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First-order language
First-order language

Definition
A first-order langage consists in two sets of symbols:
o A set .7, together with an arity function arz € N7, whose elements
are called function symbols.
o A set %, together with an arity function ary € N#, whose elements
are called relation symbols.
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First-order language
First-order language

Definition
A first-order langage consists in two sets of symbols:
o A set .7, together with an arity function arz € N7, whose elements
are called function symbols.
o A set %, together with an arity function ary € N#, whose elements
are called relation symbols.

Example
e 7% ={e,j,r,father};
e arg(e) =0,arz(j) = 0,arz(r) = 0, arz(father) = 1;
o # = {Is,Husband};
o ary(Is) = 2,ary(Husband) = 2.
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First-order language
First-order language

Terms

Let 2" be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

@ every x € 4 is a term;
@ every a € . such that arz(a) =0 is a term,

o if fe€.7 witharz(f) =nand n >0, and if ¢1,...,t, are terms,
then f(t1,...,t,) is a term.
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First-order language

Terms

Let 2" be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

@ every x € 4 is a term;

@ every a € . such that arz(a) =0 is a term,

o if fe . Z withargz(f)=nandn >0, and if ¢1,...,t, are terms,
then f(t1,...,t,) is a term.
Proposition

o if R € # with argp(R) =n, and if ¢,...,t, are terms, then
R(t1,...,t,) is an atomic proposition.
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First-order language
First-order language

Terms

Let 2" be a countably infinite set of symbols whose elements are called
variables. The set of terms is inductively defined as follows:

@ every x € 4 is a term;
@ every a € . such that arz(a) =0 is a term,

o if fe . Z withargz(f)=nandn >0, and if ¢1,...,t, are terms,
then f(t1,...,t,) is a term.

Proposition
o if R € # with argp(R) =n, and if ¢,...,t, are terms, then
R(t1,...,t,) is an atomic proposition.
Example

e Terms: e;father(j); father(father(r)); father(x).
e Proposition: Is(e, father(j)); Husband(e,r).
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Model and interpretation
Model and interpretation

Model

Given a first-order langage, a model consists of a set D and an
interpretation function Z defined on .# U % such that:

o for every f € .F with arz(f) =n, Z(f) € DP";
o for every R € % with ary(R) = n, Z(R) € 2P".
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Model and interpretation
Model and interpretation

Model

Given a first-order langage, a model consists of a set D and an
interpretation function Z defined on .# U % such that:

e for every f € .F with arz(f) = n, Z(f) € DP";
o for every R € % with ary(R) = n, Z(R) € 2P".

Example

e D=Nj

° I(e) =6
) =
r) =
father) f € DP such that f(n) = 2n
Is) = {(a,b) € D?: a = b}

° I(Husband) = {(a,b) € D?>:a =2nand b= a+1 for somen € D}
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Model and interpretation
Model and interpretation

Interpretation of the ground terms
Given a first-order langage, and a model, the interpretation of the ground
terms is inductively defined as follows:

o [a] =Z(a), for a € Z with arz(a) = 0;

o [f(tr,....,tn)] =Z(f)([t1],-- -, [tn]), for f € F with arz(f) =n
and n > 0.
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First-order logic Model and interpretation

Model and interpretation

Interpretation of the ground terms
Given a first-order langage, and a model, the interpretation of the ground

terms is inductively defined as follows:
e [a] =Z(a), for a € F with arz(a) = 0;
o [f(tr,....,tn)] =Z(f)([t1],-- -, [tn]), for f € F with arz(f) =n

and n > 0.

Example

[father(father(r))] = Z(father)([father(r)])
2. ([father(r)])

2- (Z(father)([r]))
2-(2-[r])
2-(2-7)

=28
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Model and interpretation
Model and interpretation

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:

o [R(t1,....t.)] = Z(R)([t1], ..., [ta]). for R € % with arz(R) = n.

Philippe de Groote Semantics & Discourse 9/40



Model and interpretation
Model and interpretation

Interpretation of the closed atomic propositions
Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:

o [R(t1,....t.)] = Z(R)([t1], ..., [ta]). for R € % with arz(R) = n.

Example

[Is(e, father(j))] = Z(Is)([e], [father(j)])
(Is)([e], Z(father)([Jj]))
(Is)(6,2 - 3)
(Is)(6,6)

A
VA
z
1
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N o 2o, CA V0l Model and interpretation
Model and interpretation

Valuation

Given a first-order langage, and a model, a valuation is a a function
£e DZ.
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Model and interpretation
Model and interpretation

Valuation

Given a first-order langage, and a model, a valuation is a a function
£ e D¥.

Interpretation of the terms

Given a first-order langage, and a model, the interpretation of the terms is
inductively defined as follows:

o [z]e =&(x), forx e Z;
o [a]e =Z(a), for a € F with arz(a) = 0;

o [f(t1,...,tn)]e =Z(f)([t1]e, - -, [tnle), for f € F with arz(f) =n
and n > 0.

v
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Model and interpretation
Model and interpretation

Interpretation of the atomic propositions
Given a first-order langage, and a model, the interpretation of the closed
atomic propositions is defined as follows:
o [R(t1,...,tn)]e = Z(R)([t1le, - - -, [tnlle), for R € Z with
arg(R) = n.
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Propositional logic
Propositional logic

propositions

Given a first-order language, the set of proposition is inductively defined as
follows:

every atomic proposition is a proposition;

if o is a proposition then —« is a proposition;

if @« and (3 are propositions then (a A 3) is a proposition;
if @« and /3 are propositions then (aV f3) is a proposition;

if @« and $3 are propositions then (o — 3) is a proposition.
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Propositional logic
Propositional logic

propositions

Given a first-order language, the set of proposition is inductively defined as
follows:

@ every atomic proposition is a proposition;
if o is a proposition then —« is a proposition;
if @« and (3 are propositions then (a A 3) is a proposition;

if @« and /3 are propositions then (aV f3) is a proposition;

if @« and $3 are propositions then (o — 3) is a proposition.

Example

Husband(e, r) A Is(e, father(j))
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Propositional logic
Propositional logic

Negation

le

e not «.
o [[—\a]]g =1 iff [[Oz]]g =0.

a | 7«
.
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Propositional logic
Propositional logic

Conjunction

aAp

e « and .
o [anpBle =1iff [a]e =1and [B]¢ =1.
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Propositional logic
Propositional logic

Disjunction

aVp

e aorf.

o [aVple =1iff [af¢ =1 or [B]¢ =1 (or both).
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Propositional logic
Propositional logic

Implication

a— f

o If a then B; o implies [3.
o [a — BJe = 1iff [B]¢ = 1 whenever o] = 1.

8|

_>
1
1
0
1
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Quantification

First-order formulas

Given a first-order language, the set of formulas is inductively defined as
follows:

every atomic proposition is a formula;

if o is a formula then —« is a formula;

if & and 3 are formulas then (a A ) is a formula;

if v and 3 are formulas then (aV 3) is a formula;

if & and 3 are formulas then (o — 3) is a formula;

if o is a formulas and = a variable then (V. «) is a formula;
if a is a formulas and z a variable then (Jz. «) is a formula.
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Quantification

First-order formulas

Given a first-order language, the set of formulas is inductively defined as
follows:
@ every atomic proposition is a formula;
if o is a formula then —« is a formula;
if & and 3 are formulas then (a A ) is a formula;
if v and 3 are formulas then (aV 3) is a formula;
if & and 3 are formulas then (o — 3) is a formula;
if o is a formulas and = a variable then (V. «) is a formula;
if a is a formulas and z a variable then (Jz. «) is a formula.

Example

Vz.3Jy. Is(y, father(x))
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Quantification
Quantification

Universal quantification

Vz. o

e every entity x is such that a.

o [Va.a]e = 1iff []¢jp:i=q) = 1 for every d € D.
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Quantification
Quantification

Existential quantification

dz. o

o There is some entity x such that .

o [Fz.afe = 1iff [a]¢jp:i=q) = 1 for some d € D.
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Interpretation
Interpretation

Let a first-order language be given, and let ¢, .#, and £ be respectively a
first-order formula, a model, and a valuation.

MEE P
o ./ and ¢ satisfy ¢.
e ¢ is valid in .# according to €.
° [¢]e =1.

M=
e ./ satisfies ¢.
e ¢ isvalidin A .
o M & = ¢ for every possible valuation &.

=
e ¢ is valid.
o ./ |= ¢ for every possible model .7 .
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Outline

© )\-calculus
@ A-Notatation
@ \-Terms
@ [3-Reduction
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A-Notatation
A-Notatation

“233' + y”
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A-Notatation
A-Notatation

“233. + y”

fl@)=2z+y
Az. 22 +y

fly) =2z +y
Ay. 2z 4y

fla,y) =2z +y
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A-Notatation
A-Notatation

112x+y”
fl@)=2z+y
Az. 22 +y
fly) =2x+y
Ay. 2z 4y
f@y) =2z +y
Ary. 2x +y
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A-Terms
A-Terms

Definition

Let € be a set of symbols whose elements are called constants, and let 2~
be a countably infinite set of symbols, disjoint from %, whose elements are
called A-variables. The set of A-terms is inductively defined as follows:

@ every c € ¥ is a A\-term;

@ every x € Z is a A-term;

@ if tis a A-term and z is a A-variable then (Az.t) is a A-term;
o

if t and u are A-terms then (tu) is a A-term.
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A-Terms
A-Terms

Abstraction

(A\z.t)
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A-Terms
A-Terms

Abstraction

(A\z.t)

e The function that maps z to t.
e t is called the body of the abstraction.

e The free occurences of x in ¢ are bound in (Az.t).
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(A\z.t)

e The function that maps z to t.
e t is called the body of the abstraction.

e The free occurences of x in ¢ are bound in (Az.t).
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A-Terms
A-Terms

Abstraction

(A\z.t)

e The function that maps z to t.
e t is called the body of the abstraction.

e The free occurences of x in ¢ are bound in (Az.t).

Curryfication

g(x,y) =x+y
fx(y) =zr+y
g/(:E) = fe
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A-Terms
A-Terms

Abstraction

(A\z.t)

e The function that maps z to t.
e t is called the body of the abstraction.

e The free occurences of x in ¢ are bound in (Az.t).

Curryfication

g(x,y) =x+y
fx(y) =zr+y
g/(:L') = fe

g(@)(y) = foly) =z +y = g(z,y)
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A-Terms
A-Terms

Application

(tw)
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A-Terms
A-Terms

Application

(tw)

e The function ¢ applied to the argument wu.

e t is called the operator, and u the operand.
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~_ Hcalculus ERGIEGE
A-Terms

Application

(tw)

e The function ¢ applied to the argument wu.

e t is called the operator, and u the operand.

Usual notations:
fra—ax+1
f(3)
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~_ Hcalculus ERGIEGE
A-Terms

Application

(tw)

e The function ¢ applied to the argument wu.

e t is called the operator, and u the operand.

Usual notations:
fre—axz4+1
f@3)

A-calculus notations:

Az.add z 1
(Ax.addx1)3

Philippe de Groote Semantics & Discourse 25 /40



B-Reduction

(-Reduction

Substitution

Let ¢t and u be A-terms, and z be a A-variable. ¢[x := u| denotes the

A-term obtained by substituting u for the free occurrences of = in t. It is
inductively defined as follows:

clx:=ul=c¢c force?.

ylx = ]—yforye,%” and y # x.

zlz = u] =

(Ay. to)[z = ] = (A\y.to[z := u]), where y # x and y not free in w.
(tot1)[z := u] = (to[z := u] t1][z := u])

Philippe de Groote Semantics & Discourse 26 /40



B-Reduction
(-Reduction

Notion of (-reduction
(Az.t)u —g tlr = u]
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B-Reduction
(-Reduction

Notion of (-reduction
(Az.t)u —g tlr = u] J

Relation of [-contraction
Cl(Az.t) u] =g Clt[z = u] J
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B-Reduction
(-Reduction

Notion of (-reduction
(Az.t)u —g tlr = u]

Relation of [-contraction
Cl(Az.t) u] =g Clt[z == u]

Relation of §-reduction
The reflexive, transitive closure of the relation of 3-contraction.
t—»gu
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B-Reduction
(-Reduction

Notion of (-reduction

(Az.t)u —g tlr = u]

Relation of (-contraction
Cl(Az.t) u] =g Clt[z == u]

Relation of §-reduction
The reflexive, transitive closure of the relation of 3-contraction.
t—»gu

Relation of S-equivalence

The reflexive, transitive, symmetric closure of the relation of
[B-contraction.

t=pgu
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B-Reduction
(-Reduction

Church-Rosser property

Let tg, t1, and ty be A-terms such that

to —»p t1
to —»/3 to

Then, there exists a A-term t3 such that

t1 —»p t3
to —»p t3
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B-Reduction
(-Reduction

Church-Rosser property

Let ¢g, t1, and to be A-terms such that

to —»p t1
to —”B to

Then, there exists a A-term t3 such that

t1 —»p t3
to —»p t3

Corollary: unicity of the normal forms.
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Typed A-calculus and higher-order logic
Outline

© Typed \-calculus and higher-order logic
@ Simple types
@ interpretation
@ Logical constants
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Typed A-calculus and higher-order logic Simple types

Simple types

Definition
Let o/ be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

@ every a € & is a simple type;

e if  and [ are simple types then (o — () is a simple type.

30/ 40
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Simple types
Simple types

Definition
Let o/ be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

@ every a € & is a simple type;
e if  and [ are simple types then (o — () is a simple type.

The intended meaning is that (o« — ) is the type of the A-terms that
stand for functions whose domain is «, and range (.
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Simple types
Simple types

Definition
Let o/ be a set of symbols whose elements are called atomic types The set
of simple types is inductively defined as follows:

@ every a € & is a simple type;

e if  and [ are simple types then (o — () is a simple type.

The intended meaning is that (o« — ) is the type of the A-terms that
stand for functions whose domain is «, and range (.

Given a set of atomic type o7, we write .7 (&7) for the set of simple types
built upon &
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Simple types
Simple types

Signature
A higher-order signature is a triple X = (&7, %, 7), where:

&/ is a set of atomic types;
% is a set of constants;

T € 7(a/)? is a function that assigns each constant in ¢ with a
simple type built on .
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Simple types
Simple types

Typing environment

Given a signature a typing environment [ is a finite set of ordered pairs
(z,a) € & x T (&) such that (z,a), (z,8) € T implies a = 3.
Given a typing environment I" such that for every (y,5) € T' y # x, we

write “T", z:a" for the typing environment “T'U {(z,a)}".
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Simple types
Simple types

Typing environment

Given a signature a typing environment [ is a finite set of ordered pairs
(z,a) € & x T (&) such that (z,a), (z,8) € T implies a = 3.

Given a typing environment I" such that for every (y,5) € T' y # x, we

write “T", z:a" for the typing environment “T'U {(z,a)}".

Typing judgement

A typing judgement is an expression of the form
I'-1t:«

where I' is a typing environment, ¢ a A\-term, and « a simple type.
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Simple types
Simple types

Typing rules

'~ c:7(c)

Ne:ar z:«

Frz:av-t:p
L' (A\z.t): (o — P)

F'et:(a—=p) T'-u:a
L'+ (tu): 8
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Simple types
Simple types

Typable terms

A M-term t is typable if and only if there exist a typing environment I" and
a simple type « such that
I't:«
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Simple types
Simple types

Typable terms

A M-term t is typable if and only if there exist a typing environment I" and
a simple type « such that
I't:«

Normalization

Every typable term has a normal form.
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Typed A-calculus and higher-order logic interpretation
Interpretation

Definition a la Church

Let ¥ = (&/,%,7) be a signature, and let (24)qc7 () be a family of
countably infinite disjoint sets, disjoint from %, whose elements are called
typed \-variables. The set of typed A-terms is inductively defined as
follows:

@ every ¢ € ¢ is a A-term of type 7(c);

@ every x € Z, is a A-term of type «;

e if x is a A-variable of type av and ¢ is a A-term of type /3 then (Az.t)

is a A\-term of type (o — f);

o if tis a A\-term of type (a — ) and w is a A-term of type « then
(tu) is a A\-term is a A-term of type [.
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Typed A-calculus and higher-order logic interpretation
Interpretation

Model

A model consists of a family of sets (Da)qe7 () and an interpretation
function Z defined on % such that:

° Da%ﬁ = DBDQ;

o for every c € ¢, Z(c) € Dy ().

Valuation

A typed valuation £ is a function from U, ¢ 7(o) Za into Une 7(r) Za
such that:

o if x € 2, then &(x) € D,.
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interpretation
Interpretation

Interpretation

o IIC]]ﬁ = I(C)
o [a]e = &(x)
o [\z.t]e = a = [t]efpizq]

o [tule = [tle([ule)
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Typed A-calculus and higher-order logic Logical constants
Logical constants

Signature with logical constants

Let ¥ = (&, %, T) be such that:

o ={e,t};

not, and, or, implies, all, exists € %;
7(not) =t — t;

(]

and) =t >t — t;
or)=t—t—t;

\]

all) = (e > t) = t;

7(
7(or
7(implies) =t -t — t;
(
(

T(exists) = (e = t) — t.
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Typed A-calculus and higher-order logic ogical constants

Logical constants

Interpretation

Let # = ((Da)acz (), L) be such that:

e D; =2;

° I(not) ={(0,1),(1,0)};
Z(and) = {(0, {(0,0), (1,0)}), (1, {(0,0), (1, 1)})};
Z(or) = {(0,{(0,0), (1, D}, (1, {(0, 1), (1, D} }:
Z(implies) = {(0,{(0, 1), (1, 1)}), (1, {(0,0), (1, )})};
Z(all)(f) = 1iff f(a) =1 for every a € Ds;
Z(exists)(f) = 1iff f(a) =1 for some a € D..
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Typed A-calculus and higher-order logic Logical constants
Logical constants

Notations

We write:
e —a for (nota);
@ (aND) for ((and a)b);
a V b) for ((ora)b);
a — b) for ((impliesa)b);
V. a) for (all (\z.a));

° (
° (
° (
@ (Jz.a) for (exits (\z.a)).
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