
Formal Semantics
of Natural Language

Philippe de Groote



Lambda Calculus



Lambda-Calculus & Combinatory Logic

Haskell Curry (1900-1982) Alonzo Church (1903-1995)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Notation �-Notatation

“2x+ y”

f(x) = 2x+ y
�x. 2x+ y

f(y) = 2x+ y
�y. 2x+ y

f(x, y) = 2x+ y
�xy. 2x+ y

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Let C be a set of symbols whose elements are called constants,
and let X be a countably infinite set of symbols, disjoint from C ,
whose elements are called �-variables. The set of �-terms is
inductively defined as follows:

I every c 2 C is a �-term;

I every x 2 X is a �-term;

I if t is a �-term and x is a �-variable then (�x. t) is a �-term;

I if t and u are �-terms then (t u) is a �-term.

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms �-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



𝛌-Terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3



𝛌-Terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3



𝛌-Terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3



𝛌-Terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3



Notational conventions 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Notational conventions

I When writing a �-term, we omit the outermost parentheses

I We write �xyz. t for (�x. (�y. (�z. t)))

I We write t u v for ((t u) v)

With these conventions

�xy.addx y

stands for
(�x. (�y. ((addx) y)))

Notational conventions

I When writing a �-term, we omit the outermost parentheses

I We write �xyz. t for (�x. (�y. (�z. t)))

I We write t u v for ((t u) v)

With these conventions

�xy.addx y

stands for
(�x. (�y. ((addx) y)))



Notational conventions 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Notational conventions

I When writing a �-term, we omit the outermost parentheses

I We write �xyz. t for (�x. (�y. (�z. t)))

I We write t u v for ((t u) v)

With these conventions

�xy.addx y

stands for
(�x. (�y. ((addx) y)))



Examples 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).



Examples 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).



Examples 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).



Examples 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Examples

�x. x

I The identiy function.

�f. f j

I A (higher-order) function that takes a function has an
argument and applies it to the constant j.

�fgx. f (g x)

I Functional composition (usually written as �).

�x. x x

I A function that takes a function as an argument and applies it
to itself (?).



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3
�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3
�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3
�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3
�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

(�fx. f x x) (�yz.add y z) 3

! (�x. (�yz.add y z)xx) 3

! (�xy.addx y) 3 3

! (�y.add 3 y) 3

! add 3 3



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Substitution

Let t and u be �-terms, and x be a �-variable. t[x := u] denotes
the �-term obtained by substituting u for the free occurrences of x
in t. It is inductively defined as follows:

c[x := u] = c, for c 2 C .

y[x := u] = y, for y 2 X , and y 6= x.

x[x := u] = u

(�y. t0)[x := u] = (�y. t0[x := u]), where y 6= x and y not
free in u.

(t0 t1)[x := u] = (t0[x := u] t1[x := u])



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Notion of �-reduction

(�x. t)u !� t[x := u]

Relation of �-contraction

C[(�x. t)u] !� C[t[x := u]]

Relation of �-reduction

The reflexive, transitive closure of the relation of
�-contraction.

t !!� u

Relation of �-equivalence

The reflexive, transitive, symmetric closure of the relation of
�-contraction.

t =� u



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Church-Rosser property

Let t0, t1, and t2 be �-terms such that

t0 !!� t1

t0 !!� t2

Then, there exists a �-term t3 such that

t1 !!� t3

t2 !!� t3

Corollary: unicity of the normal forms.



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



β-Reduction 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

�-Reduction

Let � = �x. x x, and ⌦ = � �.

Then, we have:

⌦ = � �
= (�x. x x) �
!� � �
= ⌦
= � �
= (�x. x x) �
!� � �
= ⌦
...



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

�-Terms

Application

(t u)

I The function t applied to the argument u.

I t is called the operator, and u the operand.

Usual notations:
f : x 7! x+ 1
f(3)

�-calculus notations:
�x.addx 1
(�x. addx 1) 3

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}

Simple types

Definition

Let A be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

I every a 2 A is a simple type;

I if ↵ and � are simple types then (↵�) is a simple type.

The intended meaning is that (↵�) is the type of the �-terms that
stand for functions whose domain is ↵, and range �.

Given a set of atomic type A , we write T (A ) for the set of
simple types built upon A .

Most often, we let A = {e, t}



Simple types 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)

Simple types

Signature

A higher-order signature is a triple ⌃ = (A ,C , ⌧), where:

A is a set of atomic types;

C is a set of constants;

⌧ 2 T (A )C is a function that assigns each constant in C
with a simple type built on A .



Simply typed 𝛌-terms 

�-Terms

Abstraction

(�x. t)

I The function that maps x to t.

I t is called the body of the abstraction.

I The free occurences of x in t are bound in (�x. t).

Curryfication

g(x, y) = x+ y

fx(y) = x+ y

g0(x) = fx

g0(x)(y) = fx(y) = x+ y = g(x, y)



Normalization

Normalization
► Every simply-typed 𝛌-term has a normal form.



Normalization

Normalization
► Every simply-typed 𝛌-term has a normal form.

Strong normalization
► There is no infinite β-reduction path starting from 

a simply-typed 𝛌-term. 



Interpretation



InterpretationInterpretation

Interpretation

I JcK⇠ = I(c)
I JxK⇠ = ⇠(x)

I J�x. tK⇠ = a 7! JtK⇠[x:=a]

I Jt uK⇠ = JtK⇠(JuK⇠)



Logical constants



Logical constantsLogical constants

Interpretation

Let M = ((D↵)↵2T (A ), I) be such that:

I Dt = {0, 1};
I I(not) = {(0, 1), (1, 0)};
I I(and) = {(0, {(0, 0), (1, 0)}), (1, {(0, 0), (1, 1)})};
I I(or) = {(0, {(0, 0), (1, 1)}), (1, {(0, 1), (1, 1)})};
I I(implies) = {(0, {(0, 1), (1, 1)}), (1, {(0, 0), (1, 1)})};
I I(all)(f) = 1 i↵ f(a) = 1 for every a 2 De;

I I(exists)(f) = 1 i↵ f(a) = 1 for some a 2 De.



Logical constantsLogical constants

Notations

We write:

I ¬a for (not a);

I (a ^ b) for ((and a) b);

I (a _ b) for ((or a) b);

I (a ! b) for ((implies a) b);

I (8x. a) for (all (�x. a));
I (9x. a) for (exits (�x. a)).



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin



Example

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

S is (andtallthin)tina

NP tina

Tina

VP is (andtallthin)

V is

is

AP andtallthin

A tall

tall

C and

and

A thin

thin

Logical constants

tina : e
tall : e ! t
thin : e ! t
and : (e ! t) ! (e ! t) ! e ! t

is : (e ! t) ! e ! t



Example



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)

Syntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)



ExampleSyntactic strucutre as �-terms

is (andtallthin)tina = (�px. p x) (andtallthin)tina
!� (�x.andtallthinx)tina
!� andtallthintina
= (�pqx. (p x) ^ (q x))tallthintina

!� (�qx. (tallx) ^ (q x))thintina
= (�qx. ((�x. tallx)x) ^ (q x))thintina

!� (�qx. (tallx) ^ (q x))thintina
!� (�x. (tallx) ^ (thinx))tina
= (�x. (tallx) ^ ((�x. thinx)x))tina

!� (�x. (tallx) ^ (thinx))tina
!� (talltina) ^ (thintina)
= (tall tina) ^ (thin tina)


