
Semantics & Discourse
— Mahtematical Preliminaries —

Philippe de Groote

Philippe de Groote Semantics & Discourse 1 / 40



Outline

1 First-order logic

2 λ-calculus

3 Typed λ-calculus and higher-order logic

Philippe de Groote Semantics & Discourse 2 / 40



First-order logic

Outline

1 First-order logic
Model-theoretic semantics
First-order language
Model and interpretation
Propositional logic
Quantification
Interpretation

Philippe de Groote Semantics & Discourse 3 / 40



First-order logic Model-theoretic semantics

Model-theoretic semantics

John is the brother of Jean

Philippe de Groote Semantics & Discourse 4 / 40



First-order logic Model-theoretic semantics

Model-theoretic semantics

John is the brother of Jean

Philippe de Groote Semantics & Discourse 4 / 40



First-order logic Model-theoretic semantics

Model-theoretic semantics

John is the brother of Jean

Philippe de Groote Semantics & Discourse 4 / 40



First-order logic Model-theoretic semantics

Model-theoretic semantics

John is the brother of Jean

Philippe de Groote Semantics & Discourse 4 / 40



First-order logic Model-theoretic semantics

Model-theoretic semantics

John is the brother of Jean

Philippe de Groote Semantics & Discourse 4 / 40



First-order logic First-order language

First-order language

Definition

A first-order langage consists in two sets of symbols:

A set F , together with an arity function arF ∈ NF , whose elements
are called function symbols.

A set R, together with an arity function arR ∈ NR , whose elements
are called relation symbols.

Example

F = {e, j, r, father};
arF (e) = 0, arF (j) = 0, arF (r) = 0, arF (father) = 1;

R = {Is,Husband};
arR(Is) = 2, arR(Husband) = 2.

Philippe de Groote Semantics & Discourse 5 / 40



First-order logic First-order language

First-order language

Definition

A first-order langage consists in two sets of symbols:

A set F , together with an arity function arF ∈ NF , whose elements
are called function symbols.

A set R, together with an arity function arR ∈ NR , whose elements
are called relation symbols.

Example

F = {e, j, r, father};
arF (e) = 0, arF (j) = 0, arF (r) = 0, arF (father) = 1;

R = {Is,Husband};
arR(Is) = 2, arR(Husband) = 2.

Philippe de Groote Semantics & Discourse 5 / 40



First-order logic First-order language

First-order language

Terms

Let X be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

every x ∈X is a term;

every a ∈ F such that arF (a) = 0 is a term,

if f ∈ F with arF (f) = n and n > 0, and if t1, . . . , tn are terms,
then f(t1, . . . , tn) is a term.

Proposition

if R ∈ R with arR(R) = n, and if t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic proposition.

Example

Terms: e; father(j); father(father(r)); father(x).

Proposition: Is(e, father(j));Husband(e, r).

Philippe de Groote Semantics & Discourse 6 / 40



First-order logic First-order language

First-order language

Terms

Let X be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

every x ∈X is a term;

every a ∈ F such that arF (a) = 0 is a term,

if f ∈ F with arF (f) = n and n > 0, and if t1, . . . , tn are terms,
then f(t1, . . . , tn) is a term.

Proposition

if R ∈ R with arR(R) = n, and if t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic proposition.

Example

Terms: e; father(j); father(father(r)); father(x).

Proposition: Is(e, father(j));Husband(e, r).

Philippe de Groote Semantics & Discourse 6 / 40



First-order logic First-order language

First-order language

Terms

Let X be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

every x ∈X is a term;

every a ∈ F such that arF (a) = 0 is a term,

if f ∈ F with arF (f) = n and n > 0, and if t1, . . . , tn are terms,
then f(t1, . . . , tn) is a term.

Proposition

if R ∈ R with arR(R) = n, and if t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic proposition.

Example

Terms: e; father(j); father(father(r)); father(x).

Proposition: Is(e, father(j));Husband(e, r).

Philippe de Groote Semantics & Discourse 6 / 40



First-order logic Model and interpretation

Model and interpretation

Model

Given a first-order langage, a model consists of a set D and an
interpretation function I defined on F ∪R such that:

for every f ∈ F with arF (f) = n, I(f) ∈ DDn ;

for every R ∈ R with arR(R) = n, I(R) ∈ 2D
n

.

Example

D = N0

I(e) = 6

I(j) = 3

I(r) = 7

I(father) = f ∈ DD such that f(n) = 2n

I(Is) = {(a, b) ∈ D2 : a = b}
I(Husband) = {(a, b) ∈ D2 : a = 2n and b = a+1 for some n ∈ D}

Philippe de Groote Semantics & Discourse 7 / 40



First-order logic Model and interpretation

Model and interpretation

Model

Given a first-order langage, a model consists of a set D and an
interpretation function I defined on F ∪R such that:

for every f ∈ F with arF (f) = n, I(f) ∈ DDn ;

for every R ∈ R with arR(R) = n, I(R) ∈ 2D
n

.

Example

D = N0

I(e) = 6

I(j) = 3

I(r) = 7

I(father) = f ∈ DD such that f(n) = 2n

I(Is) = {(a, b) ∈ D2 : a = b}
I(Husband) = {(a, b) ∈ D2 : a = 2n and b = a+1 for some n ∈ D}
Philippe de Groote Semantics & Discourse 7 / 40



First-order logic Model and interpretation

Model and interpretation

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground
terms is inductively defined as follows:

JaK = I(a), for a ∈ F with arF (a) = 0;

Jf(t1, . . . , tn)K = I(f)(Jt1K, . . . , JtnK), for f ∈ F with arF (f) = n
and n > 0.

Example

Jfather(father(r))K = I(father)(Jfather(r)K)
= 2 · (Jfather(r)K)
= 2 · (I(father)(JrK))
= 2 · (2 · JrK)
= 2 · (2 · 7)

= 28

Philippe de Groote Semantics & Discourse 8 / 40



First-order logic Model and interpretation

Model and interpretation

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground
terms is inductively defined as follows:

JaK = I(a), for a ∈ F with arF (a) = 0;

Jf(t1, . . . , tn)K = I(f)(Jt1K, . . . , JtnK), for f ∈ F with arF (f) = n
and n > 0.

Example

Jfather(father(r))K = I(father)(Jfather(r)K)
= 2 · (Jfather(r)K)
= 2 · (I(father)(JrK))
= 2 · (2 · JrK)
= 2 · (2 · 7)

= 28

Philippe de Groote Semantics & Discourse 8 / 40



First-order logic Model and interpretation

Model and interpretation

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:

JR(t1, . . . , tn)K = I(R)(Jt1K, . . . , JtnK), for R ∈ R with arR(R) = n.

Example

JIs(e, father(j))K = I(Is)(JeK, Jfather(j)K)
= I(Is)(JeK, I(father)(JjK))
= I(Is)(6, 2 · 3)

= I(Is)(6, 6)

= 1

Philippe de Groote Semantics & Discourse 9 / 40



First-order logic Model and interpretation

Model and interpretation

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:

JR(t1, . . . , tn)K = I(R)(Jt1K, . . . , JtnK), for R ∈ R with arR(R) = n.

Example

JIs(e, father(j))K = I(Is)(JeK, Jfather(j)K)
= I(Is)(JeK, I(father)(JjK))
= I(Is)(6, 2 · 3)

= I(Is)(6, 6)

= 1

Philippe de Groote Semantics & Discourse 9 / 40



First-order logic Model and interpretation

Model and interpretation

Valuation

Given a first-order langage, and a model, a valuation is a a function
ξ ∈ DX .

Interpretation of the terms

Given a first-order langage, and a model, the interpretation of the terms is
inductively defined as follows:

JxKξ = ξ(x), for x ∈X ;

JaKξ = I(a), for a ∈ F with arF (a) = 0;

Jf(t1, . . . , tn)Kξ = I(f)(Jt1Kξ, . . . , JtnKξ), for f ∈ F with arF (f) = n
and n > 0.

Philippe de Groote Semantics & Discourse 10 / 40



First-order logic Model and interpretation

Model and interpretation

Valuation

Given a first-order langage, and a model, a valuation is a a function
ξ ∈ DX .

Interpretation of the terms

Given a first-order langage, and a model, the interpretation of the terms is
inductively defined as follows:

JxKξ = ξ(x), for x ∈X ;

JaKξ = I(a), for a ∈ F with arF (a) = 0;

Jf(t1, . . . , tn)Kξ = I(f)(Jt1Kξ, . . . , JtnKξ), for f ∈ F with arF (f) = n
and n > 0.

Philippe de Groote Semantics & Discourse 10 / 40



First-order logic Model and interpretation

Model and interpretation

Interpretation of the atomic propositions

Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:

JR(t1, . . . , tn)Kξ = I(R)(Jt1Kξ, . . . , JtnKξ), for R ∈ R with
arR(R) = n.

Philippe de Groote Semantics & Discourse 11 / 40



First-order logic Propositional logic

Propositional logic

propositions

Given a first-order language, the set of proposition is inductively defined as
follows:

every atomic proposition is a proposition;

if α is a proposition then ¬α is a proposition;

if α and β are propositions then (α ∧ β) is a proposition;

if α and β are propositions then (α ∨ β) is a proposition;

if α and β are propositions then (α→ β) is a proposition.

Example

Husband(e, r) ∧ Is(e, father(j))

Philippe de Groote Semantics & Discourse 12 / 40



First-order logic Propositional logic

Propositional logic

propositions

Given a first-order language, the set of proposition is inductively defined as
follows:

every atomic proposition is a proposition;

if α is a proposition then ¬α is a proposition;

if α and β are propositions then (α ∧ β) is a proposition;

if α and β are propositions then (α ∨ β) is a proposition;

if α and β are propositions then (α→ β) is a proposition.

Example

Husband(e, r) ∧ Is(e, father(j))

Philippe de Groote Semantics & Discourse 12 / 40



First-order logic Propositional logic

Propositional logic

Negation

¬α

not α.

J¬αKξ = 1 iff JαKξ = 0.

α ¬α
0 1
1 0

Philippe de Groote Semantics & Discourse 13 / 40



First-order logic Propositional logic

Propositional logic

Conjunction

α ∧ β

α and β.

Jα ∧ βKξ = 1 iff JαKξ = 1 and JβKξ = 1.

α β α ∧ β
0 0 0
0 1 0
1 0 0
1 1 1

Philippe de Groote Semantics & Discourse 14 / 40



First-order logic Propositional logic

Propositional logic

Disjunction

α ∨ β

α or β.

Jα ∨ βKξ = 1 iff JαKξ = 1 or JβKξ = 1 (or both).

α β α ∨ β
0 0 0
0 1 1
1 0 1
1 1 1

Philippe de Groote Semantics & Discourse 15 / 40



First-order logic Propositional logic

Propositional logic

Implication

α→ β

If α then β; α implies β.

Jα→ βKξ = 1 iff JβKξ = 1 whenever JαKξ = 1.

α β α→ β

0 0 1
0 1 1
1 0 0
1 1 1

Philippe de Groote Semantics & Discourse 16 / 40



First-order logic Quantification

Quantification

First-order formulas

Given a first-order language, the set of formulas is inductively defined as
follows:

every atomic proposition is a formula;
if α is a formula then ¬α is a formula;
if α and β are formulas then (α ∧ β) is a formula;
if α and β are formulas then (α ∨ β) is a formula;
if α and β are formulas then (α→ β) is a formula;
if α is a formulas and x a variable then (∀x. α) is a formula;
if α is a formulas and x a variable then (∃x. α) is a formula.

Example

∀x.∃y. Is(y, father(x))

Philippe de Groote Semantics & Discourse 17 / 40



First-order logic Quantification

Quantification

First-order formulas

Given a first-order language, the set of formulas is inductively defined as
follows:

every atomic proposition is a formula;
if α is a formula then ¬α is a formula;
if α and β are formulas then (α ∧ β) is a formula;
if α and β are formulas then (α ∨ β) is a formula;
if α and β are formulas then (α→ β) is a formula;
if α is a formulas and x a variable then (∀x. α) is a formula;
if α is a formulas and x a variable then (∃x. α) is a formula.

Example

∀x.∃y. Is(y, father(x))

Philippe de Groote Semantics & Discourse 17 / 40



First-order logic Quantification

Quantification

Universal quantification

∀x. α

every entity x is such that α.

J∀x. αKξ = 1 iff JαKξ[x:=d] = 1 for every d ∈ D.

Philippe de Groote Semantics & Discourse 18 / 40



First-order logic Quantification

Quantification

Existential quantification

∃x. α

There is some entity x such that α.

J∃x. αKξ = 1 iff JαKξ[x:=d] = 1 for some d ∈ D.

Philippe de Groote Semantics & Discourse 19 / 40



First-order logic Interpretation

Interpretation

Let a first-order language be given, and let φ, M , and ξ be respectively a
first-order formula, a model, and a valuation.

M , ξ |= φ

M and ξ satisfy φ.
φ is valid in M according to ξ.
JφKξ = 1.

M |= φ

M satisfies φ.
φ is valid in M .
M , ξ |= φ for every possible valuation ξ.

|= φ

φ is valid.
M |= φ for every possible model M .

Philippe de Groote Semantics & Discourse 20 / 40



λ-calculus

Outline

2 λ-calculus
λ-Notatation
λ-Terms
β-Reduction

Philippe de Groote Semantics & Discourse 21 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y

λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y

λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y

λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Notatation

λ-Notatation

“2x+ y”

f(x) = 2x+ y
λx. 2x+ y

f(y) = 2x+ y
λy. 2x+ y

f(x, y) = 2x+ y
λxy. 2x+ y

Philippe de Groote Semantics & Discourse 22 / 40



λ-calculus λ-Terms

λ-Terms

Definition

Let C be a set of symbols whose elements are called constants, and let X
be a countably infinite set of symbols, disjoint from C , whose elements are
called λ-variables. The set of λ-terms is inductively defined as follows:

every c ∈ C is a λ-term;

every x ∈X is a λ-term;

if t is a λ-term and x is a λ-variable then (λx. t) is a λ-term;

if t and u are λ-terms then (t u) is a λ-term.

Philippe de Groote Semantics & Discourse 23 / 40



λ-calculus λ-Terms

λ-Terms

Abstraction

(λx. t)

The function that maps x to t.

t is called the body of the abstraction.

The free occurences of x in t are bound in (λx. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g′(x) = fx
g′(x)(y) = fx(y) = x+ y = g(x, y)

Philippe de Groote Semantics & Discourse 24 / 40



λ-calculus λ-Terms

λ-Terms

Abstraction

(λx. t)

The function that maps x to t.

t is called the body of the abstraction.

The free occurences of x in t are bound in (λx. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g′(x) = fx
g′(x)(y) = fx(y) = x+ y = g(x, y)

Philippe de Groote Semantics & Discourse 24 / 40



λ-calculus λ-Terms

λ-Terms

Abstraction

(λx. t)

The function that maps x to t.

t is called the body of the abstraction.

The free occurences of x in t are bound in (λx. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g′(x) = fx
g′(x)(y) = fx(y) = x+ y = g(x, y)

Philippe de Groote Semantics & Discourse 24 / 40



λ-calculus λ-Terms

λ-Terms

Abstraction

(λx. t)

The function that maps x to t.

t is called the body of the abstraction.

The free occurences of x in t are bound in (λx. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g′(x) = fx

g′(x)(y) = fx(y) = x+ y = g(x, y)

Philippe de Groote Semantics & Discourse 24 / 40



λ-calculus λ-Terms

λ-Terms

Abstraction

(λx. t)

The function that maps x to t.

t is called the body of the abstraction.

The free occurences of x in t are bound in (λx. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g′(x) = fx
g′(x)(y) = fx(y) = x+ y = g(x, y)

Philippe de Groote Semantics & Discourse 24 / 40



λ-calculus λ-Terms

λ-Terms

Application

(t u)

The function t applied to the argument u.

t is called the operator, and u the operand.

Usual notations:

f : x 7→ x+ 1
f(3)

λ-calculus notations:

λx.addx 1
(λx.addx 1) 3

Philippe de Groote Semantics & Discourse 25 / 40



λ-calculus λ-Terms

λ-Terms

Application

(t u)

The function t applied to the argument u.

t is called the operator, and u the operand.

Usual notations:

f : x 7→ x+ 1
f(3)

λ-calculus notations:

λx.addx 1
(λx.addx 1) 3

Philippe de Groote Semantics & Discourse 25 / 40



λ-calculus λ-Terms

λ-Terms

Application

(t u)

The function t applied to the argument u.

t is called the operator, and u the operand.

Usual notations:

f : x 7→ x+ 1
f(3)

λ-calculus notations:

λx.addx 1
(λx.addx 1) 3

Philippe de Groote Semantics & Discourse 25 / 40



λ-calculus λ-Terms

λ-Terms

Application

(t u)

The function t applied to the argument u.

t is called the operator, and u the operand.

Usual notations:

f : x 7→ x+ 1
f(3)

λ-calculus notations:

λx.addx 1
(λx.addx 1) 3

Philippe de Groote Semantics & Discourse 25 / 40



λ-calculus β-Reduction

β-Reduction

Substitution

Let t and u be λ-terms, and x be a λ-variable. t[x := u] denotes the
λ-term obtained by substituting u for the free occurrences of x in t. It is
inductively defined as follows:

c[x := u] = c, for c ∈ C .

y[x := u] = y, for y ∈X , and y 6= x.

x[x := u] = u

(λy. t0)[x := u] = (λy. t0[x := u]), where y 6= x and y not free in u.

(t0 t1)[x := u] = (t0[x := u] t1[x := u])

Philippe de Groote Semantics & Discourse 26 / 40



λ-calculus β-Reduction

β-Reduction

Notion of β-reduction

(λx. t)u→β t[x := u]

Relation of β-contraction

C[(λx. t)u]→β C[t[x := u]]

Relation of β-reduction

The reflexive, transitive closure of the relation of β-contraction.

t→→β u

Relation of β-equivalence

The reflexive, transitive, symmetric closure of the relation of
β-contraction.

t =β u

Philippe de Groote Semantics & Discourse 27 / 40



λ-calculus β-Reduction

β-Reduction

Notion of β-reduction

(λx. t)u→β t[x := u]

Relation of β-contraction

C[(λx. t)u]→β C[t[x := u]]

Relation of β-reduction

The reflexive, transitive closure of the relation of β-contraction.

t→→β u

Relation of β-equivalence

The reflexive, transitive, symmetric closure of the relation of
β-contraction.

t =β u

Philippe de Groote Semantics & Discourse 27 / 40



λ-calculus β-Reduction

β-Reduction

Notion of β-reduction

(λx. t)u→β t[x := u]

Relation of β-contraction

C[(λx. t)u]→β C[t[x := u]]

Relation of β-reduction

The reflexive, transitive closure of the relation of β-contraction.

t→→β u

Relation of β-equivalence

The reflexive, transitive, symmetric closure of the relation of
β-contraction.

t =β u

Philippe de Groote Semantics & Discourse 27 / 40



λ-calculus β-Reduction

β-Reduction

Notion of β-reduction

(λx. t)u→β t[x := u]

Relation of β-contraction

C[(λx. t)u]→β C[t[x := u]]

Relation of β-reduction

The reflexive, transitive closure of the relation of β-contraction.

t→→β u

Relation of β-equivalence

The reflexive, transitive, symmetric closure of the relation of
β-contraction.

t =β u

Philippe de Groote Semantics & Discourse 27 / 40



λ-calculus β-Reduction

β-Reduction

Church-Rosser property

Let t0, t1, and t2 be λ-terms such that

t0 →→β t1

t0 →→β t2

Then, there exists a λ-term t3 such that

t1 →→β t3

t2 →→β t3

Corollary: unicity of the normal forms.

Philippe de Groote Semantics & Discourse 28 / 40



λ-calculus β-Reduction

β-Reduction

Church-Rosser property

Let t0, t1, and t2 be λ-terms such that

t0 →→β t1

t0 →→β t2

Then, there exists a λ-term t3 such that

t1 →→β t3

t2 →→β t3

Corollary: unicity of the normal forms.

Philippe de Groote Semantics & Discourse 28 / 40



Typed λ-calculus and higher-order logic

Outline

3 Typed λ-calculus and higher-order logic
Simple types
interpretation
Logical constants

Philippe de Groote Semantics & Discourse 29 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

every a ∈ A is a simple type;

if α and β are simple types then (α→ β) is a simple type.

The intended meaning is that (α→ β) is the type of the λ-terms that
stand for functions whose domain is α, and range β.

Given a set of atomic type A , we write T (A ) for the set of simple types
built upon A .

Philippe de Groote Semantics & Discourse 30 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

every a ∈ A is a simple type;

if α and β are simple types then (α→ β) is a simple type.

The intended meaning is that (α→ β) is the type of the λ-terms that
stand for functions whose domain is α, and range β.

Given a set of atomic type A , we write T (A ) for the set of simple types
built upon A .

Philippe de Groote Semantics & Discourse 30 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

every a ∈ A is a simple type;

if α and β are simple types then (α→ β) is a simple type.

The intended meaning is that (α→ β) is the type of the λ-terms that
stand for functions whose domain is α, and range β.

Given a set of atomic type A , we write T (A ) for the set of simple types
built upon A .

Philippe de Groote Semantics & Discourse 30 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Signature

A higher-order signature is a triple Σ = (A ,C , τ), where:

A is a set of atomic types;

C is a set of constants;

τ ∈ T (A )C is a function that assigns each constant in C with a
simple type built on A .

Philippe de Groote Semantics & Discourse 31 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs
(x, α) ∈X ×T (A ) such that (x, α), (x, β) ∈ Γ implies α = β.

Given a typing environment Γ such that for every (y, β) ∈ Γ y 6= x, we
write “Γ, x:α” for the typing environment “Γ ∪ {(x, α)}”.

Typing judgement

A typing judgement is an expression of the form

Γ − t : α

where Γ is a typing environment, t a λ-term, and α a simple type.

Philippe de Groote Semantics & Discourse 32 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs
(x, α) ∈X ×T (A ) such that (x, α), (x, β) ∈ Γ implies α = β.

Given a typing environment Γ such that for every (y, β) ∈ Γ y 6= x, we
write “Γ, x:α” for the typing environment “Γ ∪ {(x, α)}”.

Typing judgement

A typing judgement is an expression of the form

Γ − t : α

where Γ is a typing environment, t a λ-term, and α a simple type.

Philippe de Groote Semantics & Discourse 32 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Typing rules

Γ − c : τ(c)

Γ, x : α − x : α

Γ, x : α − t : β

Γ − (λx. t) : (α→ β)

Γ − t : (α→ β) Γ − u : α

Γ − (t u) : β

Philippe de Groote Semantics & Discourse 33 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Typable terms

A λ-term t is typable if and only if there exist a typing environment Γ and
a simple type α such that

Γ − t : α

Normalization

Every typable term has a normal form.

Philippe de Groote Semantics & Discourse 34 / 40



Typed λ-calculus and higher-order logic Simple types

Simple types

Typable terms

A λ-term t is typable if and only if there exist a typing environment Γ and
a simple type α such that

Γ − t : α

Normalization

Every typable term has a normal form.

Philippe de Groote Semantics & Discourse 34 / 40



Typed λ-calculus and higher-order logic interpretation

Interpretation

Definition à la Church

Let Σ = (A ,C , τ) be a signature, and let (Xα)α∈T (A ) be a family of
countably infinite disjoint sets, disjoint from C , whose elements are called
typed λ-variables. The set of typed λ-terms is inductively defined as
follows:

every c ∈ C is a λ-term of type τ(c);

every x ∈Xα is a λ-term of type α;

if x is a λ-variable of type α and t is a λ-term of type β then (λx. t)
is a λ-term of type (α→ β);

if t is a λ-term of type (α→ β) and u is a λ-term of type α then
(t u) is a λ-term is a λ-term of type β.

Philippe de Groote Semantics & Discourse 35 / 40



Typed λ-calculus and higher-order logic interpretation

Interpretation

Model

A model consists of a family of sets (Dα)α∈T (A ) and an interpretation
function I defined on C such that:

Dα→β = Dβ
Dα ;

for every c ∈ C , I(c) ∈ Dτ(c).

Valuation

A typed valuation ξ is a function from
⋃
α∈T (A ) Xα into

⋃
α∈T (A ) Dα

such that:

if x ∈Xα then ξ(x) ∈ Dα.

Philippe de Groote Semantics & Discourse 36 / 40



Typed λ-calculus and higher-order logic interpretation

Interpretation

Interpretation

JcKξ = I(c)

JxKξ = ξ(x)

Jλx. tKξ = a 7→ JtKξ[x:=a]
Jt uKξ = JtKξ(JuKξ)

Philippe de Groote Semantics & Discourse 37 / 40



Typed λ-calculus and higher-order logic Logical constants

Logical constants

Signature with logical constants

Let Σ = (A ,C , τ) be such that:

A = {e, t};
not,and,or, implies,all, exists ∈ C ;

τ(not) = t→ t;

τ(and) = t→ t→ t;

τ(or) = t→ t→ t;

τ(implies) = t→ t→ t;

τ(all) = (e→ t)→ t;

τ(exists) = (e→ t)→ t.

Philippe de Groote Semantics & Discourse 38 / 40



Typed λ-calculus and higher-order logic Logical constants

Logical constants

Interpretation

Let M = ((Dα)α∈T (A ), I) be such that:

Dt = 2;

I(not) = {(0, 1), (1, 0)};
I(and) = {(0, {(0, 0), (1, 0)}), (1, {(0, 0), (1, 1)})};
I(or) = {(0, {(0, 0), (1, 1)}), (1, {(0, 1), (1, 1)})};
I(implies) = {(0, {(0, 1), (1, 1)}), (1, {(0, 0), (1, 1)})};
I(all)(f) = 1 iff f(a) = 1 for every a ∈ De;

I(exists)(f) = 1 iff f(a) = 1 for some a ∈ De.

Philippe de Groote Semantics & Discourse 39 / 40



Typed λ-calculus and higher-order logic Logical constants

Logical constants

Notations

We write:

¬a for (not a);

(a ∧ b) for ((and a) b);

(a ∨ b) for ((or a) b);

(a→ b) for ((implies a) b);

(∀x. a) for (all (λx. a));

(∃x. a) for (exits (λx. a)).

Philippe de Groote Semantics & Discourse 40 / 40


	First-order logic
	Model-theoretic semantics
	First-order language
	Model and interpretation
	Propositional logic
	Quantification
	Interpretation

	-calculus
	-Notatation
	-Terms
	-Reduction

	Typed -calculus and higher-order logic
	Simple types
	interpretation
	Logical constants


