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Regular expressions and regular languages Definition

Definition

The set of regular epressions over an alphabet Σ is inductively defined as
follows:

0 is a regular expression;

1 is a regular expression;

every symbol a ∈ Σ is a regular expression;

if α is a regular expression so is α∗;

if α and β are regular expressions so is (α · β);

if α and β are regular expressions so is (α+ β);

We write rexp(Σ) for the set of regular epressions over Σ.
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Regular expressions and regular languages Definition

Definition

Language defined by a regular epressions:

L(0) = ∅;

L(1) = {ε};
L(a) = {a} for every a ∈ Σ;

L(α∗) = L(α)∗;

L(α · β) = L(α) · L(β);

L(α+ β) = L(α) ∪ L(β).
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Regular expressions and regular languages Some algebraic properties

Some algebraic properties

(α+ β) + γ = α+ (β + γ)

α+ 0 = α

0 + α = α

α+ β = β + α

α+ α = α

(α · β) · γ = α · (β · γ)

α · 1 = α

1 · α = α

α · 0 = 0

0 · α = 0

α · (β + γ) = α · β + α · γ
(α+ β) · γ = α · γ + β · γ
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Regular expressions and regular languages Some algebraic properties

Some algebraic properties

0∗ = 1

1∗ = 1

(α∗)∗ = α∗

1 + α · (α∗) = α∗

1 + α∗ · α = α∗
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Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Automaton accepting L(0)

Automaton accepting L(1):

ε

Automaton accepting L(a):

a
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Regular expressions and regular languages From regular expressions to FSA

From regular expressions to FSA

Assuming we have an automaton accepting L(α):

α

Automaton accepting L(α∗):

αε ε

ε

ε
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Regular expressions and regular languages From FSA to type-3 grammars

From FSA to type-3 grammars

Let A = 〈Q,Σ, δ, q0, F 〉 be an DFSA. Define a type-3 grammar
G = 〈N,ΣG, P, S〉 as follows:

N = Q

ΣG = Σ

P = {A→aB : δ(A, a) = B} ∪ {A→ε : A ∈ F}
S = q0

Proposition L(A) = L(G).
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Regular expressions and regular languages From FSA to type-3 grammars

From FSA to type-3 grammars

PROOF:

We prove by induction on the length of α that A⇒∗ α if and only if
δ̂(A,α) ∈ F .

Basis:

A⇒∗ ε iff A⇒ ε
iff (A→ε) ∈ P
iff A ∈ F
iff δ̂(A, ε) ∈ F
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Regular expressions and regular languages From FSA to type-3 grammars

From FSA to type-3 grammars

Induction:

A⇒∗ aα′ iff A⇒ aB ⇒∗ aα′, for some (A→aB) ∈ P
iff (A→aB) ∈ P and B ⇒∗ α′

iff δ(A, a) = B and B ⇒∗ α′

iff δ(A, a) = B and δ̂(B,α′) ∈ F
by induction hypothesis

iff δ̂(δ(A, a), α′) ∈ F

iff δ̂(A, aα′) ∈ F
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Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

Consider α ∈ rexp(Σ)∗. One defines L(α) as follows:

L(ε) = {ε}
L(eα′) = L(e) · L(α′)

We consider type-3 grammars whose set of terminal symbols is the set of
regular expressions over some alphabet Σ:

G = 〈N, rexp(Σ), P, S〉

For such grammars, one may define:

LE(G) =
⋃

e∈L(G)

L(e)
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Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

Example:

G =

{
S → (a+b)S
S → (c·d)

L(G) = {(c·d), (a+b)(c·d), (a+b)(a+b)(c·d), (a+b)(a+b)(a+b)(c·d), . . .}

LE(G) = {cd, acd, bcd, aacd, abcd, bacd, bbcd, aaacd, aabcd, abacd, . . .}

Remark:

Since Σ ⊂ rexp(Σ), every grammar over Σ may be seen as a grammar
over rexp(Σ), with LE(G) = L(G).
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Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

Elimination of non-recursive non-terminal symbols

Given a type-3 grammar G, one says that a rule is recursive if it is of the
form A→ aA. A non-terminal symbol A is said to be recursive in case
there is at least one recursive rule whose lefthand side is A.

Let G1 = 〈N1, rexp(Σ), P1, S1〉 be a type-3 grammar, and let A ∈ N1 be a
non-recursive non-terminal symbol different from S.

Let PA = {A→e0B0, . . . , A→em−1Bm−1, A→f0, . . . , A→fn−1} ⊂ P1

be the set of all the production rules whose lefthand side is A.

Let QA = {C0→a0A, . . . , Cl−1→al−1A} ⊂ P1 be the set of all the
production rules whose righthand side contains A.

Define RA =
⋃

i∈l((
⋃

j∈m{Ci → (ai · ej)Bj}) ∪ (
⋃

j∈n{Ci → (ai · fj)}))
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Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

One defines a new grammar G2 = 〈N2, rexp(Σ), P2, S2〉 as follows:

N2 = N1 \ {A}
P2 = (P \ (PA ∪QA)) ∪RA

S2 = S1

Proposition LE(G1) = LE(G2).
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Regular expressions and regular languages From type-3 grammars to regular expressions

From type-3 grammars to regular expressions

PROOF:

We prove that LE(G1) ⊂ LE(G2) and LE(G2) ⊂ LE(G1).

PART 1: LE(G1) ⊂ LE(G2)

Let us write ⇒1 and ⇒2 for the generation relations of G1 and G2,
respectively. We prove that for every B ∈ N2 and every α1 ∈ rexp(Σ)∗

such that B ⇒∗1 α1, there exists α2 ∈ rexp(Σ)∗ such that B ⇒∗2 α2 and
L(α1) = L(α2). The proof proceed by induction on the number of
occurences of rules from QA that appear in the derivation B ⇒∗1 α1.

Basis:

There is no occurence of any rule from QA in the derivation B ⇒∗1 α1.
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Induction:

If there is at least one occurence of a rule from QA in the derivation
B ⇒∗1 α1, it must obey one of the two following forms:

(1) B ⇒∗1 βCi ⇒1 βaiA⇒1 βaiejBj ⇒∗1 βaiejγ1
(2) B ⇒∗1 βCi ⇒1 βaiA⇒1 βaifj

where the occurrence of (Ci→aiA) ∈ QA is the leftmost occurrence of a
rule from QA. Consequently, B ⇒∗1 βCi is also a derivation of G2.

In the first case, we have α1 = βaiejγ1 and Bj ⇒∗1 γ1. By induction
hypothesis, there exists γ2 ∈ rexp(Σ)∗ such that Bj ⇒∗2 γ2 and
L(γ1) = L(γ2). Hence:

B ⇒∗2 βCi ⇒2 β(ai · ej)Bj ⇒∗2 β(ai · ej)γ2
Then, we take α2 = β(ai · ej)γ2. Indeed L(α1) = L(βaiejγ1) =
L(β)L(ai)L(ej)L(γ1) = L(β)L(ai · ej)L(γ2) = L(β(ai · ej)γ2) = L(α2)
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In the second case, we have α1 = βaifj . Then, we take α2 = β(ai · fj)
Indeed, we have that

B ⇒∗2 βCi ⇒2 β(ai · fj)

and that L(βaifj) = L(β(ai · fj)).

PART 2: LE(G2) ⊂ LE(G1)

We prove that for every B ∈ N2 and every α2 ∈ rexp(Σ)∗ such that
B ⇒∗2 α2, there exists α1 ∈ rexp(Σ)∗ such that B ⇒∗1 α1 and
L(α2) = L(α1). The proof, which proceed by induction on the number of
occurences of rules from RA that appear in the derivation B ⇒∗2 α2, is
similar to the proof of Part 1.
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Elimination of recursive rules

Let G1 = 〈N1, rexp(Σ), P1, S1〉 be a type-3 grammar, and let A ∈ N1 be a
recursive non-terminal symbol different from S.

Let PA = {A→e0B0, . . . , A→el−1Bl−1, A→f0, . . . , A→fm−1} ⊂ P1 be
the set of all the non-recursive production rules whose lefthand side is A.

Let QA = {A→g0A, . . . , A→gn−1A} ⊂ P1 be the set of all the recursive
production rules whose lefthand side is A.

Define RA = (
⋃

i∈l{A→ ((g0+ · · ·+gn−1)∗·ei)Bi}) ∪
(
⋃

i∈m{A→ ((g0+ · · ·+gn−1)∗·fi)})
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From type-3 grammars to regular expressions

One defines a new grammar G2 = 〈N2, rexp(Σ), P2, S2〉 as follows:

N2 = N1

P2 = (P \ (PA ∪QA)) ∪RA

S2 = S1

Proposition LE(G1) = LE(G2).
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From type-3 grammars to regular expressions

PROOF:

PART 1: LE(G1) ⊂ LE(G2)

We prove that for every B ∈ N1 and every α1 ∈ rexp(Σ)∗ such that
B ⇒∗1 α1, there exists α2 ∈ rexp(Σ)∗ such that B ⇒∗2 α2 and
L(α1) ⊂ L(α2). The proof proceed by induction on the number of
occurences of rules from PA that appear in the derivation B ⇒∗1 α1.

Basis:

There is no occurence of any rule from PA in the derivation B ⇒∗1 α1.
Then, there is no occurrence of any rule from QA either. Consequently,
the derivation B ⇒∗1 α1 is also a derivation of G2, and we take α2 = α1.
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From type-3 grammars to regular expressions

Induction:

If there is at least one occurence of a rule from PA in the derivation
B ⇒∗1 α1, it must obey one of the two following forms:

(1) B ⇒∗1 βA⇒1 βgi0A⇒1 · · · ⇒1 βgi0 . . . gik−1
A

⇒1 βgi0 . . . gik−1
eiBi ⇒1 βgi0 . . . gik−1

eiγ1

(2) B ⇒∗1 βA⇒1 βgi0A⇒1 · · · ⇒1 βgi0 . . . gik−1
A

⇒1 βgi0 . . . gik−1
fi

where the occurrence of (A→eiBi) ∈ PA (respectively, (A→fi) ∈ PA) is
the leftmost occurrence of a rule from PA, and the occurrence of
(A→gi0A) ∈ QA is the leftmost occurrence of a rule from QA.
Consequently, B ⇒∗1 βA is also a derivation of G2.
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In the first case, we have α1 = βgi0 . . . gik−1
eiγ1 and Bi ⇒∗1 γ1. By

induction hypothesis, there exists γ2 ∈ rexp(Σ)∗ such that Bi ⇒∗2 γ2 and
L(γ1) ⊂ L(γ2). Hence:

B ⇒∗2 βA⇒2 β((g0+ · · ·+gn−1)∗·ei)Bi ⇒2 β((g0+ · · ·+gn−1)∗·ei)γ2
Then, we take

α2 = β((g0+ · · ·+gn−1)∗·ei)γ2
Indeed

L(α1) ⊂ L(α2)

because
L(gi0 . . . gik−1

) ⊂ L((g0+ · · ·+gn−1)∗) and L(α1) ⊂ L(α2)

Similarly, in the second case, we have

B ⇒∗2 βA⇒2 β((g0+ · · ·+gn−1)∗·fi)
And, we take

α2 = β((g0+ · · ·+gn−1)∗·fi)
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PART 2: LE(G2) ⊂ LE(G1)

We prove that for every B ∈ N2, every α2 ∈ rexp(Σ)∗ such that
B ⇒∗2 α2, and every ω ∈ L(α2), there exists α1 ∈ rexp(Σ)∗ such that
B ⇒∗1 α1 and ω ∈ L(α1). The proof proceed by induction on the number
of occurences of rules from RA that appear in the derivation B ⇒∗2 α2.

Basis:

There is no occurence of any rule from RA in the derivation B ⇒∗2 α2.
Consequently, the derivation B ⇒∗2 α2 is also a derivation of G1, and we
take α1 = α2.
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From type-3 grammars to regular expressions

Induction:

If there is at least one occurence of a rule from RA in the derivation
B ⇒∗2 α2, it must obey one of the two following forms:

(1) B ⇒∗2 βA⇒2 β((g0+ · · ·+gn−1)∗·ei)Bi ⇒2 β((g0+ · · ·+gn−1)∗·ei)γ2
(2) B ⇒∗2 βA⇒2 β((g0+ · · ·+gn−1)∗·fi)

where the occurrence of (A→((g0+ · · ·+gn−1)∗·ei)Bi) ∈ RA

(respectively, (A→((g0+ · · ·+gn−1)∗·fi)) ∈ RA) is the leftmost
occurrence of a rule from RA. Consequently, B ⇒∗2 βA is also a derivation
of G1.
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In the first case, we have α2 = β((g0+ · · ·+gn−1)∗·ei)γ2 and Bi ⇒∗2 γ2.
Now, let ω ∈ L(α2). It must obey the following form:

ω = ω1gi0 . . . gik−1
ω2ω3

where:
ω1 ∈ L(β);

the sequence of gi’s is possibly empty;

ω2 ∈ L(ei);

ω3 ∈ L(γ2).

By induction hypothesis, there exists γ1 ∈ rexp(Σ)∗ such that Bi ⇒∗1 γ1
and ω3 ∈ L(γ1). Then, we take

α1 = βgi0 . . . gik−1
eiγ1

Indeed
B ⇒∗1 βA⇒1 βgi0A⇒1 · · · ⇒1 βgi0 . . . gik−1

A
⇒1 βgi0 . . . gik−1

eiBi ⇒1 βgi0 . . . gik−1
eiγ1

The second case, is similar.
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