Semantics & Discourse

- Mahtematical Preliminaries -

Philippe de Groote

Philippe de Groote

э

イロト イボト イヨト イヨト

3 Typed λ -calculus and higher-order logic

Outline

First-order logic

- Model-theoretic semantics
- First-order language
- Model and interpretation
- Propositional logic
- Quantification
- Interpretation

- ∢ ∃ →

э

イロト イボト イヨト イヨト

John is the brother of Jean

э

• • = • • = •

John is the brother of Jean

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

John is the brother of Jean

э

イロト イポト イヨト イヨト

John is the brother of Jean

э

(日)

First-order language

Definition

A first-order langage consists in two sets of symbols:

- A set \mathscr{F} , together with an arity function $\operatorname{ar}_{\mathscr{F}} \in \mathbb{N}^{\mathscr{F}}$, whose elements are called *function symbols*.
- A set \mathscr{R} , together with an arity function $\operatorname{ar}_{\mathscr{R}} \in \mathbb{N}^{\mathscr{R}}$, whose elements are called relation symbols.

Definition

A first-order langage consists in two sets of symbols:

- A set \mathscr{F} , together with an arity function $\operatorname{ar}_{\mathscr{F}} \in \mathbb{N}^{\mathscr{F}}$, whose elements are called *function symbols*.
- A set \mathscr{R} , together with an arity function $\operatorname{ar}_{\mathscr{R}} \in \mathbb{N}^{\mathscr{R}}$, whose elements are called *relation symbols*.

Example

•
$$\mathscr{F} = \{\mathbf{e}, \mathbf{j}, \mathbf{r}, \mathbf{father}\};$$

- $\operatorname{ar}_{\mathscr{F}}(\mathbf{e}) = 0, \operatorname{ar}_{\mathscr{F}}(\mathbf{j}) = 0, \operatorname{ar}_{\mathscr{F}}(\mathbf{r}) = 0, \operatorname{ar}_{\mathscr{F}}(\mathbf{father}) = 1;$
- $\mathscr{R} = \{ \mathbf{Is}, \mathbf{Husband} \};$
- $\operatorname{ar}_{\mathscr{R}}(\mathbf{Is}) = 2, \operatorname{ar}_{\mathscr{R}}(\mathbf{Husband}) = 2.$

イロト 不得下 イヨト イヨト

First-order language

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- every $x \in \mathscr{X}$ is a term;
- every $a \in \mathscr{F}$ such that $\operatorname{ar}_{\mathscr{F}}(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$ and n > 0, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

・ 同 ト ・ ヨ ト ・ ヨ ト

First-order language

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- every $x \in \mathscr{X}$ is a term;
- every $a \in \mathscr{F}$ such that $\operatorname{ar}_{\mathscr{F}}(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$ and n > 0, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Proposition

• if $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$, and if t_1, \ldots, t_n are terms, then $R(t_1,\ldots,t_n)$ is an atomic proposition.

イロト 不得 トイヨト イヨト

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- every $x \in \mathscr{X}$ is a term;
- every $a \in \mathscr{F}$ such that $\operatorname{ar}_{\mathscr{F}}(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$ and n > 0, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Proposition

• if $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$, and if t_1, \ldots, t_n are terms, then $R(t_1,\ldots,t_n)$ is an atomic proposition.

Example

- Terms: e; father(j); father(father(r)); father(x).
- Proposition: Is(e, father(j)); Husband(e, r).

Model

Given a first-order langage, a model consists of a set D and an interpretation function $\mathcal I$ defined on $\mathscr F\cup\mathscr R$ such that:

- for every $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$, $\mathcal{I}(f) \in D^{D^n}$;
- for every $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$, $\mathcal{I}(R) \in 2^{D^n}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Model

Given a first-order langage, a model consists of a set D and an interpretation function $\mathcal I$ defined on $\mathscr F\cup\mathscr R$ such that:

- for every $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$, $\mathcal{I}(f) \in D^{D^n}$;
- for every $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$, $\mathcal{I}(R) \in 2^{D^n}$.

Example

- $D = \mathbb{N}_0$
- $\mathcal{I}(\mathbf{e}) = 6$
- $\mathcal{I}(\mathbf{j}) = 3$
- $\mathcal{I}(\mathbf{r}) = 7$
- $\mathcal{I}(\mathbf{father}) = f \in D^D$ such that f(n) = 2n
- $\mathcal{I}(\mathbf{Is}) = \{(a,b) \in D^2 : a = b\}$
- $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a + 1 \text{ for some } n \in D\}$

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground terms is inductively defined as follows:

- $\llbracket a \rrbracket = \mathcal{I}(a)$, for $a \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(a) = 0$;
- $\llbracket f(t_1, \ldots, t_n) \rrbracket = \mathcal{I}(f)(\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket)$, for $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$ and n > 0.

< 回 > < 回 > < 回 >

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground terms is inductively defined as follows:

- $\llbracket a \rrbracket = \mathcal{I}(a)$, for $a \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(a) = 0$;
- $\llbracket f(t_1, \ldots, t_n) \rrbracket = \mathcal{I}(f)(\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket)$, for $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$ and n > 0.

Example

$$\begin{split} \llbracket \mathbf{father}(\mathbf{father}(\mathbf{r})) \rrbracket &= \mathcal{I}(\mathbf{father})(\llbracket \mathbf{father}(\mathbf{r}) \rrbracket) \\ &= 2 \cdot (\llbracket \mathbf{father}(\mathbf{r}) \rrbracket) \\ &= 2 \cdot (\mathcal{I}(\mathbf{father})(\llbracket \mathbf{r} \rrbracket)) \\ &= 2 \cdot (2 \cdot \llbracket \mathbf{r} \rrbracket) \\ &= 2 \cdot (2 \cdot 7) \\ &= 28 \end{split}$$

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

• $\llbracket R(t_1,\ldots,t_n) \rrbracket = \mathcal{I}(R)(\llbracket t_1 \rrbracket,\ldots,\llbracket t_n \rrbracket)$, for $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$.

▲御 と ▲ 臣 と ▲ 臣 とし

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

•
$$\llbracket R(t_1,\ldots,t_n) \rrbracket = \mathcal{I}(R)(\llbracket t_1 \rrbracket,\ldots,\llbracket t_n \rrbracket)$$
, for $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$.

Example

$$\begin{split} \llbracket \mathbf{Is}(\mathbf{e}, \mathbf{father}(\mathbf{j})) \rrbracket &= \mathcal{I}(\mathbf{Is})(\llbracket \mathbf{e} \rrbracket, \llbracket \mathbf{father}(\mathbf{j}) \rrbracket) \\ &= \mathcal{I}(\mathbf{Is})(\llbracket \mathbf{e} \rrbracket, \mathcal{I}(\mathbf{father})(\llbracket \mathbf{j} \rrbracket)) \\ &= \mathcal{I}(\mathbf{Is})(6, 2 \cdot 3) \\ &= \mathcal{I}(\mathbf{Is})(6, 6) \\ &= 1 \end{split}$$

A B b A B b

Valuation

Given a first-order langage, and a model, a valuation is a a function $\xi\in D^{\mathscr{X}}.$

(B)

Valuation

Given a first-order langage, and a model, a valuation is a a function $\xi\in D^{\mathscr{X}}.$

Interpretation of the terms

Given a first-order langage, and a model, the interpretation of the terms is inductively defined as follows:

•
$$\llbracket x \rrbracket_{\xi} = \xi(x)$$
, for $x \in \mathscr{X}$;

•
$$\llbracket a \rrbracket_{\xi} = \mathcal{I}(a)$$
, for $a \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(a) = 0$;

•
$$\llbracket f(t_1, \ldots, t_n) \rrbracket_{\xi} = \mathcal{I}(f)(\llbracket t_1 \rrbracket_{\xi}, \ldots, \llbracket t_n \rrbracket_{\xi})$$
, for $f \in \mathscr{F}$ with $\operatorname{ar}_{\mathscr{F}}(f) = n$
and $n > 0$.

Interpretation of the atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

•
$$\llbracket R(t_1, \ldots, t_n) \rrbracket_{\xi} = \mathcal{I}(R)(\llbracket t_1 \rrbracket_{\xi}, \ldots, \llbracket t_n \rrbracket_{\xi})$$
, for $R \in \mathscr{R}$ with $\operatorname{ar}_{\mathscr{R}}(R) = n$.

propositions

Given a first-order language, the set of proposition is inductively defined as follows:

- every atomic proposition is a proposition;
- if α is a proposition then $\neg \alpha$ is a proposition;
- if α and β are propositions then $(\alpha \wedge \beta)$ is a proposition;
- \bullet if α and β are propositions then $(\alpha \lor \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \rightarrow \beta)$ is a proposition.

• < = • < = •

Propositional logic

propositions

Given a first-order language, the set of proposition is inductively defined as follows:

- every atomic proposition is a proposition;
- if α is a proposition then $\neg \alpha$ is a proposition;
- if α and β are propositions then $(\alpha \wedge \beta)$ is a proposition;
- \bullet if α and β are propositions then $(\alpha \lor \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \rightarrow \beta)$ is a proposition.

Example

$\mathbf{Husband}(\mathbf{e},\mathbf{r}) \wedge \mathbf{Is}(\mathbf{e},\mathbf{father}(\mathbf{j}))$

< □ > < □ > < □ > < □ > < □ > < □ >

Negation

 $\neg \alpha$

• not α .

•
$$\llbracket \neg \alpha \rrbracket_{\xi} = 1$$
 iff $\llbracket \alpha \rrbracket_{\xi} = 0.$

$$\begin{array}{c|c} \alpha & \neg \alpha \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

-				-		
D	 1.001	n o	do		200	+
	 עוו	ue.	ue	- U	100	LE.

2

<ロト <回ト < 回ト < 回ト -

Conjunction

 $\alpha \wedge \beta$

- α and β .
- $\llbracket \alpha \wedge \beta \rrbracket_{\xi} = 1$ iff $\llbracket \alpha \rrbracket_{\xi} = 1$ and $\llbracket \beta \rrbracket_{\xi} = 1$.

α	β	$\alpha \wedge \beta$
0	0	0
0	1	0
1	0	0
1	1	1

э

<ロト <回ト < 回ト < 回ト -

Disjunction

 $\alpha \vee \beta$

- α or β .
- $\llbracket \alpha \lor \beta \rrbracket_{\xi} = 1$ iff $\llbracket \alpha \rrbracket_{\xi} = 1$ or $\llbracket \beta \rrbracket_{\xi} = 1$ (or both).

α	β	$\alpha \lor \beta$
0	0	0
0	1	1
1	0	1
1	1	1

3

<ロト <回ト < 回ト < 回ト -

Implication

 $\alpha \to \beta$

• If
$$\alpha$$
 then β ; α implies β .

• $\llbracket \alpha \to \beta \rrbracket_{\xi} = 1$ iff $\llbracket \beta \rrbracket_{\xi} = 1$ whenever $\llbracket \alpha \rrbracket_{\xi} = 1$.

3

イロト イヨト イヨト イヨト

First-order formulas

Given a first-order language, the set of formulas is inductively defined as follows:

- every atomic proposition is a formula;
- if α is a formula then $\neg \alpha$ is a formula;
- if α and β are formulas then $(\alpha \wedge \beta)$ is a formula;
- if α and β are formulas then $(\alpha \lor \beta)$ is a formula;
- if α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula;
- if α is a formulas and x a variable then $(\forall x. \alpha)$ is a formula;
- if α is a formulas and x a variable then $(\exists x. \alpha)$ is a formula.

(四) (ヨ) (ヨ)

First-order formulas

Given a first-order language, the set of formulas is inductively defined as follows:

- every atomic proposition is a formula;
- if α is a formula then $\neg \alpha$ is a formula;
- if α and β are formulas then $(\alpha \wedge \beta)$ is a formula;
- if α and β are formulas then $(\alpha \lor \beta)$ is a formula;
- if α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula;
- if α is a formulas and x a variable then $(\forall x. \alpha)$ is a formula;
- if α is a formulas and x a variable then $(\exists x. \alpha)$ is a formula.

Example

$$\forall x. \exists y. \mathbf{Is}(\mathbf{y}, \mathbf{father}(\mathbf{x}))$$

Universal quantification

 $\forall x. \alpha$

- every entity x is such that α .
- $\llbracket \forall x. \alpha \rrbracket_{\xi} = 1$ iff $\llbracket \alpha \rrbracket_{\xi[x:=d]} = 1$ for every $d \in D$.

3

イロト イポト イヨト イヨト

Existential quantification

$\exists x. \alpha$

- There is some entity x such that α .
- $[\![\exists x. \alpha]\!]_{\xi} = 1$ iff $[\![\alpha]\!]_{\xi[x:=d]} = 1$ for some $d \in D$.

э

イロト イポト イヨト イヨト

Interpretation

Let a first-order language be given, and let ϕ , \mathcal{M} , and ξ be respectively a first-order formula, a model, and a valuation.

 $\mathscr{M},\xi\models\phi$

- \mathscr{M} and ξ satisfy ϕ .
- ϕ is valid in \mathcal{M} according to ξ .
- $\llbracket \phi \rrbracket_{\xi} = 1.$

 $\mathscr{M} \models \phi$

- \mathcal{M} satisfies ϕ .
- ϕ is valid in \mathcal{M} .
- $\mathcal{M}, \xi \models \phi$ for every possible valuation ξ .

 $\models \phi$

- ϕ is valid.
- $\mathscr{M} \models \phi$ for every possible model $\mathscr{M}.$

Outline

- λ -Notatation
- λ -Terms
- β -Reduction

э

イロト イポト イヨト イヨト

λ -calculus

λ -Notatation

λ -Notatation

"2x + y"

3

イロト イヨト イヨト イヨト

λ -Notatation

"2x + y"

$$f(x) = 2x + y$$

3

イロト イヨト イヨト イヨト
λ -Notatation

λ -Notatation

"2x + y"

$$f(x) = 2x + y$$

 $\lambda x. 2x + y$

Philippe de Groote

22 / 40

3

<ロト <回ト < 回ト < 回ト < 回ト -

λ -Notatation

λ -Notatation

"
$$2x + y$$
"

$$f(x) = 2x + y$$

 $\lambda x. 2x + y$

$$f(y) = 2x + y$$

3

イロト イヨト イヨト イヨト

λ -Notatation

λ -Notatation

"
$$2x + y$$
"

$$f(x) = 2x + y$$

 $\lambda x. 2x + y$

$$f(y) = 2x + y$$

 $\lambda y. 2x + y$

2

λ -Notatation

λ -Notatation

"
$$2x + y$$
"

$$f(x) = 2x + y$$
$$\lambda x. \, 2x + y$$

$$f(y) = 2x + y$$

$$\lambda y. 2x + y$$

$$f(x,y) = 2x + y$$

3

<ロト <回ト < 回ト < 回ト < 回ト -

λ -Notatation

+y

λ -Notatation

"
$$2x + y$$
"

$$f(x) = 2x + y$$

$$\lambda x. 2x$$

$$f(y) = 2x + y$$

$$\lambda y. 2x + y$$

$$f(x,y) = 2x + y$$
$$\lambda xy. 2x + y$$

3

<ロト <回ト < 回ト < 回ト < 回ト -

Definition

Let \mathscr{C} be a set of symbols whose elements are called *constants*, and let \mathscr{X} be a countably infinite set of symbols, disjoint from \mathscr{C} , whose elements are called λ -variables. The set of λ -terms is inductively defined as follows:

- every $c \in \mathscr{C}$ is a λ -term;
- every $x \in \mathscr{X}$ is a λ -term;
- if t is a λ -term and x is a λ -variable then $(\lambda x. t)$ is a λ -term;
- if t and u are λ -terms then (t u) is a λ -term.

	λ-calculus λ-Terms
$\lambda ext{-Terms}$	
Abstraction	
$(\lambda x. t)$	

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Abstraction

$(\lambda x. t)$

- The function that maps x to t.
- *t* is called the *body* of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

			N
λ -ca	СШ	liis	1 A

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t.
- *t* is called the *body* of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$g(x,y) = x + y$$

Philippe de Groote

・ 「「」 ト ・ ニ ト ・ ニ ト

			N
λ -ca	СШ	liis	1 A

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t.
- t is called the *body* of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$g(x, y) = x + y$$

$$f_x(y) = x + y$$

$$g'(x) = f_x$$

Philippe de Groote

・ 「「」 ト ・ ニ ト ・ ニ ト

			N
λ -ca	СШ	liis	1 A

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t.
- t is called the *body* of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$g(x, y) = x + y$$

$$f_x(y) = x + y$$

$$g'(x) = f_x$$

$$g'(x)(y) = f_x(y) = x + y = g(x, y)$$

Philippe de Groote

・ 「「」 ト ・ ニ ト ・ ニ ト

λ -calculus	λ -Terms

$\lambda ext{-Terms}$

Application

(t u)

3

▲□▶ ▲圖▶ ▲国▶ ▲国▶ -

$\lambda ext{-Terms}$

Application

(t u)

- The function t applied to the argument u.
- $\bullet \ t$ is called the operator, and u the operand.

э

A D N A B N A B N A B N

Application

 $(t\,u)$

- The function t applied to the argument u.
- t is called the operator, and u the operand.

Usual notations:

$$f: x \mapsto x+1$$
$$f(3)$$

< □ > < □ > < □ > < □ > < □ >

Application

 $(t\,u)$

- The function t applied to the argument u.
- t is called the operator, and u the operand.

Usual notations:

$$f: x \mapsto x+1$$
$$f(3)$$

 λ -calculus notations:

 $\lambda x. \operatorname{add} x 1$ $(\lambda x. \operatorname{add} x 1) 3$

< □ > < □ > < □ > < □ > < □ > < □ >

β -Reduction

Substitution

Let t and u be λ -terms, and x be a λ -variable. t[x := u] denotes the λ -term obtained by substituting u for the free occurrences of x in t. It is inductively defined as follows:

$$\begin{split} c[x &:= u] = c, \text{ for } c \in \mathscr{C}. \\ y[x &:= u] = y, \text{ for } y \in \mathscr{X}, \text{ and } y \neq x. \\ x[x &:= u] = u \\ (\lambda y. t_0)[x &:= u] = (\lambda y. t_0[x &:= u]), \text{ where } y \neq x \text{ and } y \text{ not free in } u. \\ (t_0 t_1)[x &:= u] = (t_0[x &:= u] t_1[x &:= u]) \end{split}$$

- 4 回 ト 4 三 ト 4 三 ト

β -Reduction

β -Reduction

Notion of β -reduction

$$(\lambda x. t) u \to_{\beta} t[x := u]$$

æ

β -Reduction

β -Reduction

Notion of β -reduction

$$(\lambda x. t) u \to_{\beta} t[x := u]$$

Relation of β -contraction

$$C[(\lambda x.\,t)\,u]\to_\beta C[t[x:=u]]$$

э

β -Reduction

β -Reduction

Notion of β -reduction

$$(\lambda x. t) u \to_{\beta} t[x := u]$$

Relation of β -contraction

 $C[(\lambda x.\,t)\,u]\to_\beta C[t[x:=u]]$

Relation of β -reduction

The *reflexive*, *transitive* closure of the relation of β -contraction.

 $t \twoheadrightarrow_{\beta} u$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

β -Reduction

β -Reduction

Notion of β -reduction

$$(\lambda x. t) u \to_{\beta} t[x := u]$$

Relation of β -contraction

 $C[(\lambda x.\,t)\,u]\to_\beta C[t[x:=u]]$

Relation of $\beta\text{-reduction}$

The *reflexive, transitive* closure of the relation of β -contraction.

 $t \twoheadrightarrow_{\beta} u$

Relation of β -equivalence

The *reflexive, transitive, symmetric* closure of the relation of β -contraction.

 $t =_{\beta} u$

β -Reduction

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \twoheadrightarrow_{\beta} t_1$ $t_0 \twoheadrightarrow_{\beta} t_2$

Then, there exists a λ -term t_3 such that

$$t_1 \twoheadrightarrow_{\beta} t_3$$
$$t_2 \twoheadrightarrow_{\beta} t_3$$

э

イロト イボト イヨト イヨト

β -Reduction

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \twoheadrightarrow_{\beta} t_1$ $t_0 \twoheadrightarrow_{\beta} t_2$

Then, there exists a λ -term t_3 such that

 $t_1 \twoheadrightarrow_{\beta} t_3$ $t_2 \twoheadrightarrow_{\beta} t_3$

Corollary: unicity of the normal forms.

э

イロン 不聞 とくほとう ほとう

Outline

3 Typed λ -calculus and higher-order logic

- Simple types
- interpretation
- Logical constants

• • = • • = •

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

Simple types

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Simple types

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Given a set of atomic type \mathscr{A} , we write $\mathscr{T}(\mathscr{A})$ for the set of simple types built upon \mathscr{A} .

イロト 不得 トイラト イラト 一日

Signature

A higher-order signature is a triple $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$, where:

 \mathscr{A} is a set of atomic types;

 \mathscr{C} is a set of constants;

 $\tau \in \mathscr{T}(\mathscr{A})^{\mathscr{C}}$ is a function that assigns each constant in \mathscr{C} with a simple type built on \mathscr{A} .

э

く 何 ト く ヨ ト く ヨ ト

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs $(x, \alpha) \in \mathscr{X} \times \mathscr{T}(\mathscr{A})$ such that $(x, \alpha), (x, \beta) \in \Gamma$ implies $\alpha = \beta$.

Given a typing environment Γ such that for every $(y,\beta) \in \Gamma$ $y \neq x$, we write " $\Gamma, x:\alpha$ " for the typing environment " $\Gamma \cup \{(x,\alpha)\}$ ".

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs $(x, \alpha) \in \mathscr{X} \times \mathscr{T}(\mathscr{A})$ such that $(x, \alpha), (x, \beta) \in \Gamma$ implies $\alpha = \beta$.

Given a typing environment Γ such that for every $(y,\beta) \in \Gamma$ $y \neq x$, we write " Γ, x : α " for the typing environment " $\Gamma \cup \{(x,\alpha)\}$ ".

Typing judgement

A typing judgement is an expression of the form

 $\Gamma \vdash t: \alpha$

where Γ is a typing environment, t a λ -term, and α a simple type.

・ 一下・ ・ ヨト・ ・ ヨト

Typing rules

$\Gamma \vdash c : \tau(c)$
$\Gamma, x: \alpha \ \vdash \ x: \alpha$
$\Gamma, x: \alpha \vdash t: \beta$
$\Gamma \vdash (\lambda x. t) : (\alpha \to \beta)$
$\Gamma \vdash t : (\alpha \to \beta) \Gamma \vdash u : \alpha$
$\Gamma \vdash (t u) : \beta$

Philippe de Groote

Semantics & Discourse

33 / 40

-2

Typable terms

A $\lambda\text{-term}\ t$ is typable if and only if there exist a typing environment Γ and a simple type α such that

$$\Gamma \vdash t : \alpha$$

3 1 4 3 1

Typable terms

A $\lambda\text{-term}\ t$ is typable if and only if there exist a typing environment Γ and a simple type α such that

$$\Gamma \vdash t : \alpha$$

Normalization

Every typable term has a normal form.

interpretation

Interpretation

Definition à la Church

Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be a signature, and let $(\mathscr{X}_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}$ be a family of countably infinite disjoint sets, disjoint from \mathscr{C} , whose elements are called *typed* λ -variables. The set of typed λ -terms is inductively defined as follows:

- every $c \in \mathscr{C}$ is a λ -term of type $\tau(c)$;
- every $x \in \mathscr{X}_{\alpha}$ is a λ -term of type α ;
- if x is a λ-variable of type α and t is a λ-term of type β then (λx. t) is a λ-term of type (α → β);
- if t is a λ -term of type $(\alpha \rightarrow \beta)$ and u is a λ -term of type α then (t u) is a λ -term is a λ -term of type β .

イロン イヨン イヨン

interpretation

Interpretation

Model

A model consists of a family of sets $(D_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}$ and an interpretation function \mathcal{I} defined on \mathscr{C} such that:

•
$$D_{\alpha \to \beta} = D_{\beta}^{D_{\alpha}};$$

• for every
$$c \in \mathscr{C}$$
, $\mathcal{I}(c) \in D_{\tau(c)}$.

Valuation

A typed valuation ξ is a function from $\bigcup_{\alpha \in \mathscr{T}(\mathscr{A})} \mathscr{X}_{\alpha}$ into $\bigcup_{\alpha \in \mathscr{T}(\mathscr{A})} \mathscr{D}_{\alpha}$ such that:

• if
$$x \in \mathscr{X}_{\alpha}$$
 then $\xi(x) \in \mathscr{D}_{\alpha}$.

イロト イヨト イヨト

interpretation

Interpretation

Interpretation

- $\bullet \ [\![c]\!]_{\xi} = \mathcal{I}(c)$
- $\bullet \ [\![x]\!]_{\xi} = \xi(x)$
- $[\![\lambda x.t]\!]_{\xi} = a \mapsto [\![t]\!]_{\xi[x:=a]}$
- $[\![t \, u]\!]_{\xi} = [\![t]\!]_{\xi}([\![u]\!]_{\xi})$

э

A (1) > A (2) > A (2) > A

Logical constants

Logical constants

Signature with logical constants

- Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be such that:
 - $\mathscr{A} = \{e, t\};$
 - not, and, or, implies, all, exists $\in \mathscr{C}$;
 - $\tau(\mathbf{not}) = \mathbf{t} \to \mathbf{t};$
 - $\tau(and) = t \rightarrow t \rightarrow t;$
 - $\tau(\mathbf{or}) = t \rightarrow t \rightarrow t;$
 - τ (implies) = t \rightarrow t \rightarrow t;
 - $\tau(\mathbf{all}) = (\mathbf{e} \to \mathbf{t}) \to \mathbf{t};$
 - $\tau(\mathbf{exists}) = (e \to t) \to t.$

イロト 不得下 イヨト イヨト
Logical constants

Interpretation

- Let $\mathscr{M} = ((D_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}, \mathcal{I})$ be such that:
 - $D_{\rm t} = 2;$

•
$$\mathcal{I}(\mathbf{not}) = \{(0,1), (1,0)\};$$

- $\mathcal{I}(\mathbf{and}) = \{(0, \{(0,0), (1,0)\}), (1, \{(0,0), (1,1)\})\};\$
- $\mathcal{I}(\mathbf{or}) = \{(0, \{(0,0), (1,1)\}), (1, \{(0,1), (1,1)\})\};$
- $\mathcal{I}(\mathbf{implies}) = \{(0, \{(0, 1), (1, 1)\}), (1, \{(0, 0), (1, 1)\})\};\$
- $\mathcal{I}(\mathbf{all})(f) = 1$ iff f(a) = 1 for every $a \in D_e$;
- $\mathcal{I}(\mathbf{exists})(f) = 1$ iff f(a) = 1 for some $a \in D_e$.

イロト 不得 トイヨト イヨト 二日

Logical constants

Notations

We write:

- $\neg a$ for $(\mathbf{not} a)$;
- $(a \wedge b)$ for ((and a) b);
- $(a \lor b)$ for $((\mathbf{or} a) b)$;
- $(a \rightarrow b)$ for $((\mathbf{implies}\, a)\, b)$;
- $(\forall x. a)$ for $(\mathbf{all}(\lambda x. a));$
- $(\exists x. a)$ for $(\mathbf{exits}(\lambda x. a))$.