Formal Semantics
of Natural Language

Philippe de Groote and
Yoad Winter

ESSLLI 2021, Online

Topic 5

Quantification

Quantificational expressions

Everybody praised Mary.
Everybody but Tina praised Mary.
One can find it everywhere.

John rarely wears a cap.

John most often wears a cap.

We are far from Beijing.

There is a lot of work to do today.

Everybody needs some help sometimes.

Some representatives of every department in most
companies saw a few samples of every product

Taking stock

syntactic logical
[utterance}‘[structure}‘[tormula }‘[model }

Taking stock
- syntactic logical
Estructure}‘{ formula }‘E el }

Tina is tall and thin

Taking stock

syntactic logical
Eutterance} ‘E tormula ‘ model

S
NP VP
|
Tina /\
V AP
|
IS / \

tall and thin

Taking stock

syntactic logical
utterance ‘ structure ‘ tormula ‘ model

IS (AND TALL THIN) TINA = (Apz.px) (AND TALL THIN) TINA

—3 (Az. AND TALL THIN x) TINA

—3 AND TALL THIN TINA

= (Apqz.(px) A (gx)) TALL THIN TINA

Aqx. (TALL x) A (g x)) THIN TINA
Aqx. (Az.tallz) x) A (q)) THIN TINA
gx. (tallz) A (¢ x)) THIN TINA
x. (tallz) A (THIN)) TINA
z. (tallz) A ((Az.thinx) x)) TINA
z. (tallz) A (thinz)) TiNA
tall TiNA) A (thin TINA)
talltina) A (thin tina)

||1\o

™

%
%

™

A
A
A
—5 (A
N

= @

(
(
(
(
(
(
(
(

Taking stock

syntactic logical
[utterance}‘[structure}‘[tormula ‘ model

tina

thin

E

tall

Syntax-semantics interface

syntactic - logical
Estructure} [formula

Syntax-semantics interface

-

_

syntactic
structure

~

j

-)

-

_

type-theoretic
abstract syntax

~

j

-)

-

_

logical
formula

j

Syntax-semantics interface

4) 4)

syntactic type-theoretic logical
structure abstract syntax formula
_ J _ J
S
NP VP
|
Tina /\
\Y; AP
|
LT

Syntax-semantics interface

-

syntactic
structure

_

~

type-theoretic
abstract syntax

J

S 1S (AND TALL THIN) TINA

T

NP TiNA

Tina

VP 1S (AND TALL THIN)

T

V 1S AP AND TALL THIN
IS /I\
A TALL C AND A THIN

tall and thin

_

logical
formula

J

Syntax-semantics interface

-

_

syntactic
structure

~

type-theoretic
abstract syntax

J

S 1S (AND TALL THIN) TINA

T

NP TiNA

Tina

VP 1S (AND TALL THIN)

T

V 1S AP AND TALL THIN
IS /I\
A TALL C AND A THIN

tall and thin

_

logical
formula

J

IS
AND
TALL
THIN
TINA :

. AP (NP S)
. AP (AP AP)
. AP

AP
NP

Syntax-semantics interface

1s: AP (NP S)
AND : AP (AP AP)
TALL : AP
THIN : AP
TINA : NP

Syntax-semantics interface

1s: AP (NP S)
AND : AP (AP AP) qg-—t
TALL : AP NP — e
THIN : AP AP — et
TINA : NP

Syntax-semantics interface

1s: AP (NP S)
AND : AP (AP AP) qg-—t
TALL : AP NP — e
THIN : AP AP — et
TINA : NP

TINA := tina

TALL := A\x.tallx

THIN := Az.thinz

AND := Apgx. (px) A (g x)
IS := A\px.px

Noun phrases (naive interpretation)

Noun phrases (naive interpretation)

Abstract syntax:

TINA : NP
MARY : NP
PRAISED : NPNPS

Noun phrases (naive interpretation)

Abstract syntax:

TINA : NP
MARY : NP
PRAISED : NPNPS

Semantic interpretation:

Noun phrases (naive interpretation)

Abstract syntax:

TINA : NP
MARY : NP
PRAISED : NPNPS

Semantic interpretation:

NP :=e
S: =1t

Noun phrases (naive interpretation)

Abstract syntax:

TINA : NP
MARY : NP
PRAISED : NPNPS

Semantic interpretation:

NP :=e
S: =1t
TINA := tina where:
MARY := mary tina, mary : e

PRAISED := Axy. praised y x praised : eet

Quantified noun phrases

Tina praised Mary.

Everybody praised Mary.
Nobody praised Mary.

Tina praised somebody.
Everybody praised somebody.
Everybody ran.

Generalized quantifiers & type raising

Generalized quantifiers & type raising

» Remember that (e t) t is the type of the logical constants
all (V) and exists (3).

Generalized quantifiers & type raising

» Remember that (e t) t is the type of the logical constants
all (V) and exists (3).

» Everyterm of type (e t) t is called a generalized quantifier.

Generalized quantifiers & type raising

» Remember that (e t) t is the type of the logical constants
all (V) and exists (3).

» Every term of type (e t) t is called a generalized quantifier.

» Semantically, a generalized quantifier corresponds to a
set of sets of entities.

Generalized quantifiers & type raising

» Remember that (e t) t is the type of the logical constants
all (V) and exists (3).

» Every term of type (e t) t is called a generalized quantifier.

» Semantically, a generalized quantifier corresponds to a
set of sets of entities.

» The expected meaning of “everybody ran” might be
captured by the following formula:

Vx. (human x) — (ran x)

Generalized quantifiers & type raising

>

Remember that (e t) t is the type of the logical constants
all (V) and exists (3).

Every term of type (e t) t is called a generalized quantifier.

Semantically, a generalized quantifier corresponds to a
set of sets of entities.

The expected meaning of “everybody ran” might be
captured by the following formula:

Vx. (human x) — (ran x)

Accordingly, the following A-term, which is of type (e t) t, is
a good candidate for the interpretation of “everybody”:

Ap.Vx. (human x) — (p x)

Generalized quantifiers & type raising

Syntax/semantics interface:

TINA : NP
MARY : NP
EVERYBODY : NP
SOMEBODY : NP
RAN : NP S
PRAISED : NPNPS

Semantic interpretation:

NP := (et)t
S: =t
TINA (= 7
MARY := ?

EVERYBODY := Ak.Vz. (humanx) — (kx)
SOMEBODY := Ak.dz. (human x) A (k)
RAN =7
PRAISED := 7

Proper names as generalized quantifiers

Proper names as generalized quantifiers

» The interpretations of TINA and MARY must be of
type (e t) t.

Proper names as generalized quantifiers

» The interpretations of TINA and MARY must be of
type (e t) t.

» Semantically, it means that we must characterize
an entity using a set of sets of entities.

Proper names as generalized quantifiers

» The interpretations of TINA and MARY must be of
type (e t) t.

» Semantically, it means that we must characterize
an entity using a set of sets of entities.

» {SEPE):tinae S}

Proper names as generalized quantifiers

» The interpretations of TINA and MARY must be of
type (e t) t.

» Semantically, it means that we must characterize
an entity using a set of sets of entities.

» {SEPE):tinae S}

> }\S(e t)- S tina

Applying type-raising to verb arguments

Applying type-raising to verb arguments

» The syntactic type of RAN is (NP S), the semantic
interpretation of NP is (e t) t, and the one of S is t.
Accordingly the type of the interpretation of RAN

must be ((et) t) t

Applying type-raising to verb arguments

» The syntactic type of RAN is (NP S), the semantic
interpretation of NP is (e t) t, and the one of S is t.
Accordingly the type of the interpretation of RAN

must be ((et) t) t

» RAN :=As.s (Ax. ran x)

Applying type-raising to verb arguments

» The syntactic type of RAN is (NP S), the semantic
interpretation of NP is (e t) t, and the one of S is t.
Accordingly the type of the interpretation of RAN
must be ((et) t) t

» RAN :=As.s (Ax. ran x)

» Similarly, the type of the interpretation of PRAISED
must be ((et) t) ((et) t) t.

Applying type-raising to verb arguments

» The syntactic type of RAN is (NP S), the semantic
interpretation of NP is (e t) t, and the one of S is t.
Accordingly the type of the interpretation of RAN
must be ((et) t) t

» RAN :=As.s (Ax. ran x)

» Similarly, the type of the interpretation of PRAISED
must be ((et) t) ((et) t) t.

» PRAISED := Ao0s. s (Ax. o (Ay. praised x y))

Generalized quantifiers & type raising

Syntax/semantics interface:

TINA : NP
MARY : NP
EVERYBODY : NP
SOMEBODY : NP
RAN : NP S
PRAISED : NPNP S

Semantic interpretation:
NP :=(et)t
S:=1t

TINA := Ak. k tina
MARY := Ak. k mary
EVERYBODY := A\k.Vz. (humanx) — (k)
SOMEBODY := A\k.dz. (human x) A (k)
RAN := As. s (Az.ranx)
PRAISED := Ao. As. s (Az. o (A\y. praised x y))

Generalized quantifiers & type raising

Tina praised somebody.

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA

= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Xo.As. s (Azx.o(\y. praised x y))) SOMEBODY TINA

—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Xo.As. s (Azx.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA

—3 TINA (Az. SOMEBODY (Ay. praised z y))

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Xo.As. s (Azx.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))

= (Ak.ktina) (Ax. SOMEBODY (A\y. praised z y))

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))
= (Ak.ktina) (Az.SOMEBODY (\y. praised x y))

—3 (Az.SOMEBODY (Ay. praised z y)) tina

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))
= (Ak.ktina) (Az.SOMEBODY (\y. praised x y))
—3 (Az.SOMEBODY (Ay. praised z y)) tina

—3 SOMEBODY (Ay. praised tina y)

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))
= (Ak.ktina) (Az.SOMEBODY (\y. praised x y))
—3 (Az.SOMEBODY (\y. praised x y)) tina
—3 SOMEBODY (Ay. praised tinay)
= (Ak.dz. (humanx) A (kx)) (Ay. praised tina y)

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))
= (Ak.ktina) (Az.SOMEBODY (\y. praised x y))
—3 (Az.SOMEBODY (\y. praised x y)) tina
—3 SOMEBODY (Ay. praised tinay)
= (Ak.dz. (humanx) A (kx)) (Ay. praised tina y)
—3 Jz. (human) A ((\y. praised tinay) z)

Generalized quantifiers & type raising

Tina praised somebody.

PRAISED SOMEBODY TINA
= (Ao.As.s(Az.o(\y. praised x y))) SOMEBODY TINA
—3 (As. s (Ax. SOMEBODY (A\y. praised x y))) TINA
—3 TINA (Az. SOMEBODY (Ay. praised z y))
= (Ak.ktina) (Az.SOMEBODY (\y. praised x y))
—3 (Az.SOMEBODY (\y. praised x y)) tina
—3 SOMEBODY (Ay. praised tinay)
= (Ak.dz. (humanx) A (kx)) (Ay. praised tina y)
—3 Jz. (human) A ((\y. praised tinay) z)

—3 dr. (humanx) A (praised tina x)

Nouns & Determiners

Syntax/semantics interface:

TINA : NP
MARY : NP
EVERYBODY : NP
SOMEBODY : NP

MAN : N

WOMAN : N
EVERY : N NP
SOME : N NP
RAN : NP S

PRAISED : NP NP S

Semantic interpretation:
N:=et

NP :=(et)t
S:=1t

Nouns & Determiners

Semantic interpretation:

TINA := Ak. k tina
MARY := \k. k mary
EVERYBODY := A\k.Vz. (humanzx) — (k)
SOMEBODY := Ak. dz. (human x) A (k x)
MAN = Az. manx
WOMAN = A\z.woman z
EVERY := An. \m.Vz.nx - mx
SOME (= An. A\m.dz.nx A'mzx
RAN := \As. s (Az.ranx)
PRAISED := A0. As. s (Az. o (A\y. praised z y))

where:

woman, man : et

Determiners as binary generalized
quantifiers

Determiners as binary generalized
quantifiers

» The type of the interpretations of EVERY and SOME is
(et) (et)t.

Determiners as binary generalized
quantifiers

» The type of the interpretations of EVERY and SOME is
(et) (et)t.

» Everyterm of type (e t) (e t) t is called a binary
generalized quantifier.

Determiners as binary generalized
quantifiers

» The type of the interpretations of EVERY and SOME is
(et) (et)t.

» Everyterm of type (e t) (e t) t is called a binary
generalized quantifier.

» Semantically, a binary generalized quantifier
corresponds to a relation between two sets of
entities.

Determiners as binary generalized

quantifiers

SOME A B ANB#®
EVERY A B ACB
NO A B ANB=0
(AT-LEAST n) A B ANB|>n
(AT-MOST 1) A B ANB|<n
(EXACTLY n) A B ANB|=n
MOST A B Al <2 x|A N B

Scope ambiguities

Scope ambiguities

Every man praised a woman

Scope ambiguities

Every man praised a woman

Vrx.manx — (Jy.womany A praised z y)
Jy.woman y A (Vz.man x A praised x y)

Scope ambiguities

Every man praised a woman

Vr.manx — (Jy.womany A praised z y)
Jy.woman y A (Vz.man x A praised x y)

Subject wide scope:

PRAISED = Ao. As. s (Az. o (A\y. praised x y))

Object wide scope:

PRAISED gys = A0. AS. 0 (Ay. s (Az. praised z y))

