Formal Languages

Philippe de Groote

Philippe de Groote

2020-2021

Formal Languages 2020-2021

1/28

R
Outline

© Regular expressions and regular languages
Definition

Some algebraic properties

From regular expressions to FSA

From FSA to type-3 grammars

From type-3 grammars to regular expressions

Philippe de Groote Formal Languages 2020-2021 2/28

Regular expressions and regular languages Definition
Definition

The set of regular epressions over an alphabet 3 is inductively defined as
follows:

0 is a regular expression;

1 is a regular expression;

every symbol a € ¥ is a regular expression;

if « is a regular expression so is a;

if & and [are regular expressions so is (« - (3);

if & and [are regular expressions so is (a + f3);

Philippe de Groote Formal Languages 2020-2021 3/28

Regular expressions and regular languages Definition
Definition

The set of regular epressions over an alphabet 3 is inductively defined as
follows:

0 is a regular expression;

1 is a regular expression;

every symbol a € ¥ is a regular expression;

if « is a regular expression so is a;

if & and [are regular expressions so is (« - (3);

if & and [are regular expressions so is (a + f3);

We write rexp(2) for the set of regular epressions over 3.

Philippe de Groote Formal Languages 2020-2021 3/28

Regular expressions and regular languages Definition
Definition

Language defined by a regular epressions:

L(0) = o,

1) = {e}:

a) = {a} for every a € ¥;
a*) = La)"

a-f) = La)- L(B);

L(
L(
L(
L(
Lla+p) =

Q

E
L
C
&=
=

Philippe de Groote Formal Languages

2020-2021

4/28

Regular expressions and regular languages [ISITNEIEIFETETIefelol g a1

Some algebraic properties

(a+B)+y=a+(B+7)

a+0=q«

O+aoa=«
a+pB=0+a
a+a=«w
(@-B)-v=a-(B-7)
a-1=a«

l-a=«

a-0=0

0O-aa=0
a-(B+y)=a-B+ta-y

(a4+B)-vy=a-v+8-7v

Philippe de Groote Formal Languages 2020-2021 5/28

Some algebraic properties
Some algebraic properties

0" =1
1" =1

Philippe de Groote Formal Languages 2020-2021 6/28

From regular expressions to FSA
From regular expressions to FSA

Automaton accepting L(0)

-0 O

Philippe de Groote Formal Languages 2020-2021 7/28

From regular expressions to FSA
From regular expressions to FSA

Automaton accepting L(0)

-0 O

Automaton accepting L(1):

5O

Philippe de Groote Formal Languages 2020-2021 7/28

From regular expressions to FSA
From regular expressions to FSA

Automaton accepting L(0)

-0 O

Automaton accepting L(1):
00
Automaton accepting L(a):

~O——0

Philippe de Groote Formal Languages 2020-2021 7/28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have an automaton accepting L(«):

00

Philippe de Groote Formal Languages 2020-2021 8/28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have an automaton accepting L(«):
0 a O]

Automaton accepting L(a*):

Philippe de Groote Formal Languages 2020-2021 8/28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have automata accepting L(«) and L(/3):

a0 ©fo

Philippe de Groote Formal Languages 2020-2021 9/28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have automata accepting L(«) and L(/3):

a0 ©fo

Automaton accepting L(«

0 o 0%4@5@}

Philippe de Groote Formal Languages 2020-2021 9/28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have automata accepting L(«) and L(p):

©wao ©0fO

Philippe de Groote Formal Languages 2020-2021 10 /28

Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have automata accepting L(«) and L(p):

©wao ©0fO

Automaton accepting L(a + f):

O a O,

G\O/Bo/e

Philippe de Groote Formal Languages 2020-2021 10/28

From FSA to type-3 grammars
From FSA to type-3 grammars

Let A =(Q,%,4,qo, F) be an DFSA. Define a type-3 grammar
G = (N,X¢q, P,S) as follows:

o N=@Q
g =X
e P={A—aB:§(A,a)=B}U{A—e: Ac F}
e 5=qo

Philippe de Groote Formal Languages 2020-2021 11/28

From FSA to type-3 grammars
From FSA to type-3 grammars

Let A =(Q,%,4,qo, F) be an DFSA. Define a type-3 grammar
G = (N,X¢q, P,S) as follows:

o N=@Q
g =X
e P={A—aB:§(A,a)=B}U{A—e: Ac F}
e 5=qo

Proposition L(A) = L(G).

Philippe de Groote Formal Languages 2020-2021 11/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:
We prove by induction on the length of « that A =* « if and only if

A

0(A,a) € F.

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:
We prove by induction on the length of « that A =* « if and only if

A

0(A,a) € F.

Basis:

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:
We prove by induction on the length of « that A =* « if and only if

A

0(A,a) € F.

Basis:
A=%eiff A= ¢

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:

We prove by induction on the length of « that A =* « if and only if
0(A,a) € F.

Basis:

A=*ciff A= e
iff (A—¢) € P

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:
We prove by induction on the length of « that A =* « if and only if

A

0(A,a) € F.

Basis:

A=*ciff A= e
iff (A—¢) € P
iff Ac F

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

PROOF:
We prove by induction on the length of « that A =* « if and only if

A

0(A,a) € F.

Basis:

A=*eiff A= e
iff (A—e) e P
iff AeF
iff 0(A,€) € F

Philippe de Groote Formal Languages 2020-2021 12/28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

Philippe de Groote Formal Languages 2020-2021 13/28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

A =*ad iff A= aB =" ad/, for some (A—aB) € P

Philippe de Groote Formal Languages 2020-2021 13 /28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:
A =*ad iff A= aB =" ad/, for some (A—aB) € P
iff (A—aB) € P and B =* o/

Philippe de Groote Formal Languages 2020-2021 13 /28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

A =*ad iff A= aB =" ad/, for some (A—aB) € P
iff (A—aB) € P and B =* o/
iff 6(A,a) = B and B =" o/

Philippe de Groote Formal Languages 2020-2021 13 /28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

A =*ad iff A= aB =" ad/, for some (A—aB) € P
iff (A—aB) € P and B =* o/
iff 6(A,a) = B and B =" o/

iff 6(A,a) = B and §(B, /) € F
by induction hypothesis

Philippe de Groote Formal Languages 2020-2021 13 /28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

A =*ad iff A= aB =" ad/, for some (A—aB) € P
iff (A—aB) € P and B =* o/
iff 6(A,a) = B and B =" o/

iff 6(A,a) = B and §(B, /) € F
by induction hypothesis

iff 5(0(A,a),a’) € F

Philippe de Groote Formal Languages 2020-2021 13/28

From FSA to type-3 grammars
From FSA to type-3 grammars

Induction:

A =*ad iff A= aB =" ad/, for some (A—aB) € P
iff (A—aB) € P and B =* o/
iff 6(A,a) = B and B =" o/

iff 6(A,a) = B and §(B, /) € F
by induction hypothesis

iff 6(6(A,a),0/) € F
iff 6(A,ac/) € F

Philippe de Groote Formal Languages 2020-2021 13 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Consider v € rexp(X)*. One defines L(«) as follows:

o L(e) ={e}
e L(ed)=L(e)- L()

We consider type-3 grammars whose set of terminal symbols is the set of
regular expressions over some alphabet 3::

G = (N, xexp(%), P, S)

Philippe de Groote Formal Languages 2020-2021 14 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Consider v € rexp(X)*. One defines L(«) as follows:
o L(e) ={e}
e L(ed)=L(e)- L()

We consider type-3 grammars whose set of terminal symbols is the set of
regular expressions over some alphabet 3::

G = (N, xexp(%), P, S)

For such grammars, one may define:

ecL(Q)

Philippe de Groote Formal Languages 2020-2021 14 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Example:

Philippe de Groote Formal Languages 2020-2021 15/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Example:

(S (atb) S
G_{S%@@

Philippe de Groote Formal Languages 2020-2021 15/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Example:
G S — (a+b) S
1 S = (cd)

L(G) = {(c:d), (a+b)(c-d), (a+b)(a+Db)(c-d), (a+b)(a+b)(a+b)(c-d), ...}

Philippe de Groote Formal Languages 2020-2021 15/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Example:

(S (atb) S
G_{S%@@

L(G) = {(c:d), (a+b)(c-d), (a+b)(a+Db)(c-d), (a+b)(a+b)(a+b)(c-d), ...}

Lg(G) = {cd, acd, bed, aacd, abed, bacd, bbed, aaacd, aabed, abacd, . . .}

Philippe de Groote Formal Languages 2020-2021 15/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Example:

(S (atb) S
G_{S%@@

L(G) = {(c:d), (a+b)(c-d), (a+b)(a+Db)(c-d), (a+b)(a+b)(a+b)(c-d), ...}

Lg(G) = {cd, acd, bed, aacd, abed, bacd, bbed, aaacd, aabed, abacd, . . .}

Remark:

Since ¥ C rexp(X), every grammar over ¥ may be seen as a grammar
over rexp(X), with Lg(G) = L(G).

Philippe de Groote Formal Languages 2020-2021 15/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Philippe de Groote Formal Languages 2020-2021 16 /28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar (5, one says that a rule is recursive if it is of the
form A — aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Philippe de Groote Formal Languages 2020-2021 16 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar (5, one says that a rule is recursive if it is of the
form A — aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Let G1 = (Ny,rexp(X), P1, S1) be a type-3 grammar, and let A € N; be a
non-recursive non-terminal symbol different from S.

Philippe de Groote Formal Languages 2020-2021 16 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar (5, one says that a rule is recursive if it is of the
form A — aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Let G1 = (Ny,rexp(X), P1, S1) be a type-3 grammar, and let A € N; be a
non-recursive non-terminal symbol different from S.

Let Py = {A—>€()Bo, o, A—em 1Bm_1, A= fo,. .., A—)fn_l} ch
be the set of all the production rules whose lefthand side is A.

Philippe de Groote Formal Languages 2020-2021 16 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar (5, one says that a rule is recursive if it is of the
form A — aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Let G1 = (Ny,rexp(X), P1, S1) be a type-3 grammar, and let A € N; be a
non-recursive non-terminal symbol different from S.

Let Py = {A—>€()Bo, o, A—em 1Bm_1, A= fo,. .., A—)fn_l} ch
be the set of all the production rules whose lefthand side is A.

Let Qa4 = {Co—apA,...,C_1—a;_1A} C P; be the set of all the
production rules whose righthand side contains A.

Philippe de Groote Formal Languages 2020-2021 16 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar (5, one says that a rule is recursive if it is of the
form A — aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Let G1 = (Ny,rexp(X), P1, S1) be a type-3 grammar, and let A € N; be a
non-recursive non-terminal symbol different from S.

Let Py = {A—>€()Bo, o, A—em 1Bm_1, A= fo,. .., A—)fn_l} ch
be the set of all the production rules whose lefthand side is A.

Let Qa4 = {Co—apA,...,C_1—a;_1A} C P; be the set of all the
production rules whose righthand side contains A.

Define Ra = Uic/((Ujem{Ci = (@i - ¢;)Bj}) U (Ujen{Ci = (ai - f5)}))

Philippe de Groote Formal Languages 2020-2021 16 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

One defines a new grammar Gy = (N, rexp(X), P, S2) as follows:
e Ny =Np\ {A}
@ Ppb=(P\(P1UQA)URYy
@ Sy =205

Philippe de Groote Formal Languages 2020-2021 17 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

One defines a new grammar Gy = (N, rexp(X), P, S2) as follows:
e Ny =Np\ {A}
@ Ppb=(P\(P1UQA)URYy
@ Sy =205

Proposition Ly (G1) = Lg(Gs).

Philippe de Groote Formal Languages 2020-2021 17 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOF:

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOEF:
We prove that Lr(G1) C Lg(Gs) and Lg(G2) C Lp(Gy).

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOEF:
We prove that Lr(G1) C Lg(Gs) and Lg(G2) C Lp(Gy).

PART 1: LE(Gl) C LE(GQ)

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOEF:
We prove that Lr(G1) C Lg(Gs) and Lg(G2) C Lp(Gy).

PART 1: LE(Gl) C LE(GQ)

Let us write =1 and =5 for the generation relations of Gy and Go,
respectively. We prove that for every B € Ny and every a; € rexp(X)*
such that B =7 «y, there exists ap € rexp(X)* such that B =3 ay and
L(ay) = L(ag). The proof proceed by induction on the number of
occurences of rules from (4 that appear in the derivation B =7 .

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOEF:
We prove that Lr(G1) C Lg(Gs) and Lg(G2) C Lp(Gy).

PART 1: LE(Gl) C LE(GQ)

Let us write =1 and =5 for the generation relations of Gy and Go,
respectively. We prove that for every B € Ny and every a; € rexp(X)*
such that B =7 «y, there exists ap € rexp(X)* such that B =3 ay and
L(ay) = L(ag). The proof proceed by induction on the number of
occurences of rules from (4 that appear in the derivation B =7 .

Basis:

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOEF:
We prove that Lr(G1) C Lg(Gs) and Lg(G2) C Lp(Gy).

PART 1: LE(Gl) C LE(GQ)

Let us write =1 and =5 for the generation relations of Gy and Go,
respectively. We prove that for every B € Ny and every a; € rexp(X)*
such that B =7 «y, there exists ap € rexp(X)* such that B =3 ay and
L(ay) = L(ag). The proof proceed by induction on the number of
occurences of rules from (4 that appear in the derivation B =7 .

Basis:

There is no occurence of any rule from Q4 in the derivation B =7 .
Then, there is no occurrence of any rule from P4 either. Consequently, the
derivation B =7 «a is also a derivation of G5, and we take as = aj.

Philippe de Groote Formal Languages 2020-2021 18 /28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:

Philippe de Groote Formal Languages 2020-2021 19/28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

Induction:

If there is at least one occurence of a rule from @ 4 in the derivation
B =7 aq, it must obey one of the two following forms:

(1) B =7 BC; =1 BaiA =1 Baie;Bj =7 Baiejm
(2) B =7 BC; =1 Ba;A =1 Baifj

where the occurrence of (C; —a;A) € Q4 is the leftmost occurrence of a
rule from @ 4. Consequently, B =7 C; is also a derivation of G.

Philippe de Groote Formal Languages 2020-2021 19/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:
If there is at least one occurence of a rule from @ 4 in the derivation
B =7 aq, it must obey one of the two following forms:
(1) B :>>{ 501 =1 5&1'14 =1 6&2'6ij :>>1k Baiej*yl
(2) B =1 BC; =1 Ba;A =1 Baif;
where the occurrence of (C; —a;A) € Q4 is the leftmost occurrence of a
rule from @ 4. Consequently, B =7 C; is also a derivation of G.

In the first case, we have oy = Ba;ejy1 and B; =7 1. By induction
hypothesis, there exists 72 € rexp(3)* such that B; =5 v» and
L(v1) = L(72). Hence:

B =5 BC; =2 B(ai -) Bj =35 (ai - €)1

Then, we take an = f3(a; - €;)y2. Indeed L(ov) = L(Baje;y1) =
L(B)L(ai)L(ej)L(m1) = L(B)L(a; - ;) L(v2) = L(B(ai - €)72) = L(a2)

Philippe de Groote Formal Languages 2020-2021 19/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the second case, we have a1 = fa; f;. Then, we take s = B(a; - f;)
Indeed, we have that

B =35 BC; =9 B(a; - fj)
and that L(Baif;) = L(B(a; - f})).

Philippe de Groote Formal Languages 2020-2021 20/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the second case, we have a1 = fa; f;. Then, we take s = B(a; - f;)
Indeed, we have that

B =35 BC; =9 B(a; - fj)
and that L(Baif;) = L(B(a; - f})).

PART 2: LE(GQ) C LE(Gl)

Philippe de Groote Formal Languages 2020-2021 20/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the second case, we have a1 = fa; f;. Then, we take s = B(a; - f;)
Indeed, we have that

B =35 BC; =9 B(a; - fj)
and that L(Baif;) = L(B(a; - f})).

PART 2: LE(GQ) C LE(Gl)

We prove that for every B € Ny and every s € rexp(X)* such that

B =3 aw, there exists a; € rexp(X)* such that B =7 a; and

L(ag) = L(aq). The proof, which proceed by induction on the number of
occurences of rules from R4 that appear in the derivation B = a, is
similar to the proof of Part 1.

Philippe de Groote Formal Languages 2020-2021 20/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of recursive rules

Philippe de Groote Formal Languages 2020-2021 21/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of recursive rules

Let G1 = (Ny,rexp(X), P1,S1) be a type-3 grammar, and let A € N; be a
recursive non-terminal symbol different from S.

Philippe de Groote Formal Languages 2020-2021 21/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of recursive rules

Let G1 = (Ny,rexp(X), P1,S1) be a type-3 grammar, and let A € N; be a
recursive non-terminal symbol different from S.

Let Py = {A—)eoBo, o, A—e 1B 1, A= fo,... ,A—>fm71} C P be
the set of all the non-recursive production rules whose lefthand side is A.

Philippe de Groote Formal Languages 2020-2021 21/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of recursive rules

Let G1 = (Ny,rexp(X), P1,S1) be a type-3 grammar, and let A € N; be a
recursive non-terminal symbol different from S.

Let Py = {A—)eoBo, o A—e 1B, A= [y, ... ,A—>fm71} C Py be
the set of all the non-recursive production rules whose lefthand side is A.

Let Qa = {A—goA,...,A—gn_1A} C P be the set of all the recursive
production rules whose lefthand side is A.

Philippe de Groote Formal Languages 2020-2021 21/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Elimination of recursive rules

Let G1 = (Ny,rexp(X), P1,S1) be a type-3 grammar, and let A € N; be a
recursive non-terminal symbol different from S.

Let Py = {A—)eoBo, o, A—e 1B 1, A= fo,... ,A—>fm71} C P be
the set of all the non-recursive production rules whose lefthand side is A.

Let Qa = {A—goA,...,A—gn_1A} C P be the set of all the recursive
production rules whose lefthand side is A.

Define R4 = (U;c{A — ((go+ - +gn-1)"€:)Bi}) U
(Uiem 1A = ((go+ - +gn-1)"fi)})

Philippe de Groote Formal Languages 2020-2021 21/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

One defines a new grammar Gy = (N, rexp(X), P, S2) as follows:
e No =Ny
@ Ppb=(P\(P1UQA)URYy
e Sy =05

Philippe de Groote Formal Languages 2020-2021 22/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

One defines a new grammar Gy = (N, rexp(X), P, S2) as follows:
e No =Ny
@ Ppb=(P\(P1UQA)URYy
e Sy =05

Proposition Ly (G1) = Lg(Gs).

Philippe de Groote Formal Languages 2020-2021 22/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOF:

Philippe de Groote Formal Languages 2020-2021 23/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOF:
PART 1: LE(Gl) C LE(GQ)

Philippe de Groote Formal Languages 2020-2021 23/28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

PROOF:
PART 1: LE(Gl) C LE(GQ)

We prove that for every B € N; and every ay € rexp(X)* such that
B =7 «y, there exists ap € rexp(X)* such that B =% ay and
L(ay) C L(a). The proof proceed by induction on the number of
occurences of rules from P, that appear in the derivation B =7 .

Philippe de Groote Formal Languages 2020-2021 23/28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

PROOF:
PART 1: LE(Gl) C LE(GQ)

We prove that for every B € N; and every ay € rexp(X)* such that
B =7 «y, there exists ap € rexp(X)* such that B =% ay and
L(ay) C L(a). The proof proceed by induction on the number of
occurences of rules from P, that appear in the derivation B =7 .

Basis:

Philippe de Groote Formal Languages 2020-2021 23/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PROOF:
PART 1: LE(Gl) C LE(GQ)

We prove that for every B € N; and every ay € rexp(X)* such that
B =7 «y, there exists ap € rexp(X)* such that B =% ay and
L(ay) C L(a). The proof proceed by induction on the number of
occurences of rules from P, that appear in the derivation B =7 .

Basis:

There is no occurence of any rule from Py in the derivation B =7 .
Then, there is no occurrence of any rule from () 4 either. Consequently,
the derivation B =7 « is also a derivation of G2, and we take ap = ;.

Philippe de Groote Formal Languages 2020-2021 23/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:

Philippe de Groote Formal Languages 2020-2021 24/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:

If there is at least one occurence of a rule from P4 in the derivation
B =7 a1, it must obey one of the two following forms:

(1) B=1BA=1BgiyA =1 =183 9i, A
=1 Biq - - - Gir_,€iBi =1 BYiy - - - Gir_ &N
(2) B=1BA=1BgiyA =1 =183 9i,_,A
=1 Bgio cee gik—lfi
where the occurrence of (A—e¢;B;) € P4 (respectively, (A— f;) € Py4) is
the leftmost occurrence of a rule from P4, and the occurrence of

(A—gi,A) € Q4 is the leftmost occurrence of a rule from @ 4.
Consequently, B =7 A is also a derivation of G5.

Philippe de Groote Formal Languages 2020-2021 24/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the first case, we have oy = B¢, ... i, ,€iv1 and B; =7 71. By
induction hypothesis, there exists 72 € rexp(X)* such that B; =3 72 and
L(v1) C L(72). Hence:

B =35 BA =2 B((go+ - +gn-1)"-€i) Bi =2 B((go+ - +gn—1)"-€i)72

Then, we take .
a2 = B((go+ - +gn-1)"€i)72

Indeed
L(Oél) C L(ag)

because
L(gio .- ‘gik—l) C L((g(H' s —|—gn,1)*) and L(al) C L(OQ)

Philippe de Groote Formal Languages 2020-2021 25/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the first case, we have oy = B¢, ... i, ,€iv1 and B; =7 71. By
induction hypothesis, there exists 72 € rexp(X)* such that B; =3 72 and
L(v1) C L(72). Hence:

B =35 BA =2 B((go+ - +gn-1)"-€i) Bi =2 B((go+ - +gn—1)"-€i)72

Then, we take .
a2 = B((go+ - +gn-1)"€i)72

Indeed
L(Oél) C L(ag)

because
L(gio .- ‘gik—l) C L((g(H' s —|—gn,1)*) and L(al) C L(OQ)

Similarly, in the second case, we have

B =35 BA =2 B((go+ - +9n—1)"fi)
And, we take .
az = B((g0+ - +gn-1)"fi)

Philippe de Groote Formal Languages 2020-2021 25/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PART 2: LE(GQ) C LE(Gl)

Philippe de Groote Formal Languages 2020-2021 26/28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

PART 2: LE(GQ) C LE(Gl)

We prove that for every B € Ny, every s € rexp(X)* such that

B =% ag, and every w € L(az2), there exists a; € rexp(X)* such that

B =7 aq and w € L(ay). The proof proceed by induction on the number
of occurences of rules from R4 that appear in the derivation B =3 as.

Philippe de Groote Formal Languages 2020-2021 26/28

Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

PART 2: LE(GQ) C LE(Gl)

We prove that for every B € Ny, every s € rexp(X)* such that

B =% ag, and every w € L(az2), there exists a; € rexp(X)* such that

B =7 aq and w € L(ay). The proof proceed by induction on the number

of occurences of rules from R4 that appear in the derivation B =3 as.

Basis:

Philippe de Groote Formal Languages 2020-2021 26/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

PART 2: LE(GQ) C LE(Gl)

We prove that for every B € Ny, every s € rexp(X)* such that

B =% ag, and every w € L(az2), there exists a; € rexp(X)* such that

B =7 aq and w € L(ay). The proof proceed by induction on the number
of occurences of rules from R4 that appear in the derivation B =3 as.

Basis:

There is no occurence of any rule from R4 in the derivation B =3 .
Consequently, the derivation B =5 «a» is also a derivation of G1, and we
take a1 = an.

Philippe de Groote Formal Languages 2020-2021 26/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:

Philippe de Groote Formal Languages 2020-2021 27/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

Induction:

If there is at least one occurence of a rule from R4 in the derivation
B =% ao, it must obey one of the two following forms:

(1) B=3BA=2p((g90+ +gn-1)"€)Bi =2 B((got+ - +gn—1)"€i)r2
(2) B =3 BA=208((90+ +gn-1)"fi)

where the occurrence of (A— ((go+ - +gn—1)*€i)B;i) € Ra

(respectively, (A— ((go+---+gn—-1)*fi)) € Ra) is the leftmost

occurrence of a rule from R4. Consequently, B =5 SA is also a derivation
of Gl.

Philippe de Groote Formal Languages 2020-2021 27/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the first case, we have ag = B((go+ - - +gn—1)*-€i)y2 and B; =3 o.
Now, let w € L(ag). It must obey the following form:
W = Wilip - - - Gij_ W2W3
where:
° wi € L(P);
@ the sequence of g;'s is possibly empty;
® wy € L(e;);
@ w3 € L(79).
By induction hypothesis, there exists v; € rexp(X)* such that B; =7 71
and w3 € L(v1). Then, we take
a1 = By -+ i, &N
Indeed
B :>>f /BA =1 BgioA =1 =1 Bgio e 'gik—lA
=1 Biy - - - Gi_,€iBi =1 By - - - Giy,_, €M1

Philippe de Groote Formal Languages 2020-2021 28/28

From type-3 grammars to regular expressions
From type-3 grammars to regular expressions

In the first case, we have ag = B((go+ - - +gn—1)*-€i)y2 and B; =3 o.
Now, let w € L(ag). It must obey the following form:
W = Wilip - - - Gij_ W2W3
where:
° wi € L(P);
@ the sequence of g;'s is possibly empty;
® wy € L(e;);
@ w3 € L(79).
By induction hypothesis, there exists v; € rexp(X)* such that B; =7 71
and w3 € L(v1). Then, we take
a1 = By -+ i, &N
Indeed
B :>>f /BA =1 BgioA =1 =1 Bgio e 'gik—lA
=1 Biy - - - Gi_,€iBi =1 By - - - Giy,_, €M1

The second case, is similar.

Philippe de Groote Formal Languages 2020-2021 28/28

	Regular expressions and regular languages
	Definition
	Some algebraic properties
	From regular expressions to FSA
	From FSA to type-3 grammars
	From type-3 grammars to regular expressions

