Semantics & Discourse

— Mahtematical Preliminaries —

Philippe de Groote

э

동시 《동시》

3 Typed λ [-calculus and higher-order logic](#page-58-0)

э

イロト イ押 トイヨ トイヨト

Outline

[First-order logic](#page-2-0)

- [Model-theoretic semantics](#page-3-0)
- [First-order language](#page-8-0)
- [Model and interpretation](#page-13-0)
- **•** [Propositional logic](#page-22-0)
- [Quantification](#page-28-0)
- **•** [Interpretation](#page-32-0)

4 D F

э \rightarrow -4 B K ∍

重

イロト イ部 トイモト イモト

John is the brother of Jean

э

イロト イ部 トイヨ トイヨト

John is the brother of Jean

目

John is the brother of Jean

D.

John is the brother of Jean

D.

Definition

A first-order langage consists in two sets of symbols:

- A set \mathscr{F} , together with an arity function $\mathrm{ar}_{\mathscr{F}}\in\mathbb{N}^{\mathscr{F}}$, whose elements are called function symbols.
- A set $\mathscr R$, together with an arity function $\arg\in\mathbb N^{\mathscr R}$, whose elements are called relation symbols.

Definition

A first-order langage consists in two sets of symbols:

- A set \mathscr{F} , together with an arity function $\mathrm{ar}_{\mathscr{F}}\in\mathbb{N}^{\mathscr{F}}$, whose elements are called function symbols.
- A set $\mathscr R$, together with an arity function $\arg\in\mathbb N^{\mathscr R}$, whose elements are called relation symbols.

Example

$$
\bullet\ \mathscr{F}=\{\mathbf{e},\mathbf{j},\mathbf{r},\mathbf{father}\};
$$

•
$$
\arg(\mathbf{e}) = 0, \arg(\mathbf{j}) = 0, \arg(\mathbf{r}) = 0, \arg(\mathbf{father}) = 1;
$$

$$
\bullet \mathscr{R} = \{\mathbf{Is}, \mathbf{Husband}\};
$$

•
$$
\arg(\text{Is}) = 2, \arg(\text{Husband}) = 2.
$$

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- e every $x \in \mathscr{X}$ is a term;
- every $a \in \mathscr{F}$ such that $\arg(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\arg(f) = n$ and $n > 0$, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- every $x \in \mathscr{X}$ is a term:
- e every $a \in \mathscr{F}$ such that $\arg(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\arg(f) = n$ and $n > 0$, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Proposition

• if $R \in \mathscr{R}$ with $\arg(R) = n$, and if t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is an atomic proposition.

イロメ イ部 メイミメ イミメー

Terms

Let $\mathscr X$ be a countably infinite set of symbols whose elements are called variables. The set of terms is inductively defined as follows:

- e every $x \in \mathscr{X}$ is a term;
- every $a \in \mathscr{F}$ such that $\arg(a) = 0$ is a term,
- if $f \in \mathscr{F}$ with $\arg(f) = n$ and $n > 0$, and if t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Proposition

• if $R \in \mathscr{R}$ with $\arg(R) = n$, and if t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is an atomic proposition.

Example

- Terms: e; $father(j)$; $father(father(r))$; $father(x)$.
- P[r](#page-11-0)oposition: $Is(e, father(j)); Husband(e, r)$ [.](#page-13-0)

Model

Given a first-order langage, a model consists of a set D and an interpretation function $\mathcal I$ defined on $\mathscr F\cup\mathscr R$ such that:

- for every $f \in \mathscr{F}$ with $\mathrm{ar}_{\mathscr{F}}(f) = n$, $\mathcal{I}(f) \in D^{D^n};$
- for every $R \in \mathscr{R}$ with $\mathrm{ar}_{\mathscr{R}}(R) = n$, $\mathcal{I}(R) \in 2^{D^n}.$

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Model

Given a first-order langage, a model consists of a set D and an interpretation function $\mathcal I$ defined on $\mathscr F\cup\mathscr R$ such that:

- for every $f \in \mathscr{F}$ with $\mathrm{ar}_{\mathscr{F}}(f) = n$, $\mathcal{I}(f) \in D^{D^n};$
- for every $R \in \mathscr{R}$ with $\mathrm{ar}_{\mathscr{R}}(R) = n$, $\mathcal{I}(R) \in 2^{D^n}.$

Example

- \bullet $D = N_0$
- $\mathcal{I}(\mathbf{e}) = 6$
- $\mathcal{I}(i) = 3$
- $\mathcal{I}(\mathbf{r}) = 7$
- \bullet \mathcal{I} (father) = $f \in D^D$ such that $f(n) = 2n$
- $\mathcal{I}(\mathbf{Is}) = \{(a, b) \in D^2 : a = b\}$
- $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$ $\mathcal{I}(\mathbf{Husband}) = \{(a, b) \in D^2 : a = 2n \text{ and } b = a+1 \text{ for some } n \in D\}$

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground terms is inductively defined as follows:

- $\llbracket a \rrbracket = \mathcal{I}(a)$, for $a \in \mathscr{F}$ with $\arg(a) = 0$;
- \bullet $[[f(t_1,\ldots,t_n)] = \mathcal{I}(f)([[t_1],\ldots,[t_n]])$, for $f \in \mathcal{F}$ with $\arg(f) = n$ and $n > 0$.

イ何 ト イヨ ト イヨ トー

Interpretation of the ground terms

Given a first-order langage, and a model, the interpretation of the ground terms is inductively defined as follows:

- $\bullet \;\mathbb{R} \mathbb{R} = \mathcal{I}(a)$, for $a \in \mathscr{F}$ with $\arg(a) = 0$;
- \bullet $\llbracket f(t_1, \ldots, t_n) \rrbracket = \mathcal{I}(f)(\llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket)$, for $f \in \mathscr{F}$ with $\arg(f) = n$ and $n > 0$.

Example

 $\llbracket \mathbf{father}(\mathbf{father}(\mathbf{r})) \rrbracket = \mathcal{I}(\mathbf{father})(\llbracket \mathbf{father}(\mathbf{r}) \rrbracket)$ $= 2 \cdot (\llbracket \mathbf{father}(\mathbf{r}) \rrbracket)$ $= 2 \cdot (\mathcal{I}(\mathbf{father})(\llbracket \mathbf{r} \rrbracket))$ $= 2 \cdot (2 \cdot \mathbf{r})$ $= 2 \cdot (2 \cdot 7)$ $= 28$

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

 $\bullet \quad \llbracket R(t_1,\ldots,t_n) \rrbracket = \mathcal{I}(R)(\llbracket t_1 \rrbracket,\ldots,\llbracket t_n \rrbracket),$ for $R \in \mathscr{R}$ with $\arg(R) = n$.

メタトメ ミトメ ミト

Interpretation of the closed atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

•
$$
[R(t_1,\ldots,t_n)] = \mathcal{I}(R)([t_1],\ldots,[t_n])
$$
, for $R \in \mathcal{R}$ with $\arg(R) = n$.

Example

$$
\begin{aligned} [\mathbf{Is}(\mathbf{e}, \mathbf{father(j)})] &= \mathcal{I}(\mathbf{Is})([\![\mathbf{e}]\!], [\![\mathbf{father(j)}]\!]) \\ &= \mathcal{I}(\mathbf{Is})([\![\mathbf{e}]\!], \mathcal{I}(\mathbf{father})([\![\mathbf{j}]\!])) \\ &= \mathcal{I}(\mathbf{Is})(6, 2 \cdot 3) \\ &= \mathcal{I}(\mathbf{Is})(6, 6) \\ &= 1 \end{aligned}
$$

4 0 8

化重新润滑脂

Valuation

Given a first-order langage, and a model, a valuation is a a function $\xi \in D^{\mathscr{X}}$.

э

ミドマミド

Valuation

Given a first-order langage, and a model, a valuation is a a function $\xi \in D^{\mathscr{X}}$.

Interpretation of the terms

Given a first-order langage, and a model, the interpretation of the terms is inductively defined as follows:

•
$$
[\![x]\!]_{\xi} = \xi(x)
$$
, for $x \in \mathcal{X}$;

•
$$
\llbracket a \rrbracket_{\xi} = \mathcal{I}(a)
$$
, for $a \in \mathcal{F}$ with $\arg(a) = 0$;

•
$$
[[f(t_1,\ldots,t_n)]]_\xi = \mathcal{I}(f)([[t_1]]_\xi,\ldots,[[t_n]]_\xi)
$$
, for $f \in \mathcal{F}$ with $\arg(f) = n$ and $n > 0$.

 200

Interpretation of the atomic propositions

Given a first-order langage, and a model, the interpretation of the closed atomic propositions is defined as follows:

•
$$
[R(t_1,\ldots,t_n)]\xi = \mathcal{I}(R)([\![t_1]\!] \xi, \ldots, [\![t_n]\!] \xi), \text{ for } R \in \mathcal{R} \text{ with } \arg(R) = n.
$$

propositions

Given a first-order language, the set of proposition is inductively defined as follows:

- **•** every atomic proposition is a proposition;
- if α is a proposition then $\neg \alpha$ is a proposition;
- if α and β are propositions then $(\alpha \wedge \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \vee \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \rightarrow \beta)$ is a proposition.

propositions

Given a first-order language, the set of proposition is inductively defined as follows:

- **•** every atomic proposition is a proposition;
- if α is a proposition then $\neg \alpha$ is a proposition;
- if α and β are propositions then $(\alpha \wedge \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \vee \beta)$ is a proposition;
- if α and β are propositions then $(\alpha \rightarrow \beta)$ is a proposition.

Example

$Husband(e, r) \wedge Is(e, father(j))$

イロト イ押ト イヨト イヨト

Negation

 $\neg \alpha$

 \bullet not α .

$$
\bullet \ \ [\neg \alpha]_{\xi} = 1 \text{ iff } [\![\alpha]\!]_{\xi} = 0.
$$

$$
\begin{array}{|c|c|}\n\hline\n\alpha & \neg \alpha \\
\hline\n0 & 1 \\
1 & 0\n\end{array}
$$

重

イロメ イ部メ イヨメ イヨメン

Conjunction

 $\alpha \wedge \beta$

- \bullet α and β .
- $\bullet \ \lbrack\! \lbrack \alpha \wedge \beta \rbrack\! \rbrack_{\varepsilon} = 1$ iff $\lbrack\! \lbrack \alpha \rbrack\! \rbrack_{\varepsilon} = 1$ and $\lbrack\! \lbrack \beta \rbrack\! \rbrack_{\varepsilon} = 1$.

造

イロト イ部 トイヨ トイヨト

Disjunction

 $\alpha \vee \beta$

- \bullet α or β .
- $\int \alpha \vee \beta \, ds = 1$ iff $\|\alpha\|_{\xi} = 1$ or $\|\beta\|_{\xi} = 1$ (or both).

造

メロトメ 御 トメ 君 トメ 君 トッ

Implication

 $\alpha \rightarrow \beta$

• If
$$
\alpha
$$
 then β ; α implies β .

 $\int \mathbf{A} \cdot \mathbf{A} \cdot d\mathbf{A} = 1$ iff $\|\beta\|_{\xi} = 1$ whenever $\|\alpha\|_{\xi} = 1$.

造

イロメ イ部メ イヨメ イヨメン

First-order formulas

Given a first-order language, the set of formulas is inductively defined as follows:

- every atomic proposition is a formula;
- if α is a formula then $\neg \alpha$ is a formula;
- if α and β are formulas then $(\alpha \wedge \beta)$ is a formula;
- if α and β are formulas then $(\alpha \vee \beta)$ is a formula;
- if α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula;
- if α is a formulas and x a variable then $(\forall x \ldotp \alpha)$ is a formula;
- if α is a formulas and x a variable then $(\exists x, \alpha)$ is a formula.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

First-order formulas

Given a first-order language, the set of formulas is inductively defined as follows:

- **•** every atomic proposition is a formula:
- if α is a formula then $\neg \alpha$ is a formula:
- if α and β are formulas then $(\alpha \wedge \beta)$ is a formula;
- if α and β are formulas then $(\alpha \vee \beta)$ is a formula;
- if α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula;
- if α is a formulas and x a variable then $(\forall x, \alpha)$ is a formula;
- if α is a formulas and x a variable then $(\exists x, \alpha)$ is a formula.

Example

$$
\forall x. \exists y. \mathbf{Is}(\mathbf{y}, \mathbf{father}(\mathbf{x}))
$$

Universal quantification

 $\forall x \alpha$

- every entity x is such that α .
- $\bullet \ \llbracket \forall x. \alpha \rrbracket_{\xi} = 1$ iff $\llbracket \alpha \rrbracket_{\xi[x:=d]} = 1$ for every $d \in D$.

G.

イロメ イ部メ イヨメ イヨメー

Existential quantification

$\exists x \alpha$

- There is some entity x such that α .
- $\bullet \quad [\exists x. \alpha]_{\xi} = 1 \text{ iff } [\![\alpha]\!]_{\xi[x:=d]} = 1 \text{ for some } d \in D.$

造

イロメ イ部メ イヨメ イヨメー

Interpretation

Let a first-order language be given, and let ϕ , \mathscr{M} , and ξ be respectively a first-order formula, a model, and a valuation.

 $\mathscr{M}, \xi \models \phi$

- \bullet *M* and *ξ* satisfy ϕ .
- \bullet φ is valid in M according to ξ .
- \bullet $\llbracket \phi \rrbracket_{\mathcal{E}} = 1.$

 $\mathscr{M} \models \phi$

- \bullet *M* satisfies ϕ .
- \bullet ϕ is valid in \mathcal{M} .
- \bullet *M*, $\xi \models \phi$ for every possible valuation ξ .

 $\models \phi$

- \bullet ϕ is valid.
- \bullet $\mathcal{M} \models \phi$ for every possible model \mathcal{M} .

K ロ ト K 御 ト K 君 ト K 君 ト 一君

Outline

- \bullet λ [-Notatation](#page-34-0)
- $\bullet \lambda$ [-Terms](#page-41-0)
- \bullet β [-Reduction](#page-51-0)

重

メロトメ 倒 トメ ヨ トメ ヨ ト

λ [-calculus](#page-33-0) λ [-Notatation](#page-34-0)

 λ -Notatation

" $2x + y$ "

重

λ [-calculus](#page-33-0) λ [-Notatation](#page-34-0)

λ -Notatation

" $2x + y$ "

$$
f(x) = 2x + y
$$

重
λ[-calculus](#page-33-0) λ[-Notatation](#page-34-0)

λ -Notatation

" $2x + y$ "

$$
f(x) = 2x + y
$$

 $\lambda x. 2x + y$

$$
22/40
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

λ -Notatation

$$
"2x + y"
$$

$$
f(x) = 2x + y
$$

 $\lambda x. 2x + y$

$$
f(y) = 2x + y
$$

重

λ -Notatation

$$
"2x + y"
$$

$$
f(x) = 2x + y
$$

 $\lambda x. 2x + y$

$$
f(y) = 2x + y
$$

 $\lambda y. 2x + y$

重

λ -Notatation

$$
"2x + y"
$$

$$
f(x) = 2x + y
$$

$$
\lambda x \cdot 2x + y
$$

$$
f(y) = 2x + y
$$

 $\lambda y. 2x + y$

$$
f(x,y) = 2x + y
$$

重

λ -Notatation

$$
"2x + y"
$$

$$
f(x) = 2x + y
$$

$$
\lambda x \cdot 2x + y
$$

$$
f(y) = 2x + y
$$

$$
\lambda y. 2x + y
$$

$$
f(x,y) = 2x + y
$$

$$
\lambda xy. 2x + y
$$

重

メロトメ 御 トメ ミトメ ミト

Definition

Let $\mathscr C$ be a set of symbols whose elements are called *constants*, and let $\mathscr X$ be a countably infinite set of symbols, disjoint from $\mathscr C$, whose elements are called λ -variables. The set of λ -terms is inductively defined as follows:

- e every $c \in \mathscr{C}$ is a λ -term:
- e every $x \in \mathscr{X}$ is a λ -term;
- if t is a λ -term and x is a λ -variable then $(\lambda x. t)$ is a λ -term;
- if t and u are λ -terms then $(t u)$ is a λ -term.

 λ [-Terms](#page-41-0)

λ-Terms

画

イロトメ 御 トメ 差 トメ 差 トー

λ[-calculus](#page-33-0) λ[-Terms](#page-41-0)

λ-Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t .
- \bullet t is called the body of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

4 0 8

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

э

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t .
- \bullet t is called the body of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$
g(x,y) = x + y
$$

4 D F

4 円 ト

4 8 8 4 8 8

Ξ

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t .
- \bullet t is called the body of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$
g(x, y) = x + y
$$

$$
f_x(y) = x + y
$$

$$
g'(x) = f_x
$$

4 D F

4 円 ト

4 8 8 4 8 8

Ξ

λ -Terms

Abstraction

$(\lambda x. t)$

- The function that maps x to t .
- \bullet t is called the body of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Curryfication

$$
g(x, y) = x + y
$$

\n
$$
f_x(y) = x + y
$$

\n
$$
g'(x) = f_x
$$

\n
$$
g'(x)(y) = f_x(y) = x + y = g(x, y)
$$

Ξ

λ [-Terms](#page-41-0)

λ-Terms

Application

 $(t u)$

重

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

λ-Terms

Application

$(t u)$

- The function t applied to the argument u .
- \bullet t is called the operator, and u the operand.

э

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

λ[-calculus](#page-33-0) λ[-Terms](#page-41-0)

λ-Terms

Application

 $(t u)$

- The function t applied to the argument u .
- \bullet t is called the operator, and u the operand.

Usual notations:

$$
f: x \mapsto x + 1
$$

$$
f(3)
$$

э

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

λ -Terms

Application

 $(t u)$

- The function t applied to the argument u .
- \bullet t is called the operator, and u the operand.

```
Usual notations:
```

$$
f: x \mapsto x + 1
$$

$$
f(3)
$$

λ-calculus notations:

 λx . add x 1 $(\lambda x. \mathbf{add} x 1) 3$

Þ

イロト イ押ト イヨト イヨト

Substitution

Let t and u be λ -terms, and x be a λ -variable. $t[x := u]$ denotes the λ -term obtained by substituting u for the free occurrences of x in t. It is inductively defined as follows:

$$
c[x := u] = c, \text{ for } c \in \mathscr{C}.
$$

\n
$$
y[x := u] = y, \text{ for } y \in \mathscr{X}, \text{ and } y \neq x.
$$

\n
$$
x[x := u] = u
$$

\n
$$
(\lambda y. t_0)[x := u] = (\lambda y. t_0[x := u]), \text{ where } y \neq x \text{ and } y \text{ not free in } u.
$$

\n
$$
(t_0 t_1)[x := u] = (t_0[x := u]t_1[x := u])
$$

λ [-calculus](#page-33-0) β[-Reduction](#page-51-0)

β -Reduction

Notion of β-reduction

$$
(\lambda x. t) u \rightarrow_{\beta} t[x := u]
$$

重

λ[-calculus](#page-33-0) β[-Reduction](#page-51-0)

β-Reduction

Notion of β-reduction

$$
(\lambda x. t) u \rightarrow_{\beta} t[x := u]
$$

Relation of β-contraction

$$
C[(\lambda x. t) u] \rightarrow_{\beta} C[t[x := u]]
$$

重

Notion of β-reduction

$$
(\lambda x. t) u \rightarrow_{\beta} t[x := u]
$$

Relation of β-contraction

 $C[(\lambda x. t) u] \rightarrow_{\beta} C[t[x := u]]$

Relation of β-reduction

The *reflexive, transitive* closure of the relation of β -contraction.

 $t \rightarrow_{\beta} u$

K ロ ト K 御 ト K 君 ト K 君 ト 一君

Notion of β-reduction

$$
(\lambda x. t) u \rightarrow_{\beta} t[x := u]
$$

Relation of β-contraction

 $C[(\lambda x. t) u] \rightarrow_{\beta} C[t[x := u]]$

Relation of β-reduction

The *reflexive, transitive* closure of the relation of β -contraction.

 $t \rightarrow_{\beta} u$

Relation of β -equivalence

The reflexive, transitive, symmetric closure of the relation of β -contraction.

 $t =_{\beta} u$

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \rightarrow \beta t_1$ $t_0 \rightarrow \beta t_2$

Then, there exists a λ -term t_3 such that

$$
t_1 \rightarrow_{\beta} t_3
$$

$$
t_2 \rightarrow_{\beta} t_3
$$

э

イロト イ押ト イヨト イヨト

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \rightarrow \beta t_1$ $t_0 \rightarrow \beta t_2$

Then, there exists a λ -term t_3 such that

$$
t_1 \rightarrow \beta t_3
$$

$$
t_2 \rightarrow \beta t_3
$$

Corollary: unicity of the normal forms.

э

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Outline

3 Typed λ [-calculus and higher-order logic](#page-58-0)

- [Simple types](#page-59-0)
- **•** [interpretation](#page-68-0)
- **·** [Logical constants](#page-71-0)

4日下

∢ ⊜⊺ \sim $\left\langle 1\right\rangle$ э

ヨメ メヨメ

Definition

Let $\mathscr A$ be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- e every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

Definition

Let $\mathscr A$ be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- e every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

Definition

Let $\mathscr A$ be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- e every $a \in \mathscr{A}$ is a simple type;
- if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Given a set of atomic type $\mathscr A$, we write $\mathscr T(\mathscr A)$ for the set of simple types built upon $\mathscr A$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Signature

A higher-order signature is a triple $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$, where:

 $\mathscr A$ is a set of atomic types;

 $\mathscr C$ is a set of constants;

 $\tau \in \mathscr{T}(\mathscr{A})^\mathscr{C}$ is a function that assigns each constant in \mathscr{C} with a simple type built on $\mathscr A$.

 $A \oplus A \times A \oplus A \times A \oplus A \times B \oplus B$

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs $(x, \alpha) \in \mathcal{X} \times \mathcal{T}(\mathcal{A})$ such that $(x, \alpha), (x, \beta) \in \Gamma$ implies $\alpha = \beta$.

Given a typing environment Γ such that for every $(y, \beta) \in \Gamma$ $y \neq x$, we write "Γ, $x:\alpha$ " for the typing environment "Γ \cup { (x,α) }".

Typing environment

Given a signature a typing environment Γ is a finite set of ordered pairs $(x, \alpha) \in \mathcal{X} \times \mathcal{T}(\mathcal{A})$ such that $(x, \alpha), (x, \beta) \in \Gamma$ implies $\alpha = \beta$.

Given a typing environment Γ such that for every $(y, \beta) \in \Gamma$ $y \neq x$, we write "Γ, $x:\alpha$ " for the typing environment "Γ \cup { (x,α) }".

Typing judgement

A typing judgement is an expression of the form

 Γ – $t \cdot \alpha$

where Γ is a typing environment, t a λ -term, and α a simple type.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Typing rules

不自下

KOP > K E > K E >

Ξ

Typable terms

A λ -term t is typable if and only if there exist a typing environment Γ and a simple type α such that

$$
\Gamma \vdash t : \alpha
$$

Typable terms

A λ -term t is typable if and only if there exist a typing environment Γ and a simple type α such that

 Γ – t : α

Normalization

Every typable term has a normal form.

 Ω

э

医毛囊 医牙骨下的

Interpretation

Definition à la Church

Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be a signature, and let $(\mathscr{X}_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}$ be a family of countably infinite disjoint sets, disjoint from \mathscr{C} , whose elements are called typed λ -variables. The set of typed λ -terms is inductively defined as follows:

- e every $c \in \mathscr{C}$ is a λ -term of type $\tau(c)$;
- e every $x \in \mathscr{X}_{\alpha}$ is a λ -term of type α ;
- **•** if x is a λ -variable of type α and t is a λ -term of type β then $(\lambda x. t)$ is a λ -term of type $(\alpha \rightarrow \beta)$;
- if t is a λ -term of type $(\alpha \to \beta)$ and u is a λ -term of type α then (t u) is a λ -term is a λ -term of type β .

K ロ ト K 何 ト K ヨ ト K ヨ ト

Interpretation

Model

A model consists of a family of sets $(D_{\alpha})_{\alpha \in \mathscr{I}(\mathscr{A})}$ and an interpretation function I defined on $\mathscr C$ such that:

$$
\bullet \ \ D_{\alpha \to \beta} = D_{\beta}{}^{D_{\alpha}};
$$

• for every
$$
c \in \mathcal{C}
$$
, $\mathcal{I}(c) \in D_{\tau(c)}$.

Valuation

A typed valuation ξ is a function from $\bigcup_{\alpha\in\mathscr{T}(\mathscr{A})}\mathscr{X}_\alpha$ into $\bigcup_{\alpha\in\mathscr{T}(\mathscr{A})}\mathscr{D}_\alpha$ such that:

• if
$$
x \in \mathcal{X}_{\alpha}
$$
 then $\xi(x) \in \mathcal{D}_{\alpha}$.

э

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Interpretation

Interpretation

- $\bullet \llbracket c \rrbracket_{\xi} = \mathcal{I}(c)$
- $\bullet \llbracket x \rrbracket_{\xi} = \xi(x)$
- $\bullet \ [\![\lambda x. t]\!]_{\xi} = a \mapsto [\![t]\!]_{\xi[x := a]}$
- \bullet $\llbracket tu \rrbracket_{\xi} = \llbracket t \rrbracket_{\xi} (\llbracket u \rrbracket_{\xi})$

目

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Logical constants

Signature with logical constants

- Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be such that:
	- $\bullet \ \mathscr{A} = \{e, t\};$
	- not, and, or, implies, all, exists $\in \mathscr{C}$;
	- $\sigma \tau (not) = t \rightarrow t;$
	- $\tau(\text{and}) = t \rightarrow t \rightarrow t;$
	- $\bullet \tau(\textbf{or}) = t \rightarrow t \rightarrow t;$
	- τ (implies) = t \rightarrow t \rightarrow t;
	- $\bullet \tau(\text{all}) = (e \to t) \to t;$
	- $\bullet \tau$ (exists) = (e \rightarrow t) \rightarrow t.

目

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …
Logical constants

Interpretation

Let
$$
\mathscr{M} = ((D_\alpha)_{\alpha \in \mathscr{T}(\mathscr{A})}, \mathcal{I})
$$
 be such that:

 $D_{\rm t} = 2$;

•
$$
\mathcal{I}(\textbf{not}) = \{(0, 1), (1, 0)\};
$$

- $\mathcal{I}(\mathbf{and}) = \{(0, \{(0, 0), (1, 0)\}), (1, \{(0, 0), (1, 1)\})\};$
- $\bullet \mathcal{I}(\textbf{or}) = \{(0, \{(0, 0), (1, 1)\}), (1, \{(0, 1), (1, 1)\})\};$
- $\mathcal{I}(\text{implies}) = \{(0, \{(0, 1), (1, 1)\}), (1, \{(0, 0), (1, 1)\})\};$
- $\mathcal{I}(\text{all})(f) = 1$ iff $f(a) = 1$ for every $a \in D_e$;
- \mathcal{I} (exists)(f) = 1 iff $f(a) = 1$ for some $a \in D_{\alpha}$.

G.

イロト イ押 トイヨ トイヨト

Logical constants

Notations

We write:

- $\bullet \neg a$ for (not a);
- \bullet $(a \wedge b)$ for $((\text{and } a) b)$;
- \bullet $(a \vee b)$ for $((\text{or } a) b)$;
- \bullet $(a \rightarrow b)$ for $((\text{implies } a) b)$;
- \bullet ($\forall x. a$) for (all $(\lambda x. a)$);
- \bullet ($\exists x. a$) for (exits $(\lambda x. a)$).

э