Formal Semantics
of Natural Language

Philippe de Groote

Lambda Calculus

Lambda-Calculus & Combinatory Logic

Haskell Curry (1900-1982) Alonzo Church (1903-1995)

A-Notation

“2x _|_ y”

A-Notation

“237 _|_ y”

f(z) =2z +y

A-Notation

“237 _|_ y”

f(z) =2z +y
AT. 22 +

A-Notation

“237 _|_ y”

f(z) =2z +y
AT. 22 +

fly)=2x+y

A-Notation

“23,; _|_ y”

f(z) =2z +y
AT. 22 +

fly) =2x+y
Y. 2x +y

A-Notation

“23’; _|_y11
f(z) =2z +y
Ax. 22 + Yy
fly) =2x+y
Y. 2x +y

flz,y) =2z +y

A-Notation

“23’; _|_y11
f(z) =2z +y
Ax. 22 + Yy
fly) =2x+y
Y. 2x +y

fl@,y) =2z +y
Axy.2x +y

A-Terms

Let € be a set of symbols whose elements are called constants,
and let 2 be a countably infinite set of symbols, disjoint from %,
whose elements are called A-variables. The set of A\-terms is

inductively defined as follows:
» every c € € is a A-term;

» every x € Z is a A\-term;
» if t is a A\-term and x is a A-variable then (Ax.%) is a A-term;

» if ¢ and u are A\-terms then (tu) is a A-term.

A-Terms

Abstraction
(Ax.t)

A-Terms

Abstraction
(Ax.t)
» The function that maps x to t.

» ¢ is called the body of the abstraction.

» The free occurences of x in ¢ are bound in (A\z.t).

A-Terms

Abstraction

(Ax.t)

» The function that maps x to t.
» ¢ is called the body of the abstraction.

» The free occurences of x in ¢ are bound in (A\z.t).

Curryfication

A-Terms

Abstraction

(Ax.t)

» The function that maps x to t.
» ¢ is called the body of the abstraction.

» The free occurences of x in ¢ are bound in (A\z.t).

Curryfication

g(z,y) =z +y

A-Terms

Abstraction

(Ax.t)

» The function that maps x to t.
» ¢ is called the body of the abstraction.

» The free occurences of x in ¢ are bound in (A\z.t).
Curryfication
g(z,y) =z +y

fe(y) =2 +y
g’(a:) — fa:

A-Terms

Abstraction

(Ax.t)

» The function that maps x to t.
» ¢ is called the body of the abstraction.

» The free occurences of x in ¢ are bound in (A\z.t).
Curryfication
g(z,y) =z +y

fe(y) =2 +y
g’(a:) — fa:

A-Terms

Application
(tu)

A-Terms

Application
(tu)

» The function ¢ applied to the argument w.

» ¢t is called the operator, and u the operand.

A-Terms

Application
(tu)

» The function ¢ applied to the argument w.

» ¢t is called the operator, and u the operand.

Usual notations:
fix—ax+1
f(3)

A-Terms

Application
(tu)

» The function ¢ applied to the argument w.

» ¢t is called the operator, and u the operand.

Usual notations:
fix—ax+1
f(3)

A-calculus notations:

Ax.add x 1
(Az.addz1)3

Notational conventions

» When writing a A-term, we omit the outermost parentheses

> We write A\zyz.t for (Azx. (A\y. (Az.1)))

» We write tuw for ((tu)v)

Notational conventions

» When writing a A-term, we omit the outermost parentheses

> We write A\zyz.t for (Azx. (A\y. (Az.1)))

» We write tuw for ((tu)v)

With these conventions
Axzy.add ry

stands for
(Az. (Ay. ((add z) y)))

Examples

A\L. T

» The identiy function.

Examples

A\L. T

» The identiy function.

AT

» A (higher-order) function that takes a function has an
argument and applies it to the constant j.

Examples

A\L. T

» The identiy function.

AT

» A (higher-order) function that takes a function has an
argument and applies it to the constant j.

Afgz. f(gx)

» Functional composition (usually written as o).

Examples

AL. X
» The identiy function.

AT

» A (higher-order) function that takes a function has an
argument and applies it to the constant j.

Afgz. f(gx)

» Functional composition (usually written as o).

ANL. LTI

» A function that takes a function as an argument and applies it
to itself (7).

B-Reduction

(AMfx. fzx)(A\yz.addy z) 3

B-Reduction

(AMfx. fzx)(A\yz.addy z) 3

— (M. (\yz.addyz)xx)3

B-Reduction

(AMfx. fzx)(A\yz.addy z) 3
— (M. (\yz.addyz)xx)3

— (Azy.addzy)33

B-Reduction

(AMfx. fzx)(A\yz.addy z) 3
— (M. (\yz.addyz)xx)3
— (Azy.addzy)33

— (A\y.add3y)3

B-Reduction

(AMfx. fzx)(A\yz.addy z) 3
— (M. (\yz.addyz)xx)3
— (Azy.addzy)33
— (Ay.add3y)3
BN

add 33

B-Reduction

Substitution

Let t and u be A-terms, and x be a A-variable. t[x := u] denotes
the \-term obtained by substituting u for the free occurrences of x
in t. It is inductively defined as follows:

clr :=u]=c, force¥.
ylr :=u| =y, fory e &, and y # x.
zr|r :=ul =u

(Ay.to)|z := u] = (A\y. to|x := ul), where y # = and y not
free in w.

(tot1)|x :=u| = (to|lx := u] t1|x := ul)

B-Reduction

Notion of S-reduction
(Ax.t)u —5 tx =y

Relation of [$-contraction
Cl(Az.t)u] =5 C|t|z = u]

Relation of S-reduction

The reflexive, transitive closure of the relation of
[p-contraction.

t —»g u
Relation of ($-equivalence

The reflexive, transitive, symmetric closure of the relation of
[p-contraction.

tzgu

B-Reduction

Church-Rosser property

Let £y, t1, and t9 be A-terms such that

to —7 1
to —»g t2

Then, there exists a A-term ¢3 such that

t1 —»pg t3
19 —7 3 3

B-Reduction

Church-Rosser property

Let £y, t1, and t9 be A-terms such that

to —7 1
to —»g t2

Then, there exists a A-term ¢3 such that

t1 —»pg t3
19 —7 3 3

Corollary: unicity of the normal forms.

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

00
(Az.xx)d

-
1l

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

= (Ax.xx)d
— 00

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

-
|

—p

00
(Az.xx)d
)

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

-
|

—p

00
(Az.xx)d
)

00

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

-
|

00
(Az.xx)d
— 00

|
<

00
(Ax.xx)d

B-Reduction

Let 0 = \z.xx, and) = 0 0.

Then, we have:

-
|

00
(Az.xx)d
— 00

|
<

00
(Ax.xx)d
— 00

Let 0 = \x. x z,

Then, we have:

B-Reduction

and 2 =00.

-
|

00
(Az.xx)d
— 00

|
<

00
(Ax.xx)d
— 00

Simple types
Definition

Let <7 be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

» every a € 7 is a simple type;
» if & and /3 are simple types then (o« — [3) is a simple type.

Simple types

Definition

Let <7 be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

» every a € 7 is a simple type;
» if & and /3 are simple types then (o« — [3) is a simple type.

The intended meaning is that (o« — [3) is the type of the A-terms
that stand for functions whose domain is «, and range (3.

Simple types
Definition

Let <7 be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

» every a € 7 is a simple type;
» if & and /3 are simple types then (o« — [3) is a simple type.

The intended meaning is that (o« — [3) is the type of the A-terms
that stand for functions whose domain is «, and range (3.

Given a set of atomic type <7, we write .7 (/) for the set of
simple types built upon 7.

Simple types
Definition

Let <7 be a set of symbols whose elements are called atomic types
The set of simple types is inductively defined as follows:

» every a € 7 is a simple type;
» if & and /3 are simple types then (o« — [3) is a simple type.

The intended meaning is that (o« — [3) is the type of the A-terms
that stand for functions whose domain is «, and range (3.

Given a set of atomic type <7, we write .7 (/) for the set of
simple types built upon 7.

Most often, we let o7 = {e, t}

Simple types

Signature

A higher-order signature is a triple ¥ = (&7, %, 7), where:

2/ is a set of atomic types;
% is a set of constants;

T € 7(4/)? is a function that assigns each constant in €
with a simple type built on .&7.

Simply typed A-terms

Definition

Let 3 = (&7, %, 7) be a signature, and let (24)ac.7 () be a
family of countably infinite disjoint sets, disjoint from %’, whose
elements are called typed A-variables. The set of typed A-terms is
inductively defined as follows:

» every ¢c € ¢ is a A-term of type 7(¢);
» every x € 2, is a A\-term of type «;

» if x is a A-variable of type «v and t is a A-term of type 3 then
(Azq.t) is a A-term of type (o — f3);

» if t is a A\-term of type (o« — 3) and u is a A-term of type «
then (tw) is a A\-term is a A-term of type £3.

Normalization

Normalization

» Every simply-typed A-term has a normal form.

Normalization

Normalization

» Every simply-typed A-term has a normal form.

Strong normalization

» There is no infinite B-reduction path starting from

a simply-typed A-term.

Interpretation

Model

A model consists of a family of sets (Da)qc7 () and an
interpretation function Z defined on % such that:

> Dop = Dg";
> for every c € €, Z(c) € Dy ().

Valuation

A typed valuation £ is a function from Uae'_/?('u/) 2., into

» if x € Z, then £(x) € Y,.

Interpretation

Interpretation

lele = Z(c)
[z]e = &()
)\QZ t]]g =atr [[t]]f[a:::a]

[t ule = [t]e([ule)

vvyyvyy

Logical constants

Signature with logical constants

Let ¥ = (&7, %, 7) be such that:
> o = {e, t};
not. and, or.implies, all, exists € ¢;
7(not) =t — t;
7(and) =t — (t — t);
T(or) =t — (t — t);
7(implies) =t — (t — t);
(
(

T(all) = (e > t) — t;

vvyvyvyvYyYYyvYyy

T(exists) = (e > t) — t.

Logical constants

Interpretation

Let 4 = ((Da)acz (), L) be such that:
» Dy =4{0,1};
> I(not) = {(0,1),(1,0)};
Z(and) = {(0,{(0,0),(1,0)}), (1,{(0,0), (1, 1)})};
Z(or) = {(0,{(0,0),(1,1)}), (1,{(0,1), (1, 1) }) };
Z(
Z(
Z(

implies) = {(0,{(0,1), (1,1)}), (1,{(0,0), (1,1)})};
all)(f) = 1iff f(a) =1 for every a € De;

exists)(f) = 1 iff f(a) =1 for some a € De.

Logical constants

Notations

We write:
» —q for (not a);
» (aAb) for ((and a) b);
aV b) for ((ora)b);
a — b) for ((impliesa)b);
Vz.a) for (all (Az.a));

a2
>
o |
» (dz.a) for (exits (A\z.a)).

Example

S
NP VP
|
Tina
V AP
|
Is

Example

NP TiNA VP

|
Tina

A TALL C AND A THIN

tall and thin

Example

NP TiNA VP

|
Tina

V 18 AP AND TALL THIN

D

A TALL C AND A THIN

tall and thin

Example

S

T

NP TINA VP 1S (AND TALL THIN)

|
Tina

V 18 AP AND TALL THIN

D

A TALL C AND A THIN

tall and thin

Example

S 1S (AND TALL THIN) TINA

T

NP TINA VP 1S (AND TALL THIN)
|
Tina
V 1s AP AND TALL THIN
o /I\
A TALL C AND A THIN

tall and thin

Example

TINA
TALL
THIN

AND

S 1S (AND TALL THIN) TINA =

T

NP TINA VP 1S (AND TALL THIN)

|
Tina

xS

e —t

e —t
(e—>t) > (e—t) > e—t
(e—>t) >e—t

V 1S AP AND TALL THIN
.|
Is
A TALL C AND A THIN
| | |
tall and thin

TINA
TALL
THIN
AND
IS

Example

‘= tina
= \zx.tall x
= \x.thinz

= Apgz. (pz) A\ () :

= A\pT.px

L e

e —t

e —t

(e —>t) > (e—>t) >e—t
(e—t) be—t

Example

IS (AND TALL THIN) TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA
= (Apgx. (px) A (¢ x)) TALL THIN TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA
= (Apgx. (px) A (¢ x)) TALL THIN TINA
—3 (Agz. (TALLx) A (¢ x)) THIN TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA
= (Apgz. (px) A (gx)) TALL THIN TINA
—3 (Agz. (TALLx) A (¢ x)) THIN TINA
= (Aqx. ((Az.tallz) x) A (qx)) THIN TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—»g AND TALL THIN TINA
= (Apgz.(px) A (¢ x)) TALL THIN TINA
—5 (Agx. (TALLx) A (¢ x)) THIN TINA
= (Aqz. ((Az.tallz) z) A (gx)) THIN TINA
—3 (Agz. (tallx) A (¢ z)) THIN TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA
= (Apgx. (px) A (¢ x)) TALL THIN TINA
—3 (Agx. (TALL) A (g x)) THIN TINA
(Agz. (A\z.tallx) x) A (gx)) THIN TINA
3 (Agz. (tallx) A (¢ z)) THIN TINA
3 (t

Az. (tallx) A (THIN x)) TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA
—3 (Az. AND TALL THIN x) TINA
—3 AND TALL THIN TINA
= (Apgx. (px) A (¢ x)) TALL THIN TINA

—3 (Agx. (TALL) A (g x)) THIN TINA

= (Aqx. ((Az.tallz) x) A (gx)) THIN TINA
—3 (Agz. (tallx) A (¢ z)) THIN TINA
—35 (Az. (tallz) A (THIN z)) TINA

= (A

T (tall :U) A (()\:13 thin x)x)) TINA

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA

—3 (Az. AND TALL THIN x) TINA

—3 AND TALL THIN TINA

= (Apqx. (pz) A (¢ x)) TALL THIN TINA
—3 (Agx. (TALL) A (g x)) THIN TINA
Aqx. (Az.tallz)z) A (gx)) THIN TINA

gz. (tallz) A (g x)) THIN TINA
z. (tallz) A (THIN x)) TINA
z. (tallz) A ((Az.thinzx) xz)) TINA
z. (tallx) A (thinx)) TINA

@

™

%
%

™

(
(
(A
(A
(A
(A

&

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA

—3 (Az. AND TALL THIN x) TINA

—3 AND TALL THIN TINA

= (Apqx. (pz) A (¢ x)) TALL THIN TINA

—3 (Agx. (TALL) A (g x)) THIN TINA
Aqx. ((Ax.tallx) x) A (gx)) THIN TINA
gz. (tallz) A (g x)) THIN TINA
z. (tallz) A (THIN x)) TINA
z. (tallz) A ((Az.thinzx) xz)) TINA
z. (tallx) A (thinx)) TINA
tall TINA) A (thin TINA)

%%Ilm

(
(
(A
(A
(A
(A
(

%
%

D @

Example

IS (AND TALL THIN) TINA = (Apx.px) (AND TALL THIN) TINA

—3 (Az. AND TALL THIN x) TINA

—3 AND TALL THIN TINA

= (Apqx. (pz) A (¢ x)) TALL THIN TINA

—3 (Agx. (TALL) A (g x)) THIN TINA
Aqx. (Az.tallz)z) A (gx)) THIN TINA
gz. (tallz) A (g x)) THIN TINA
z. (tallz) A (THIN x)) TINA
z. (tallz) A ((Az.thinzx) xz)) TINA
z. (tallx) A (thinx)) TINA
tall TINA) A (thin TINA)
tall tina) A (thintina)

T%T%”m

A
A
A
A

=

%
%

®

(
(
(
(
(
(
(
(

