Formal Languages

Philippe de Groote

2020-2021

Philippe de Groote

Formal Languages

2020-2021 1 / 7

A D N A B N A B N A B N

The pumping lemma for regular languages

- Pumping Lemma
- Proving that a language is not regular

< ロ > < 同 > < 回 > < 回 >

Proposition Let $L \subset \Sigma^*$ be a regular language. Then there exists a constant $k \in \mathbb{N}$ such that for every word $\alpha \in L$ such that $|\alpha| \geq k$, there exist words $\beta, \gamma, \delta \in \Sigma^*$ such that:

- (1) $\alpha = \beta \gamma \delta$
- (2) $|\beta\gamma| \leq k$
- (3) $\gamma \neq \epsilon$
- (4) For all $n \in \mathbb{N}$, $\beta \gamma^n \delta \in L$.

PROOF:

-					_	
ப	b.	1.00	n o	do	1 80	o to
-			De.	ue	CHI C	лле

PROOF:

Let $L\subset \Sigma^*$ be a regular language. Then there exists a DFSA A such that L=L(A).

< □ > < 同 > < 回 > < 回 > < 回 >

PROOF:

Let $L\subset \Sigma^*$ be a regular language. Then there exists a DFSA A such that L=L(A).

Take k to be the number of states of A, and consider any word $\alpha \in L$, such that $|\alpha| \ge k$.

< □ > < 同 > < 回 > < 回 > < 回 >

PROOF:

Let $L\subset \Sigma^*$ be a regular language. Then there exists a DFSA A such that L=L(A).

Take k to be the number of states of A, and consider any word $\alpha \in L$, such that $|\alpha| \geq k$.

Let $a_1, a_2, \ldots, a_p \in \Sigma$ be such that $\alpha = a_1 a_2 \ldots a_p$. Let q_0 be the initial state of A, and define $q_i = \hat{\delta}(q_0, a_1 \ldots a_i)$. (Remark that $p \ge k$ and that q_p is a final state of A.

Since q_0, q_1, \ldots, q_p is a sequence of at least k + 1 states, where k is the number of states of A, there exist $i, j \in \mathbb{N}$ such that $0 \le i < j \le p$ and $q_i = q_j$. Then, take:

- $\beta = a_1 \dots a_i$
- $\gamma = a_{i+1} \dots a_j$
- $\delta = a_{j+1} \dots a_p$

Since q_0, q_1, \ldots, q_p is a sequence of at least k + 1 states, where k is the number of states of A, there exist $i, j \in \mathbb{N}$ such that $0 \le i < j \le p$ and $q_i = q_j$. Then, take:

- $\beta = a_1 \dots a_i$
- $\gamma = a_{i+1} \dots a_j$
- $\delta = a_{j+1} \dots a_p$

(1) and (2) are clearly satisfied. (3) is also satisfied because i < j.

Finally, since $q_i = q_j$, β , γ , and δ are such that:

- $\hat{\delta}(q_0,\beta) = q_i$
- $\hat{\delta}(q_i, \gamma) = q_i$
- $\hat{\delta}(q_i, \delta) = q_p$

Finally, since $q_i = q_j$, β , γ , and δ are such that:

- $\hat{\delta}(q_0,\beta) = q_i$
- $\hat{\delta}(q_i, \gamma) = q_i$
- $\hat{\delta}(q_i, \delta) = q_p$

Therefore, for every $n \in \mathbb{N}$, we have that:

 $\hat{\delta}(q_0,\beta\gamma^n\delta) = q_p$

Philippe de Groote

A B A A B A

Finally, since $q_i = q_j$, β , γ , and δ are such that:

- $\hat{\delta}(q_0,\beta) = q_i$
- $\hat{\delta}(q_i, \gamma) = q_i$
- $\hat{\delta}(q_i, \delta) = q_p$

Therefore, for every $n \in \mathbb{N}$, we have that:

 $\hat{\delta}(q_0,\beta\gamma^n\delta) = q_p$

It implies that $\beta \gamma^n \delta \in L(A)$ because q_p is a final state of A.

Let $L = \{a^n b^n : n \ge 1\}$. We prove that L is not regular using the pumping lemma.

< □ > < 同 > < 回 > < 回 > < 回 >

Let $L = \{a^n b^n : n \ge 1\}$. We prove that L is not regular using the pumping lemma.

Suppose L is regular. There must exist some constant k that satisfies the conditions of the pumping lemma.

Let $L = \{a^n b^n : n \ge 1\}$. We prove that L is not regular using the pumping lemma.

Suppose L is regular. There must exist some constant k that satisfies the conditions of the pumping lemma.

Then, consider $\alpha = a^k b^k$. According to the pumping lemma, α can be factorized into three words $\beta \gamma \delta = \alpha$ such that $|\beta \gamma| \leq k$ and $\gamma \neq \epsilon$.

・ロト ・四ト ・ヨト ・ヨト

Let $L = \{a^n b^n : n \ge 1\}$. We prove that L is not regular using the pumping lemma.

Suppose L is regular. There must exist some constant k that satisfies the conditions of the pumping lemma.

Then, consider $\alpha = a^k b^k$. According to the pumping lemma, α can be factorized into three words $\beta \gamma \delta = \alpha$ such that $|\beta \gamma| \leq k$ and $\gamma \neq \epsilon$.

The only possibility is to have $\beta = a^p$ and $\gamma = a^q$, for some $p, q \in \mathbb{N}$ such that $p + q \leq k$ and $q \neq 0$.

イロト イヨト イヨト イヨト 三日

Let $L = \{a^n b^n : n \ge 1\}$. We prove that L is not regular using the pumping lemma.

Suppose L is regular. There must exist some constant k that satisfies the conditions of the pumping lemma.

Then, consider $\alpha = a^k b^k$. According to the pumping lemma, α can be factorized into three words $\beta \gamma \delta = \alpha$ such that $|\beta \gamma| \leq k$ and $\gamma \neq \epsilon$.

The only possibility is to have $\beta = a^p$ and $\gamma = a^q$, for some $p, q \in \mathbb{N}$ such that $p + q \leq k$ and $q \neq 0$.

But then, according to the pumping lemma, we would have that $a^p b^k \in L$, which is not the case because p < k. Therefore L is not regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの