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�xy. 2x+ y
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�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)
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c[x := u] = c, for c 2 C .
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(�y. t0)[x := u] = (�y. t0[x := u]), where y 6= x and y not
free in u.

(t0 t1)[x := u] = (t0[x := u] t1[x := u])



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Notion of �-reduction

(�x. t)u !� t[x := u]

Relation of �-contraction

C[(�x. t)u] !� C[t[x := u]]

Relation of �-reduction

The reflexive, transitive closure of the relation of
�-contraction.

t !!� u

Relation of �-equivalence

The reflexive, transitive, symmetric closure of the relation of
�-contraction.

t =� u



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 
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Abstraction

(�x. t)

I The function that maps x to t.
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Simple types

Signature

A higher-order signature is a triple ⌃ = (A ,C , ⌧), where:

A is a set of atomic types;

C is a set of constants;

⌧ 2 T (A )C is a function that assigns each constant in C
with a simple type built on A .



Simply typed 𝛌-terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication
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Normalization

Normalization
► Every simply-typed 𝛌-term has a normal form.



Normalization

Normalization
► Every simply-typed 𝛌-term has a normal form.

Strong normalization
► There is no infinite β-reduction path starting from 

a simply-typed 𝛌-term. 
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Interpretation

I JcK⇠ = I(c)
I JxK⇠ = ⇠(x)

I J�x. tK⇠ = a 7! JtK⇠[x:=a]

I Jt uK⇠ = JtK⇠(JuK⇠)
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Interpretation

Let M = ((D↵)↵2T (A ), I) be such that:

I Dt = {0, 1};
I I(not) = {(0, 1), (1, 0)};
I I(and) = {(0, {(0, 0), (1, 0)}), (1, {(0, 0), (1, 1)})};
I I(or) = {(0, {(0, 0), (1, 1)}), (1, {(0, 1), (1, 1)})};
I I(implies) = {(0, {(0, 1), (1, 1)}), (1, {(0, 0), (1, 1)})};
I I(all)(f) = 1 i↵ f(a) = 1 for every a 2 De;

I I(exists)(f) = 1 i↵ f(a) = 1 for some a 2 De.
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Notations

We write:

I ¬a for (not a);

I (a ^ b) for ((and a) b);

I (a _ b) for ((or a) b);

I (a ! b) for ((implies a) b);

I (8x. a) for (all (�x. a));
I (9x. a) for (exits (�x. a)).
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tina : e
tall : e ! t
thin : e ! t
and : (e ! t) ! (e ! t) ! e ! t

is : (e ! t) ! e ! t
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