Formal Semantics of Natural Language

Philippe de Groote

Lambda Calculus

Lambda-Calculus & Combinatory Logic

Haskell Curry (1900-1982)

Alonzo Church (1903-1995)

"2x + y"

"2x + y"

$$f(x) = 2x + y$$

"2x + y"

$$f(x) = 2x + y$$

 $\lambda x. 2x + y$

$$2x + y^{*}$$

$$f(x) = 2x + y$$
$$\lambda x. \, 2x + y$$

$$f(y) = 2x + y$$

$$2x + y$$

$$f(x) = 2x + y$$
$$\lambda x. \, 2x + y$$

$$f(y) = 2x + y$$

$$\lambda y. 2x + y$$

$$2x + y^{*}$$

$$f(x) = 2x + y$$
$$\lambda x. \, 2x + y$$

$$f(y) = 2x + y$$

$$\lambda y. \, 2x + y$$

$$f(x,y) = 2x + y$$

$$2x + y^{*}$$

$$f(x) = 2x + y$$
$$\lambda x. \, 2x + y$$

$$f(y) = 2x + y$$

$$\lambda y. 2x + y$$

$$f(x,y) = 2x + y$$
$$\lambda xy. \, 2x + y$$

Let \mathscr{C} be a set of symbols whose elements are called *constants*, and let \mathscr{X} be a countably infinite set of symbols, disjoint from \mathscr{C} , whose elements are called λ -*variables*. The set of λ -terms is inductively defined as follows:

- every $c \in \mathscr{C}$ is a λ -term;
- every $x \in \mathscr{X}$ is a λ -term;
- ▶ if t is a λ -term and x is a λ -variable then $(\lambda x. t)$ is a λ -term;
- ▶ if t and u are λ -terms then (t u) is a λ -term.

Abstraction

 $(\lambda x.t)$

Abstraction

 $(\lambda x. t)$

• The function that maps x to t.

- \blacktriangleright t is called the *body* of the abstraction.
- The free occurences of x in t are bound in $(\lambda x. t)$.

Abstraction

 $(\lambda x. t)$

• The function that maps x to t.

 \blacktriangleright t is called the *body* of the abstraction.

The free occurences of x in t are bound in $(\lambda x. t)$.

Abstraction

 $(\lambda x. t)$

• The function that maps x to t.

 \blacktriangleright t is called the *body* of the abstraction.

The free occurences of x in t are bound in $(\lambda x. t)$.

$$g(x,y) = x + y$$

Abstraction

 $(\lambda x.t)$

• The function that maps x to t.

 \blacktriangleright t is called the *body* of the abstraction.

The free occurences of x in t are bound in $(\lambda x. t)$.

$$g(x, y) = x + y$$
$$f_x(y) = x + y$$
$$g'(x) = f_x$$

Abstraction

 $(\lambda x.t)$

The function that maps x to t.

 \blacktriangleright t is called the *body* of the abstraction.

The free occurences of x in t are bound in $(\lambda x. t)$.

$$g(x, y) = x + y$$

$$f_x(y) = x + y$$

$$g'(x) = f_x$$

$$g'(x)(y) = f_x(y) = x + y = g(x, y)$$

Application

(t u)

Application

(t u)

 \blacktriangleright The function t applied to the argument u.

 \blacktriangleright t is called the operator, and u the operand.

Application

(t u)

 \blacktriangleright The function t applied to the argument u.

 \blacktriangleright t is called the operator, and u the operand.

Usual notations:

$$f: x \mapsto x+1$$
$$f(3)$$

Application

(t u)

• The function t applied to the argument u.

 \blacktriangleright t is called the operator, and u the operand.

Usual notations:

$$f: x \mapsto x+1$$
$$f(3)$$

 λ -calculus notations:

 $\lambda x. \operatorname{add} x 1$ $(\lambda x. \operatorname{add} x 1) 3$

Notational conventions

> When writing a λ -term, we omit the outermost parentheses

- We write $\lambda xyz.t$ for $(\lambda x. (\lambda y. (\lambda z.t)))$
- $\blacktriangleright We write t u v for ((t u) v)$

Notational conventions

> When writing a λ -term, we omit the outermost parentheses

- We write $\lambda xyz.t$ for $(\lambda x. (\lambda y. (\lambda z.t)))$
- $\blacktriangleright We write t u v for ((t u) v)$

With these conventions

 $\lambda xy. \operatorname{add} xy$

stands for

 $(\lambda x. (\lambda y. ((\operatorname{add} x) y)))$

 $\lambda x. x$

The identity function.

$\lambda x. x$

The identiy function.

$\lambda f.\,f\,{\bf j}$

A (higher-order) function that takes a function has an argument and applies it to the constant j.

$\lambda x. x$

The identiy function.

$\lambda f.\,f\,{\bf j}$

A (higher-order) function that takes a function has an argument and applies it to the constant j.

$\lambda fgx. f(gx)$

► Functional composition (usually written as \circ).

$\lambda x. x$

The identity function.

$\lambda f.\,f\,{\bf j}$

A (higher-order) function that takes a function has an argument and applies it to the constant j.

$\lambda fgx.\,f\left(g\,x ight)$

► Functional composition (usually written as \circ).

$\lambda x. x x$

A function that takes a function as an argument and applies it to itself (?).

 $(\lambda f x. f x x) (\lambda y z. \operatorname{add} y z) 3$

$(\lambda f x. f x x) (\lambda y z. \operatorname{add} y z) 3$ $\rightarrow (\lambda x. (\lambda y z. \operatorname{add} y z) x x) 3$

 $\begin{array}{l} (\lambda fx.\,f\,x\,x)\,(\lambda yz.\,\mathbf{add}\,y\,z)\,3\\ \\ \rightarrow \quad (\lambda x.\,(\lambda yz.\,\mathbf{add}\,y\,z)\,x\,x)\,3\\ \\ \rightarrow \quad (\lambda xy.\,\mathbf{add}\,x\,y)\,3\,3 \end{array}$

 $(\lambda f x. f x x) (\lambda y z. \operatorname{add} y z) 3$

- $\rightarrow (\lambda x. (\lambda yz. \operatorname{add} yz) xx) 3$
- \rightarrow $(\lambda xy. \operatorname{add} x y) 33$
- $\rightarrow \quad (\lambda y. \operatorname{\mathbf{add}} 3 y) \, 3$

 $(\lambda f x. f x x) (\lambda y z. \operatorname{add} y z) 3$

- $\rightarrow (\lambda x. (\lambda yz. \operatorname{add} yz) x x) 3$
- \rightarrow ($\lambda xy. \operatorname{add} xy$) 3 3
- \rightarrow add 3 3

Substitution

Let t and u be λ -terms, and x be a λ -variable. t[x := u] denotes the λ -term obtained by substituting u for the free occurrences of x in t. It is inductively defined as follows:

$$\begin{split} c[x := u] &= c, \text{ for } c \in \mathscr{C}. \\ y[x := u] &= y, \text{ for } y \in \mathscr{X}, \text{ and } y \neq x. \\ x[x := u] &= u \\ (\lambda y. t_0)[x := u] &= (\lambda y. t_0[x := u]), \text{ where } y \neq x \text{ and } y \text{ not } \\ \text{free in } u. \end{split}$$

$$(t_0 t_1)[x := u] = (t_0[x := u] t_1[x := u])$$

Notion of β -reduction $(\lambda x. t) u \rightarrow_{\beta} t[x := u]$ Relation of β -contraction $C[(\lambda x. t) u] \rightarrow_{\beta} C[t[x := u]]$ Relation of β -reduction

The *reflexive, transitive* closure of the relation of β -contraction.

 $t\twoheadrightarrow_\beta u$

Relation of β **-equivalence**

The *reflexive, transitive, symmetric* closure of the relation of β -contraction.

 $t =_{\beta} u$

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \twoheadrightarrow_{\beta} t_1$ $t_0 \twoheadrightarrow_{\beta} t_2$

Then, there exists a λ -term t_3 such that

$$t_1 \twoheadrightarrow_{\beta} t_3$$
$$t_2 \twoheadrightarrow_{\beta} t_3$$

Church-Rosser property

Let t_0 , t_1 , and t_2 be λ -terms such that

 $t_0 \twoheadrightarrow_{\beta} t_1$ $t_0 \twoheadrightarrow_{\beta} t_2$

Then, there exists a λ -term t_3 such that

$$t_1 \twoheadrightarrow_{\beta} t_3$$
$$t_2 \twoheadrightarrow_{\beta} t_3$$

Corollary: unicity of the normal forms.

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

Then, we have:

 $\Omega =$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

Then, we have:

 $\Omega = \delta \delta$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

Then, we have:

 $\begin{aligned} \Omega &= & \delta \, \delta \\ &= & (\lambda x. \, x \, x) \, \delta \end{aligned}$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$egin{array}{rcl} \Omega &=& \delta\,\delta \ &=& (\lambda x.\,x\,x)\,\delta \ &
ightarrow_eta & \delta\,\delta \end{array}$$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$\Omega = \delta \delta
= (\lambda x. x x) \delta
\rightarrow_{\beta} \delta \delta
= \Omega$$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$\Omega = \delta \delta
= (\lambda x. x x) \delta
\rightarrow_{\beta} \delta \delta
= \Omega
= \delta \delta$$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$\Omega = \delta \delta$$

= $(\lambda x. x x) \delta$
 $\rightarrow_{\beta} \delta \delta$
= Ω
= $\delta \delta$
= $(\lambda x. x x) \delta$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$\Omega = \delta \delta$$

$$= (\lambda x. x x) \delta$$

$$\rightarrow_{\beta} \delta \delta$$

$$= \Omega$$

$$= \delta \delta$$

$$= (\lambda x. x x) \delta$$

$$\rightarrow_{\beta} \delta \delta$$

Let $\delta = \lambda x. x x$, and $\Omega = \delta \delta$.

$$\begin{aligned} \Omega &= \delta \delta \\ &= (\lambda x. x x) \delta \\ &\rightarrow_{\beta} \delta \delta \\ &= \Omega \\ &= \delta \delta \\ &= (\lambda x. x x) \delta \\ &\rightarrow_{\beta} \delta \delta \\ &= \Omega \\ &\vdots \end{aligned}$$

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- ▶ if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- ▶ if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- ▶ if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Given a set of atomic type \mathscr{A} , we write $\mathscr{T}(\mathscr{A})$ for the set of simple types built upon \mathscr{A} .

Definition

Let \mathscr{A} be a set of symbols whose elements are called *atomic types* The set of simple types is inductively defined as follows:

- every $a \in \mathscr{A}$ is a simple type;
- ▶ if α and β are simple types then $(\alpha \rightarrow \beta)$ is a simple type.

The intended meaning is that $(\alpha \rightarrow \beta)$ is the type of the λ -terms that stand for functions whose domain is α , and range β .

Given a set of atomic type \mathscr{A} , we write $\mathscr{T}(\mathscr{A})$ for the set of simple types built upon \mathscr{A} .

Most often, we let $\mathscr{A} = \{\mathbf{e}, \mathbf{t}\}$

Signature

- A higher-order signature is a triple $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$, where:
 - \mathscr{A} is a set of atomic types;
 - \mathscr{C} is a set of constants;

 $\tau \in \mathscr{T}(\mathscr{A})^{\mathscr{C}}$ is a function that assigns each constant in \mathscr{C} with a simple type built on \mathscr{A} .

Simply typed λ-terms

Definition

Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be a signature, and let $(\mathscr{X}_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}$ be a family of countably infinite disjoint sets, disjoint from \mathscr{C} , whose elements are called *typed* λ -*variables*. The set of typed λ -terms is inductively defined as follows:

- every $c \in \mathscr{C}$ is a λ -term of type $\tau(c)$;
- ▶ every $x \in \mathscr{X}_{\alpha}$ is a λ -term of type α ;
- if x is a λ-variable of type α and t is a λ-term of type β then (λx_α. t) is a λ-term of type (α → β);
- if t is a λ-term of type (α → β) and u is a λ-term of type α then (t u) is a λ-term is a λ-term of type β.

Normalization

Normalization

Every simply-typed λ -term has a normal form.

Normalization

Normalization

Every simply-typed λ -term has a normal form.

Strong normalization

There is no infinite β -reduction path starting from a simply-typed λ -term.

Interpretation

Model

A model consists of a family of sets $(D_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}$ and an interpretation function \mathcal{I} defined on \mathscr{C} such that:

$$\blacktriangleright D_{\alpha \to \beta} = D_{\beta}^{D_{\alpha}};$$

• for every
$$c \in \mathscr{C}$$
, $\mathcal{I}(c) \in D_{\tau(c)}$.

Valuation

A typed valuation ξ is a function from $\bigcup_{\alpha \in \mathscr{T}(\mathscr{A})} \mathscr{X}_{\alpha}$ into $\bigcup_{\alpha \in \mathscr{T}(\mathscr{A})} \mathscr{D}_{\alpha}$ such that: • if $x \in \mathscr{X}_{\alpha}$ then $\xi(x) \in \mathscr{D}_{\alpha}$.

Interpretation

Interpretation

$$[[c]]_{\xi} = \mathcal{I}(c)$$

$$[[x]]_{\xi} = \xi(x)$$

$$[[\lambda x. t]]_{\xi} = a \mapsto [[t]]_{\xi[x:=a]}$$

$$[[t u]]_{\xi} = [[t]]_{\xi}([[u]]_{\xi})$$

Logical constants

Signature with logical constants

Let $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$ be such that: $\blacktriangleright \mathscr{A} = \{\mathbf{e}, \mathbf{t}\};$ ▶ not, and, or, implies, all, exists $\in \mathscr{C}$; $\tau(\mathbf{not}) = \mathbf{t} \to \mathbf{t};$ $\blacktriangleright \tau(\mathbf{and}) = \mathbf{t} \to (\mathbf{t} \to \mathbf{t});$ $\tau(\mathbf{or}) = \mathbf{t} \to (\mathbf{t} \to \mathbf{t});$ $\tau(\mathbf{implies}) = \mathbf{t} \to (\mathbf{t} \to \mathbf{t});$ \succ $\tau(\mathbf{all}) = (\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{t};$ $\tau(\mathbf{exists}) = (\mathbf{e} \to \mathbf{t}) \to \mathbf{t}.$

Logical constants

Interpretation

Let
$$\mathcal{M} = ((D_{\alpha})_{\alpha \in \mathscr{T}(\mathscr{A})}, \mathcal{I})$$
 be such that:

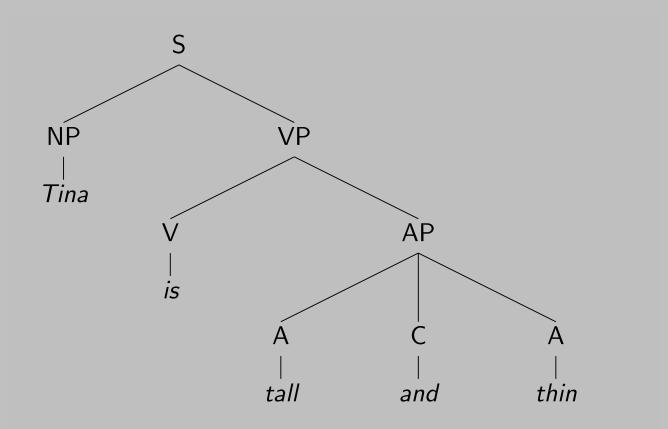
- $D_{t} = \{0, 1\};$
- $\blacktriangleright \mathcal{I}(\mathbf{not}) = \{(0,1), (1,0)\};\$
- $\blacktriangleright \ \mathcal{I}(\mathbf{and}) = \{(0, \{(0, 0), (1, 0)\}), (1, \{(0, 0), (1, 1)\})\};\$
- $\blacktriangleright \mathcal{I}(\mathbf{or}) = \{(0, \{(0, 0), (1, 1)\}), (1, \{(0, 1), (1, 1)\})\};\$
- $\blacktriangleright \mathcal{I}(\mathbf{implies}) = \{(0, \{(0, 1), (1, 1)\}), (1, \{(0, 0), (1, 1)\})\};\$
- ▶ $\mathcal{I}(\mathbf{all})(f) = 1$ iff f(a) = 1 for every $a \in D_{\mathbf{e}}$;
- ▶ $\mathcal{I}(\mathbf{exists})(f) = 1$ iff f(a) = 1 for some $a \in D_{\mathbf{e}}$.

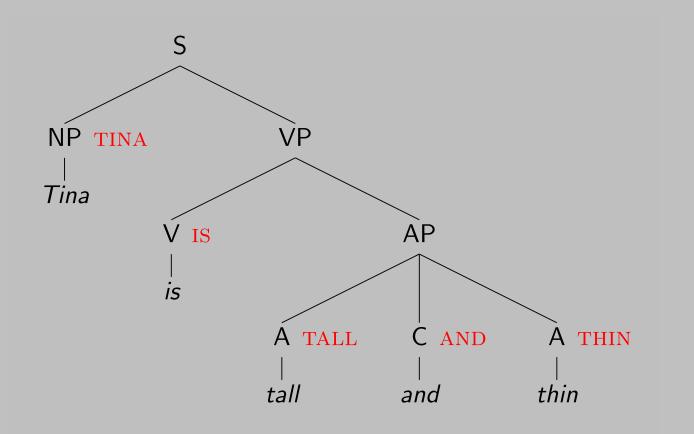
Logical constants

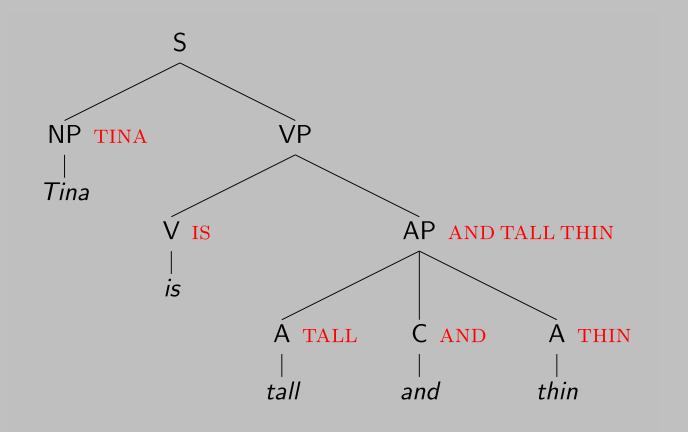
Notations

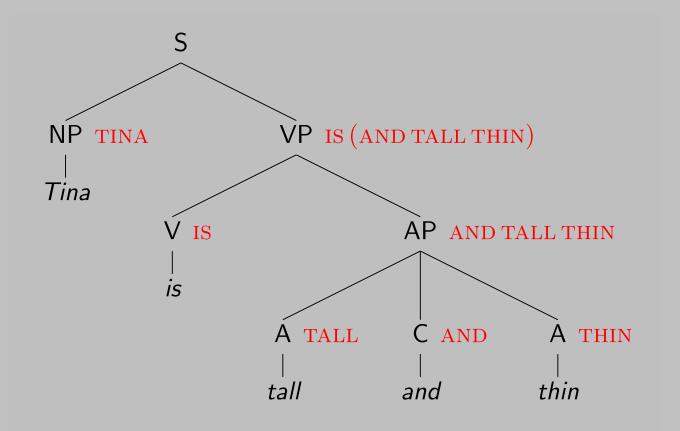
We write:

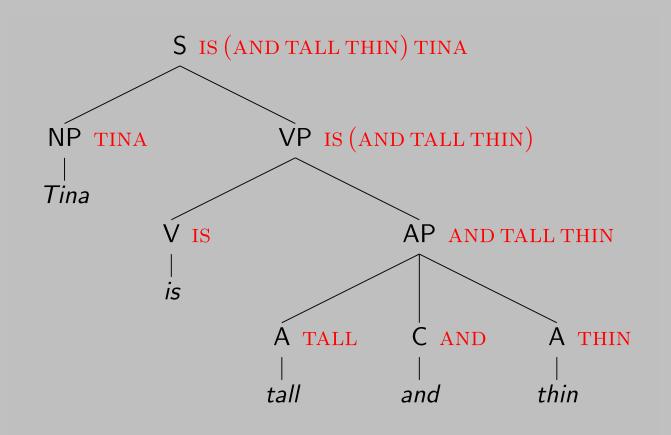
- $\blacktriangleright \neg a \text{ for } (\mathbf{not} a);$
- $(a \wedge b)$ for ((and a) b);
- $(a \lor b)$ for $((\mathbf{or} a) b)$;
- $(a \rightarrow b)$ for $((\mathbf{implies}\,a)\,b)$;
- $(\forall x. a)$ for $(\mathbf{all}(\lambda x. a))$;
- $\blacktriangleright (\exists x. a) \text{ for } (\mathbf{exits} (\lambda x. a)).$

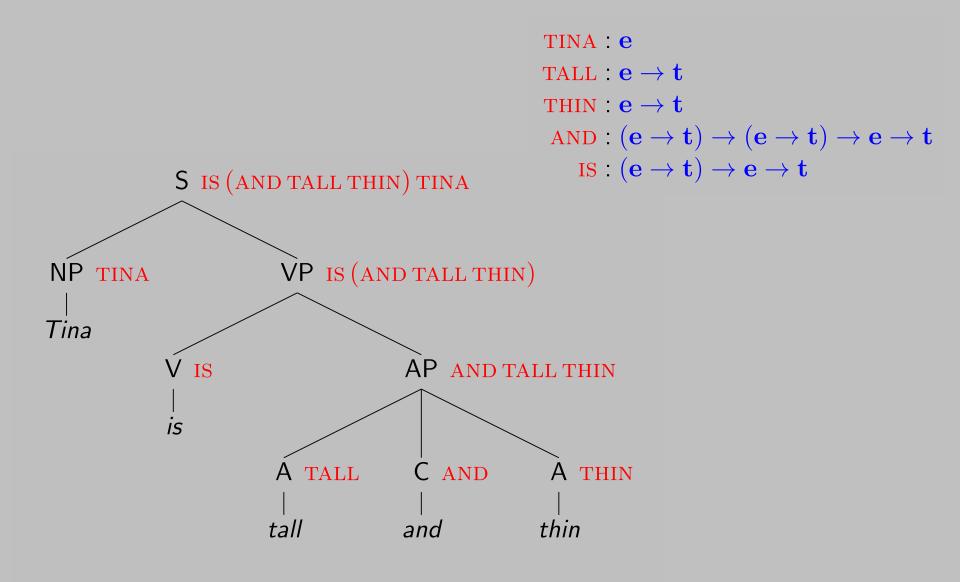












$$\begin{aligned} \text{TINA} &:= \textbf{tina} & : \textbf{e} \\ \text{TALL} &:= \lambda x. \textbf{tall } x & : \textbf{e} \to \textbf{t} \\ \text{THIN} &:= \lambda x. \textbf{thin } x & : \textbf{e} \to \textbf{t} \\ \text{AND} &:= \lambda pqx. (p x) \land (q x) : (\textbf{e} \to \textbf{t}) \to (\textbf{e} \to \textbf{t}) \to \textbf{e} \to \textbf{t} \\ \text{IS} &:= \lambda px. p x & : (\textbf{e} \to \textbf{t}) \to \textbf{e} \to \textbf{t} \end{aligned}$$

IS (AND TALL THIN) TINA

.

IS (and tall thin) tina $= (\lambda p x. p x)$ (and tall thin) tina

1

· · · · · ·

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (and tall thin) tina $\rightarrow_{\beta} (\lambda x. \text{ and tall thin } x)$ tina

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ and Tall THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (\text{TALL } x) \land (qx))$ THIN TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (\text{TALL } x) \land (qx))$ THIN TINA = $(\lambda qx. ((\lambda x. \text{ tall } x) x) \land (qx))$ THIN TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (TALL x) \land (qx))$ THIN TINA = $(\lambda qx. ((\lambda x. tall x) x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda qx. (tall x) \land (qx))$ THIN TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (TALL x) \land (qx))$ THIN TINA = $(\lambda qx. ((\lambda x. tall x) x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda qx. (tall x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda x. (tall x) \land (THIN x))$ TINA

· · · · · ·

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (TALL x) \land (qx))$ THIN TINA = $(\lambda qx. ((\lambda x. tall x) x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda qx. (tall x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda x. (tall x) \land (THIN x))$ TINA = $(\lambda x. (tall x) \land ((\lambda x. thin x) x))$ TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x)$ TINA $\rightarrow_{\beta} \text{ AND TALL THIN TINA}$ = $(\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda qx. (TALL x) \land (qx))$ THIN TINA = $(\lambda qx. ((\lambda x. tall x) x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda qx. (tall x) \land (qx))$ THIN TINA $\rightarrow_{\beta} (\lambda x. (tall x) \land (THIN x))$ TINA = $(\lambda x. (tall x) \land ((\lambda x. thin x) x))$ TINA $\rightarrow_{\beta} (\lambda x. (tall x) \land (thin x))$ TINA

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x) \text{ TINA}$ \rightarrow_{β} AND TALL THIN TINA $= (\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda q x. (\text{TALL } x) \land (q x))$ THIN TINA $= (\lambda q x. ((\lambda x. \operatorname{tall} x) x) \land (q x))$ THIN TINA $\rightarrow_{\beta} (\lambda q x. (\operatorname{tall} x) \land (q x))$ THIN TINA $\rightarrow_{\beta} (\lambda x. (\operatorname{tall} x) \land (\operatorname{THIN} x)) \operatorname{TINA}$ $= (\lambda x. (\operatorname{tall} x) \wedge ((\lambda x. \operatorname{thin} x) x)) \operatorname{TINA}$ $\rightarrow_{\beta} (\lambda x. (\operatorname{tall} x) \land (\operatorname{thin} x)) \operatorname{TINA}$ \rightarrow_{β} (tall TINA) \wedge (thin TINA)

IS (AND TALL THIN) TINA = $(\lambda px. px)$ (AND TALL THIN) TINA $\rightarrow_{\beta} (\lambda x. \text{ AND TALL THIN } x) \text{ TINA}$ \rightarrow_{β} AND TALL THIN TINA $= (\lambda pqx. (px) \land (qx))$ TALL THIN TINA $\rightarrow_{\beta} (\lambda q x. (\text{TALL } x) \land (q x))$ THIN TINA $= (\lambda q x. ((\lambda x. \operatorname{tall} x) x) \land (q x))$ THIN TINA $\rightarrow_{\beta} (\lambda qx. (\operatorname{tall} x) \land (qx))$ Thin tina $\rightarrow_{\beta} (\lambda x. (\operatorname{tall} x) \land (\operatorname{THIN} x)) \operatorname{TINA}$ $= (\lambda x. (\operatorname{tall} x) \wedge ((\lambda x. \operatorname{thin} x) x)) \operatorname{TINA}$ $\rightarrow_{\beta} (\lambda x. (\operatorname{tall} x) \land (\operatorname{thin} x)) \operatorname{TINA}$ \rightarrow_{β} (tall TINA) \wedge (thin TINA) = (tall tina) \wedge (thin tina)