have only introduced some notions of reduction without
defining any reduction strategy. To settle this, we simply define the result of the evaluation
of an expression to be its normal form (if any). Then it remains to prove that this normal
form, when it exists, is unique. This is the purpose of the next proposition.

Proposition 5.1 (Church-Rosser Property) Let →→ be the reduction relation induced by
the notions of reduction of Table 2 (that is the least reflexive, transitive relation containing
→ and compatible with the expression formation rules). If A, B, C are expressions such
that A →→ B and A →→ C then there exists an expression D such that B →→ D and C →→ D.

Proof. The property can be established by using the standard technique due to Tait and
Martin-Löf. The different cases are numerous because we are dealing with nine notions of
reduction. Nevertheless the proof is not difficult because there are only a few critical pairs.

To better understand how the modified semantics works, let us see how example 4.1,
which gave rise to an uncaught exception, may now be reduced. (We use the compact
syntax.)

(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉) ((λx. λy. 〈P. P | g.R (g x y) 〉) 1 2)

→βV
(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉) ((λy. 〈P. P | g.R (g 1 y) 〉) 2)

→βV
(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉) 〈P. P | g.R ((g 1 2)) 〉

→ h left
〈P.(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉) P

| g.(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R ((g 1 2)) 〉
→βV

〈P.〈 y.R (P (λx.R (y x))) | x. x 〉
| g.(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R ((g 1 2)) 〉

→ h/r 〈P.〈 y. (λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R (((λx.R (y x)) 1 2)) | x. x 〉
| g.(λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R ((g 1 2)) 〉

→ hsimp 〈 y. (λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R (((λx.R (y x)) 1 2)) | x. x 〉
→βV

〈 y. (λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R ((R (y 1) 2)) | x. x 〉
→ rright

〈 y. (λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R (R ((y 1))) | x. x 〉
→ ridem

〈 y. (λp. 〈 y.R (p (λx.R (y x))) | x. x 〉)R ((y 1)) | x. x 〉
→ rleft

〈 y.R (y 1) | x. x 〉
→ h/r 〈 y. 1 | x. x 〉
→ hsimp 1

As expected, λ→exn with the modified semantics satifies the subject reduction property.

Proposition 5.2 (Subject Reduction Property) Let Γ be a typing environment, A be an
expression, and α be a type such that Γ − A : α. If A → B, according to the one-step
reduction relation induced by the notions of reduction of Table 2, then Γ − B : α.

Proof. As usual, the proof is done by induction on the derivation of A → B. A substituiton
lemma and a few easy lemmas concerning the typing relation are needed.

The above proposition immediately generalises to the reduction relation →→. By Propo-
sition 3.5, we know that there cannot exist closed expressions of type ⊥. This implies that
there also cannot exist closed expressions of the form (raise M) that are well-typed. Hence,
as a corollary of Proposition 5.2, any closed expression that is well-typed cannot be reduced
to an expression of the form (raise M). Therefore, if one sees λ→exn as an idealised program-
ming language, we get the interesting property that the evaluation of well-typed programs
never gives rise to uncaught exceptions.

6 Relation between the two Operational Semantics

The results so far are encouraging. We have introduced a simple calculus of exception
handling whose type system amounts, through the Curry-Howard isomorphism, to classical
logic. We have also provided this calculus with notions of reduction that make sense from
a proof-theoretical point of view. The resulting system satisfies properties of interest such
as Church-Rosser and subject reduction. Nevertheless, we achieved this last result by mod-
ifying the ML-like semantics, while our prime motivation was to analyse ML-like exception
handling. This raises several questions. How far did we modify the ML-like semantics? Can
the new semantics be seen as an extension of the ML-like ones, or did we obtain something
completely different?

In this section, we answer the above questions by proving that, as far as non-exceptional
values are concerned, the modified semantics is a conservative extention of the ML-like one.
This means that whenever a program P evaluates to a non-exceptional value V according
to the ML-like semantics, this program P evaluates to the same value V according to the
modified semantics, where programs are defined to be closed expressions of ground type.

First we define the notion of non-exceptional value.

Definition 6.1 Non-exceptional values are defined by the following grammar:

U ::= c | x | λx. T

Note that, as far as ground types different from ⊥ are concerned, the notion of non-
exceptional value coincides exactly with the one of value. From now on, the uppercase
Roman letter U (with possible subscripts) will range over non-exceptional values.

In order to state the property that we intend to prove in this section, we must define
some standard reduction strategies. To this end, we introduce the notion of applicative
context.

Definition 6.2 Applicative contexts are defined by the following grammar, where []
stands for the empty context:

C ::= [] | V C | C T | (raise C) | let y : ¬τ in C handle (y x) ⇒ T end

We denote by C[A] the expression obtained by plugging an expression A into an applicative
context C.

The notion of applicative context allows the one of standard reduction to be defined.

Definition 6.3 Let A and B be expressions. We say that A reduces standardly in one
step to B, according to the ML-like notions of reduction if and only if there exist expressions
A′, B′ and an applicative context C such that

(i) A ≡ C[A′],
(ii) B ≡ C[B′],
(iii) A′, B′ is one of the redex/contractum pairs specified by Table 1,

where ≡ stands for the syntactic identity (modulo α-conversion).
The ML-like one-step standard reduction relation from A to B is denoted by A →ML B.

The refexive, transitive closure of this relation is written →→ML.
The modified one-step standard reduction (→exn) and its reflexive, transitive closure

(→→exn) are defined similarly.

In the case of programs, i.e. closed terms of ground types, it can be shown that the
standard reduction is a normalizing strategy. We are now ready to state and prove that the
modified semantics is conservative over the ML-like one.

Proposition 6.4 (Conservation Property) Let P be a program and U be a non-exceptional
value. If P →→ML U then P →→exn U .

Proof. The complete proof requires an induction on the number of handle constructs that
are nested into the applicative contexts. We give here the proof for the basic case and leave
the inductive case to the reader.

We proceed by induction on the length of the standard reduction sequence P →→ML U .
Since P →→ML U , we know that there exist a redex/contractum pair A, B and an

applicative context C such that:

P ≡ C[A] →ML C[B] →→ML U

There are seven cases, according to the notion of reduction to which the redex/con-
tractum pair A, B belongs.

In the case of βV , raise left , raise right , and raise idem the proof is immediate because
these four notions of reduction are kept unchanged in the modified semantics.

In the case of handle simp , we have A ≡ 〈 y. V | x.N 〉 and B ≡ V . Then, using
handle left , handle right , and raise/handle, we have:

C[〈 y. V | x.N 〉] →→exn 〈 y. C[V] | x. C[N] 〉.

Then, by induction hypothesis,

〈 y. C[V] | x. C[N] 〉 →→exn 〈 y. U | x. C[N] 〉.

Since U is non-exceptional, y 6∈ FV (U). Therefore, by modified handle simp , we get

〈 y. U | x. C[N] 〉 →exn U.

The proof in the last two cases (handle/raise 1 and handle/raise 2) is similar.

7 CPS-Interpretation

The modified semantics appears now as a conservative extension of the ML-like ones. Never-
theless, one may still wonder if Table 2 is just an ad-hoc adaptation of the ML-like reduction
rules, designed to make Proposition 6.4 hold, or if there is anything canonical in the modi-
fied semantics. We already answered partially this question by suggesting that the modified
reduction rules correspond to (well-known) proof-theoretic conversions.

In this section, we justify further the modified operational semantics by showing that
there is a logical embedding (in the sense of [12]) of λ→exn into the simply typed λ-calculus.
To this end we introduce a continuation-passing-style translation of the expressions of λ→exn .
This CPS-translation is an adaptation of Plotkin’s [19].

Definition 7.1 (CPS-translation) The CPS-translation M of an expression M is induc-
tively defined as follows:

(i) c = λk. k c;
(ii) x = λk. k x;
(iii) y = λk. k (λv. λk. k (y v));
(iv) λx.M = λk. k (λx.M);
(v) M N = λk. M (λm. N (λn.m n k));
(vi) R (M) = λk. M (λx. x);
(vii) 〈 y. M | x.N 〉 = λk. (λy. Mk) (λx.N k).

This CPS-translation is correct with respect to the modified reduction rules. To prove
this, we need one auxiliary definition and three technical lemmas.

Definition 7.2 The auxiliary function Ψ, sending values to values, is defined as fol-
lows:

(i) Ψ(c) = c;

(ii) Ψ(x) = x;

(iii) Ψ(y) = λv. λk. k (y v);

(iv) Ψ(λx.M) = λx.M ;

(v) Ψ(y V) = y Ψ(V).

Lemma 7.3 V →→β λk. k Ψ(V), for any value V .

Proof. By induction on the structure of V .

Lemma 7.4 M [x:=V] →→β M [x:=Ψ(V)], for any expression M and any value V .

Proof. By induction on the structure of M , using Lemma 7.3 for the base case.

Lemma 7.5 Let M be an expression. If k 6∈ FV (M) then λk. M k →β M .

Proof. Because M is an abstraction for any M .

We are now in the position of proving that the CPS-translation of Definition 7.1 is com-
patible with the modified semantics. More precisely, we intend to prove that the translation
preserves conversion between terms.

Proposition 7.6 (Correctness of the CPS-Translation) Let A, B be expressions. If A → B,
according to the modified semantics, then A =β B.

Proof. The proof is done by induction on the derivation of A → B. The inductive steps
are straightforward. As for the basic cases, we focus on three of them, leaving the others,
which are similar, to the reader.
(handle simp)

〈 y. V | x.N 〉 = λk. (λy. V k) (λx.N k)
=β λk. V k y 6∈ FV (V)
=β V by Lemma 7.5

(handle/raise)

〈 (yi).R (yj V) | (xi. Ni) 〉
=β λk. (λy1. . . . (λyn. (λk. yj V (λx. x)) k) (λxn. Nn k) · · ·) (λx1. N1 k)
=β λk. (λy1. . . . (λyn. yj V (λx. x)) (λxn. Nn k) · · ·) (λx1. N1 k)
=β λk. (λy1. . . . (λyn. (λk. k (yj Ψ(V))) (λx. x)) (λxn. Nn k) · · ·) (λx1. N1 k)

by Lemma 7.3
=β λk. (λy1. . . . (λyn. yj Ψ(V)) (λxn. Nn k) · · ·) (λx1. N1 k)
=β λk. (λy1. . . . (λyn. (λxj . Nj k)Ψ(V)) (λxn. Nn k) · · ·) (λx1. N1 k)
=β λk. (λy1. . . . (λyn. Nj [xj :=Ψ(V)] k) (λxn. Nn k) · · ·) (λx1. N1 k)
=β λk. (λy1. . . . (λyn. Nj [xj :=V] k) (λxn. Nn k) · · ·) (λx1. N1 k) by Lemma 7.4
=β 〈 (yi). Nj [xj :=V] | (xi. Ni) 〉

(handle left)

V 〈 y. M | x.N 〉
= λk. V (λm. (λk. (λy. M k) (λx.N k)) (λn.m n k))
=β λk. (λk. k Ψ(V)) (λm. (λk. (λy. M k) (λx.N k)) (λn.m n k)) by Lemma 7.3
=β λk. (λk. (λy. M k) (λx.N k)) (λn.Ψ(V) n k)
=β λk. (λy. M (λn.Ψ(V) n k)) (λx.N (λn.Ψ(V) n k))
=β λk. (λy. (λk. (λk. k Ψ(V)) (λm. M (λn.m n k))) k)

(λx. (λk. (λk. k Ψ(V)) (λm. N (λn.m n k))) k)
=β λk. (λy. (λk. V (λm. M (λn.m n k))) k) (λx. (λk. V (λm. N (λn.m n k))) k)

by Lemma 7.3
= λk. V M k[y:=λx. V N k]
= 〈 y. V M | x. V N 〉

Griffin has shown that Plotkin’s CPS-translation induces, at the level of the types, a
negative translation of classical logic into intuitionistic one [12].

Definition 7.7 Griffin’s negative translation is defined as follows:
α = ¬¬α∗, where:

(i) ⊥∗ = ⊥;

(ii) a∗ = a, for a atomic;

(iii) (α → β)∗ = α∗ → β

Our CPS-translation and Griffin’s negative translation commute with the typing re-
lation of λ→exn and the one of the simply-typed λ-calculus. This is stated by the next
propostion, which shows that there is a logical embedding of λ→exn into the simply-typed
λ-calculus.

Proposition 7.8 (Logical Interpretation) Let −exn and −λ stand respectively for the typing
relation of λ→exn and the one of the simply-typed λ-calculus. If −exn M : α then −λ M : α,
for any expression M and any type α.

Proof. We prove that, whenever the sequent

(xi : αi), (yj : ¬βj) −exn M : α

is derivable, so is the sequent

(xi : α∗i), (yj : ¬β∗j) −λ M : α.

We proceed by induction on the derivation of the typing judgement. We give the proof
for the handle construct and leave the other cases to the reader.{

y : ¬β∗ −λ M : ¬¬α∗

k : ¬α∗ −λ k : ¬α∗

k : ¬α∗, y : ¬β∗ −λ M k : ⊥
k : ¬α∗ −λ λy. M k : ¬¬β∗

{
x : β∗ −λ N : ¬¬α∗

k : ¬α∗ −λ k : ¬α∗

k : ¬α∗, x : β∗ −λ N k : ⊥
k : ¬α∗ −λ λx.N k : ¬β∗

k : ¬α∗ −λ (λy. M k) (λx.N k) : ⊥
−λ λk. (λy. M k) (λx.N k) : α

8 Strong Normalisation

By Proposition 6.4, we know that the ML-like and the modified operational semantics are
equivalent for programs that yield non exceptional results. This means that whenever a
program terminates and yields some value according to the ML-like semantics, it will termi-
nate and yield the same value according to the modified semantics. On the other hand, by
Propositions 3.5 and 5.2, we know that the modified semantics ensures that programs may
not yield exceptional results (i.e. uncaught exceptions). Therefore, it seems that these three
propositions together allows us to conclude that the modified semantics should be preferred
to the original one.

This conclusion, however, is premature because Proposition 6.4 concerns only programs
yielding non-exceptional results. Indeed a program raising an uncaught exception according
to the ML-like semantics could possibly loop for ever according to the modified semantics.
We would then have replaced a property that is observable (the production of an uncaught
exception) by some other property that is not observable (the non-termination of a program).

In order to eliminate this last possible objection, we establish the strong normalisation
of λ→exn . Technically, we show that any infinite sequence of reductions in λ→exn induces
an infinite sequence of β-reductions in the simply-typed λ-calculus. To this end, we need
a syntactic translation of the expressions of λ→exn into simply-typed λ-terms. The CPS-
translation of Definition 7.1 is such a syntactic translation. Nevertheless, we cannot use it
as such because it does not properly simulate the reduction relation of λ→exn . Therefore, we
introduce a modified CPS-translation.

Definition 8.1 The modified CPS-translation M of an expression M is defined as follows:
M = λk. M : k, where

(i) V : K = K Φ(V);
(ii) (V1 V2) : K = Φ(V1)Φ(V2) K;
(iii) (V1 N) : K = N : λn.Φ(V1) n K;
(iv) (M V2) : K = M : λm. mΦ(V2) K;
(v) (M N) : K = M : (λm. N : (λn.m n K));
(vi) R (M) : K = M : (λx. x);
(vii) (〈 y. M | x.N 〉) : K = M : K [y:=λx. (N : K)] ;

(viii) Φ(c) = c;
(ix) Φ(x) = x;
(x) Φ(y) = λv. λk. k (y v);

(xi) Φ(λx.M) = λx.M ;
(xii) Φ(y V) = y Φ(V).

The modified CPS-translation is compatible with the CPS-translation of the previous
section in the sense of the following proposition:

Proposition 8.2 Let A be an expression. Then:

(a) Ψ(A) →→β Φ(A), whenever A is a value,
(b) A K →→β A : K, for any expression K,

(c) A →→β A.

Proof. The proof is by induction on the structure of A. Property (c) is the property of
interest, while Properties (a) and (b) are needed to make the induction work.

Proposition 8.2.(c), together with the subject reduction property of the simply-typed
λ-calculus, implies that Proposition 7.8 still holds with the modifed CPS-translation.

As expected, the modified CPS-translation allows the notions of reduction of λ→exn to
be simulated by β-reduction. This property is stated by the two next propositions.

Proposition 8.3 Let R stand for the notion of reduction βV or handle/raise. Let A
and B be two expressions such that A →R B. Then:

(a) A : K
+→β B : K, for any expression K,

(b) A
+→β B,

where +→β stands for the transitive (but not reflexive) closure of →β.

Proof. Property (b), which is the property of interest, is a direct consequence of (a). The
proof of (a) is akin to the one of proposition 7.6. Lemmas similar to Lemmas 7.3, 7.4, and 7.5
are needed.

The other notions of reduction of λ→exn are invariants of the translation.

Proposition 8.4 Let R stand for one of the notions of reduction raise left , raise right ,
raise idem , handle simp, handle left , handle right , or raise/handle. Let A and B be two
expressions. If A →R B then A ≡ B.

Proof. The proof is similar to that of proposition 7.6.

We may not yet conclude that λ→exn is strongly normalisable because there is still the
possibility of infinite reduction sequences due to the notions of reduction of Proposition 8.4.
For these notions of reduction, we must establish strong normalisation independently. To
this end, we introduce a norm on the expressions of λ→exn .

Definition 8.5 The norm |A| of an expression A is inductively defined as follows:

(i) |c| = 1; (viii) #c = 1;
(ii) |x| = 1; (ix) #x = 1;
(iii) |y| = 1; (x) #y = 1;
(iv) |λx.M | = |M |; (xi) #λx.M = #M ;
(v) |M N | = (#N × |M |) + (#M × |N |); (xii) #M N = #M ×#N ;
(vi) |R (M)| = |M |+ #M ; (xiii) #R (M) = #M ;
(vii) |〈 y. M | x.N 〉| = |M |+ |N |; (xiv) #〈 y. M | x.N 〉 = #M + #N + 1.

Proposition 8.6 Let R stand for one of the notions of reduction raise left , raise right ,
raise idem , handle simp, handle left , handle right , or raise/handle. Let A and B be two
expressions. If A →R B then |A| > |B|.

Proof. The proof is a straightforward induction on the derivation of A → B.

We may now state the main result of this section.

Proposition 8.7 (Strong Normalisation) Any well-typed term of λ→exn is strongly normal-
isable.

Proof. Consequence of Propositions 7.8, 8.2, 8.3, 8.4, and 8.6.

9 Related Work and Conclusions

Griffin, in 1990, was the first to stress the relation between sequential control and classical
logic [12]. His work is based on Felleisen’s syntactic theory of sequential control, which
provides an idealisation of Scheme call/cc.

Around the same time, Murthy studied the computational content of classical proofs [6,
14]. His work is based mainly on negative translations of classical logic, and CPS-transforms.

The work of Griffin was extended by Barbanera and Berardi [2, 3], who noted that
Felleinsen’s reduction rules are similar to Prawitz’s handling of double negation [20]. They
use a control operator akin to Felleisen’s C to extract the computational content of classical
proofs of Σ0

1-sentences.
On the proof-theoretic side, Parigot has introduced the λµ-calculus, an algorithmic

interpretation of cut elimination in classical natural deduction [16, 17, 18]. From a computer
science point of view, the “classical” constructs of the λµ-calculus may be interpreted in
terms of labels and jumps [7].

Independently of Parigot, Rehof and Sørensen have developped a calculus (λ∆) reminis-
cent of the λµ-calculus [21]. They use applications of the form (xM) instead of named terms.
Consequently they may simulate Parigot’s structural reduction with usual substitution and
β-reduction.

In yet another direction, there is Girard’s work on classical logic, based on the notion
of polarity [10]. Girard does not provide his system with expressions encoding proofs. Nev-
ertheless, Murthy has shown how to extract λ-terms from Girard’s system, using Felleisen’s
operator [15].

More recently, Barbanera and Berardi have introduced an intriguing symmetric λ-
calculus based on a syntactic identification between a type and its double negation [4].

All the above systems are based on computational interpretations of double negations.
In the case of λ∆ and of the systems based on Felleisen’s theory of control, the treatment
of double negations, which is explicit, is based on Prawitz-like reduction rules. In the case
of Parigot’s λµ-calculus, Girard’s LC, and Berardi’s symmetric calculus, the treatment of
double negations is left implicit (it is hidden somehow in the formal system). Nevertheless,
we have shown that first-order λµ-claculus is isomorphic to a subtheory of the Felleisen-
Griffin system [8].

To the best of our knowledge, λ→exn is the only “classical” λ-calculus based on a compu-
tational interpretation of the elimination of the excluded-middle law, consequently modelling
ML-like exception handling. Nevertheless this difference, which is not as deep as it could
seem at first sight, vanishes from a denotational point of view. Indeed, Definitions 7.1
and 7.7 do not differ from the ones given by Griffin for Felleisen’s calculus. Consequently,
it should be possible to simulate λ→exn in one of the other calculi by using translations akin
to the ones used in [8, 21].

References

1. A. Appel, D.B. MacQueen, R. Milner, and M. Tofte. Unifying exceptions with constructors in
standard ML. Technical Report ECS-LFCS-88-55, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1988.

2. F. Barbanera and S. Berardi. Continuations and simple types: a strong normalization result.
In Proceedings of the ACM SIGPLAN Workshop on Continuations. Report STAN-CS-92-1426,
Stanford University, 1992.

3. F. Barbanera and S. Berardi. Extracting constructive content from classical logic via control-
like reductions. In M. Bezem and J.F. Groote, editors, Proceedings of the International Con-
ference on Typed Lambda Calculi and Applications, pages 45–59. Lecture Notes in Computer
Science, 664, Springer Verlag, 1993.

4. F. Barbanera and S. Berardi. A symmetric lambda-calculus for “classical” program extrac-
tion. In M. Hagiya and J.C. Mitchell, editors, Proceedings of the International Symposium on
Theretical Aspects of Computer Software, pages 494–515. Lecture Notes in Computer Science,
789, Springer Verlag, 1994.

5. H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised edi-
tion, 1984.

6. R. Constable and C. Murthy. Finding computational content in classical proofs. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 341–362. Cambridge University Press, 1991.

7. Ph. de Groote. A CPS-translation of the λµ-calculus. In S. Tison, editor, Proceedings of the
19th International Colloquium on Trees in Algebra and Programming (CAAP’94), pages 85–99.
Lecture Notes in Computer Science, 787, Springer Verlag, 1994.

8. Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential
control. In Proceedings of the 5th International Conference on Logic Programming and Auto-
mated Reasoning–LPAR’94, pages 31–43. Lecture Notes in Computer Science, 822, Springer
Verlag, 1994.

9. J.H. Gallier. On the correspondence between proofs and λ-terms. In Ph. de Groote, editor,
Cahiers du Centre de Logique (Université Catholique de Louvain), Volume 8, pages 55–138.
Academia, Louvain-la-Neuve, 1995.

10. J.-Y. Girard. A new constructive logic: Classical logic. Mathematical Structures in Computer
Science, 1:255–296, 1991.

11. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

12. T. G. Griffin. A formulae-as-types notion of control. In Conference record of the seventeenth
annual ACM symposium on Principles of Programming Languages, pages 47–58, 1990.

13. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.
14. C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the sixth annual

IEEE symposium on logic in computer science, pages 96–107, 1991.
15. C. R. Murthy. A computational analysis of Girard’s translation and LC. In Proceedings of the

seventh annual IEEE symposium on logic in computer science, pages 90–101, 1992.
16. M. Parigot. λµ-Calculus: an algorithmic interpretation of classical natural deduction. In

A. Voronkov, editor, Proceedings of the International Conference on Logic Programming and
Automated Reasoning, pages 190–201. Lecture Notes in Artificial Intelligence, 624, Springer
Verlag, 1992.

17. M. Parigot. Classical proofs as programs. In G. Gottlod, A. Leitsch, and D. Mundici, editors,
Proceedings of the third Kurt Gödel colloquium – KGC’93, pages 263–276. Lecture Notes in
Computer Science, 713, Springer Verlag, 1993.

18. M. Parigot. Strong normalization for second order classical natural deduction. In Proceedings
of the eighth annual IEEE symposium on logic in computer science, pages 39–46, 1993.

19. G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theretical Computer Science,
1:125–159, 1975.

20. D. Prawitz. Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm,
1965.

21. N.J. Rehof and M.H. Sørensen. The λ∆-calculus. In M. Hagiya and J.C. Mitchell, editors,
Proceedings of the International Symposium on Theoretical Aspects of Computer Software –
TACS’94, pages 516–542. Lecture Notes in Computer Science, 789, Springer Verlag, 1994.

