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Semantics

@ Semantics is the study of meaning.

@ In this setting, the logical meaning of a declarative utterance is
reduced to its truth conditions (truth conditional semantics).

@ Model-theoretic semantics: the logical meaning of a declarative
utterance is captured by the set of models that make valid the
interpretation of this utterance.

@ Proof-theoretic semantics: the logical meaning of a declarative
utterance is captured by a logical formula.
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Example

o John eats a red apple.

Jz.apple(x) A red(z) A eat(j, x)
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Intension and extension
Sinn und bedeutung

Sinn (sense)/Bedeutung (reference) — Frege
Intension/Extension — Carnap

According to Frege, the sense of an expression is its
“mode of presentation”, while the reference or deno-
tation of an expression is the object it refers to.

F.L.G. Frege
(1848-1925)

For instance, both expressions “1 + 1" and “2" have the same denotation
but not the same sense.
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Intension and extension
Intensional proposition

An intensional proposition is a proposition whose validity is not invariant
under extensional substitution.

Frege gives the example of “the morning star” and “the evening star”
which both refer to the planet Venus.

Compare “the morning star is the evening star” with “John does not know
that the morning star is the evening star”.
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Possibility and necessity
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Modals

@ In a strict sense, modal logic is concerned with the study of
statements and reasonings that involve the notions of necessity and
possiblity

@ In a more general sense, modal logic is concerned with the study of
statements and reasonings that involve expressions (modals) that
qualify the validity of a judgement:

Alethic logic: It is necessary that... It is possible that...

Deontic logic: It is mandatory that... It is allowed that...

Epistemic logic: Bob knows that... Bob ignores that...

Temporal logic: It will always be the case that... It will eventually be
the case that...

Philippe de Groote (Inria) MPRI 2.27.1 2015-2016 11 / 42



Modal logic Possibility and necessity
Leibniz

A proposition is necessarily true if it is true
in all possible worlds.

A proposition is possibly true if it is true in
at least one possible world.

G.W. von Leibniz
(1646-1716)

Pangloss enseignait la métaphysico-théologo-cosmolo-nigologie. Il prouvait
admirablement qu'il n'y a point d’effet sans cause, et que, dans ce meilleur
des mondes possibles, le chateau de monseigneur le baron était le plus beau
des chateaux et madame la meilleure des baronnes possibles.

Voltaire (Candide)
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Formalization

Syntax:
F u=qa|-F|FVF|OF

Define the other connectives in the usual way. Define 0 A as —[0-A.

[JA stands for “necessarily A". O A stands for “possibly A".
Validity:

let M = (W, P), where W is a set of “possible worlds”, and P is a
function that asigns to each atomic proposition a subset of W.

e M,sEaiff s € Pla).

e M,s = —Aiff not M,s = A.

e M,s = AV B iff either M,s = A or M, s = B, or both.

e M,s = UA iff forevery t € W, Mt = A.
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Possibility and necessity
System S5

(P)  all propositional tautologies
(K) O(A>B)D>(EHADOB)

) OADA
) O0ADDOCA

Modus ponens:
ADB A

Rule of necessitation:
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Semantic representations
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Kripke Semantics

let M = (W, R, P), where W is a set of “possible worlds”, R is a binary
relation over W, and P is a function that asigns to each atomic
proposition a subset of V.

e M,s |=UOA iff for every t € W such that sRt, M,t = A.

e M,s = QA iff for some t € W such that sRt, M,t = A.
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System K

(P)  all propositional tautologies
(K) O(A>B)D>(EHADOB)

Modus ponens:
ADB A

B

Rule of necessitation:
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Modal logic Kripke semantics

The following theorems of S5 are not valid in the class of all Kripke
models:

(D) OADOA

(TY OADA
(B) A>0O0A
(4) DA>OOA
(5) ©ADO0A

A binary relation R C W x W is serial if and only if for every s € W there
exists t € W such that sRt.
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Some well-known systems

KD basic deontic logic serial

KT basic alethic logic reflexive

KTB | Brouwersche system | reflexive, symmetric

KT4 | Lewis' S4 reflexive, transitive

KT5 | Lewis’ S5 reflexive, symmetric, transitive
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Syntax

Key idea: provide the formula language with explicit means of speaking
about worlds!

Two sorts of atoms: usual atomic propositions (a,b,c,...), and nominals
(7,7, k,...). Nominals will be used for naming worlds.

F o= ali|~F|FVF|OF|li.F|QF

J is a binder: the free occurrences of 7 in A are bound in [i. F'. On the,
other hand, @ is simply a binary connectives whose first term must be a
nominal.

Intuition: | is used for naming the “here-and-now". It allows a nominal to
be bound to the current world. @; A asserts that proposition A holds at
world 7.
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Semantics

Let M = (W, R, P) be a Kripke model, and let 1 be a valuation that
assigns to each nominal an element of W.

M;n,s = aiff s € P(a).

M, n, s E=iiff s =n(i).

M,n,s = —Aiff not M,n,s | A.

M,n,s = AV B iff either M,n,s = A or M,n,s = B, or both.
M, n, s = OA iff for every t € W such that sRt, M, n,t = A.
M,n, s = li. Aiff M nli:=s], s = A.

M, n, s = QA iff M,n,n(i) = A.
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Axiomatization

all propositional tautologies

li.(A D B) D (A D li. B), where i does not occur free in A
li. A D (j D Ali:=j])

Li.(i>A)> i A

li.,A=-l]i—-A

00000

@1./4 = —\@iﬂA
INADQA

© 00
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Modal logic Hybrid Logic

Q@ @
(14) Qi A @ZA D) <>A
ADB A A
B OA

(*) 7 is distinct from i and does not occur free in A or B.
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Example

The binary operator of temporal logic:

A until B

may be defined as:

1. 014.@;(0(j A B) AD(0f D A))
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Simply typed A-calculus
Semantic representations

© Higher-order logic
@ Simply typed A-calculus
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Simply typed A-calculus
What is lambda-calculus?

An intensional theory of functions.
A simple functional programming language.
A theory of free- and bound-variables, of scope and substitution.

The keystone of higher-order syntax and higher-order logic.

The algebra of natural-deduction proofs.
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I QYT Simply typed A-calculus
Syntax

Terms:

T = x| . T |(TT)

A\ is a binder: thre free occurrences of x in ¢ are bound in A\z.¢.

Warning: You should solve, once and for all, any problem you could have
with the notions of free and bound occurrences of variables.

Reduction rule: (Az.t)u —p tlr:=u

Church-Rosser Theorem: For all A-terms ¢, u, and v such that:
t—»gu and t-—%gv

there exists a A-term w such that:
u—rgw and v-Hgw

Philippe de Groote (Inria) MPRI 2.27.1 2015-2016 29 / 42



Typing rules

IFx:Av2: A

r: A I'-1t:B 't:A—-B I'ru:A

' M\z.t:A— B '+ (tu): B

Strong-Normalisation Theorem: There is no infinite reduction sequence.
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Church’s simple theory of types
Semantic representations
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Higher-order logic Church’s simple theory of types

Syntax

Two atomic types: ¢, 0

. Logical constants:

L o0
A. Church 5 . 09300
(1903-1995) Vo : (a—0)— o0 (ateach type a
yp

L is the type of individuals and o is the type of propositions.

Formulas are defined to be well-typed A-terms of type 0. We write P D @)
and Vz. P for D P@Q and YV, (\z. P), respectively. Similarly for the other
connectives (=, A, V, =, 3), which are defined in the usual way.

t = u is defined as VP.Pt D Pu.
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Church’s simple theory of types
Deductive system

Logical rules:

A+ A
I'Aw+ B ''-ADB TI'r A
I'- ADB I' - B
' A c ¢ FV/(T) 'V, A
x of type a, = ——— B of type
'+~ Vo ( Az, A) I' - AB ypeda
I''-A+ L
' A
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Church’s simple theory of types
Deductive system

Conversion rule:

' A
I'—- B

where A =3 B

Extensionality axioms:

'~ (Vox.Az = Bzx) D (A= DB)

I' (A=B)> (A= B)
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(RIS LTI  Standard model

Semantic representations

© Higher-order logic

@ Standard model
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(RIS LTI  Standard model

Interpretation of the types and the terms

o M = <(Da)a€T71>

D, is given.
D, ={0,1}
Dap = DgPa

With the expected interpretations for the logical constants.
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(RIS LTI  Standard model

Higher-order logic as a set theory

@ Sets as characteristic functions, i.e., sets of “elements”’ of type « as
terms of type a@ — o.

o {x|P}asAz.P
otecAas At

Philippe de Groote (Inria) MPRI 2.27.1 2015-2016 37 /42



Inherent incompleteness
Semantic representations

© Higher-order logic
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Inherent incompleteness
The set of natural numbers

Sé(vd’c.sx#()) AN Vey.sx=sy D x=y)
N2 Az. (VR.RO A (Yy.Ry S R(sy)) D Ruz)

The only model of S A Va. Nz is the set of natural numbers.
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Inherent incompleteness
Incompleteness

Let ¢ be a formula of Peano’s Arithmetic, and define (j)N as follows:

o ¢N = ¢, for ¢ an atomic formula,

()N = =N,

(@* )N = N x9N, for x € {A,V, D, =},
(Vz. p)N = Vz.(Nz D ¢V),

(3z. p)N = Fo.(Nz A ¢N).

Let D be the conjunction of the universal closures of the defining equations
for addition and multiplication, and let PA be S A Vz.Nxz A D.

Then, the formula PA O ¢~ is valid if and only if ¢ is true in the standard
model of Peano's arithmetic.

Corollary: incompleteness of higher-order logic.
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Semantic representations

© Higher-order logic

@ Henkin Models
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Relaxing the interpretation

o M= <(Da)a€T7Z>

D, is given.
D, ={0,1}

(4
>
N
1
w
N
>
w

With domains that are rich enough to interpret A-abstraction, equality,
and the logical constants .
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