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Motivations

• To provide a type-theoretic notion of grammar, taking advantages of
ideas by Curry and Lambek.

• To provide a grammatical framework in which other existing grammat-
ical models may be encoded.

• To see the parse-structures as first-class citizen.

• To allow the user to define grammatical composition combinators.

• To base the formalism on a small set of mathematical primitives that
combine via simple composition rules.
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Types, signatures and λ-terms

T (A) is the set of linear implicative types built on the set of atomic types
A:

T (A) ::= A | ( T (A)−◦ T (A) )

A higher-order linear signature is a triple Σ = 〈A, C, τ〉, where:

A is a finite set of atomic types;

C is a finite set of constants;

τ : C → T (A) is a function that assigns each constant in C with a linear
implicative type built on A.

Λ(Σ) denotes the set of linear λ-terms built upon a higher-order linear sig-
nature Σ.
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Vocabularies and Lexicons

A vocabulary is simply defined to be a higher-order linear signature.

Given two vocabularies Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉, a lexicon
L = 〈η, θ〉 from Σ1 to Σ2 is made of two functions:

η : A1 → T (A2),

θ : C1 → Λ(Σ2),

such that
−Σ2 θ(c) : η(τ1(c)).
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Definition

An abstract categorial grammar is a quadruple

G = 〈Σ1,Σ2,L, s〉

where :

Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 are two higher-order linear signa-
tures; Σ1 is called the abstract vocabulary and Σ2 is called the object
vocabulary;

L : Σ1 → Σ2 is a lexicon from the abstract vocabulary to the object
vocabulary;

s ∈ T (A1) is a type of the abstract vocabulary; it is called the distin-
guished type of the grammar.
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Languages generated by an ACG

The abstract language generated by G (A(G)) is defined as follows:

A(G) = {t ∈ Λ(Σ1) | −Σ1 t : s is derivable}

The object language generated by G (O(G)) is defined to be the image of
the abstract language by the term homomorphism induced by the lexicon L:

O(G) = {t ∈ Λ(Σ2) | ∃u ∈ A(G). t = L(u)}
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Some properties

• Membership is decidable if and only if Multiplicative Exponential Linear
Logic is decidable.

• Membership for lexicalized ACGs is NP-complete.

• Membership for second-order ACGs is polynomial.
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Strings as linear λ-terms

There is a canonical way of representing strings as linear λ-terms. It consists
of representing strings as function composition:

/abbac/ = λx. a (b (b (a (c x))))

In this setting:

ε
4
= λx. x

α + β
4
= λx. α (β x)
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Signatures

Σ0: N , NP , S : type
J : NP
U : N
A : N −◦ ((NP −◦ S)−◦ S)
S : ((NP −◦ S)−◦ S)−◦ (NP −◦ S)

Σ1: a, John, seeks, unicorn : STRING

Σ2: ι, o : type
∧ : o−◦ (o−◦ o)
∃ : (ι → o)−◦ o
j : ι

unicorn : ι−◦ o
find : ι−◦ (ι−◦ o)
try : ι−◦ ((ι−◦ o)−◦ o)
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Lexicons

L1 : Σ0 → Σ1

N , NP , S := STRING
J := /John/
U := /unicorn/
A := λx. λp. p (/a/ + x)
S := λp. λx. p (λy. x + /seeks/ + y)

L2 : Σ0 → Σ2

N := i → o
NP := i

S := o
J := j
U := λx. unicorn x
A := λp. λq. ∃x. p x ∧ q x
S := λp. λx. try x (λy. p (λz. find y z))
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We have that:

L1(S (AU)J) = /John/ + /seeks/ + /a/ + /unicorn/

L2(S (AU)J) = try j (λx. ∃y. unicorn y ∧ find x y)

L1(AU(λx.S (λk. k x) J)) = /John/ + /seeks/ + /a/ + /unicorn/

L2(AU(λx.S (λk. k x) J)) = ∃y. unicorn y ∧ try j (λx. find x y)
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A language-theoretic example

Abstract vocabulary:

A, L, S : type
H : (A−◦A−◦A−◦ S)−◦ S
I : L−◦ S
E : L
C : A−◦ L−◦ L

Lexicon:

A, L, S := string
H := λf. f /a/ /b/ /c/
I := λf. λx. f x
E := ε
C := λx. λy. x + y

Typically:

H (λx11x12x13. H (λx21x22x23. . . . I (C xij (C xkl . . . (C xmn E) . . .)) . . .)) : S
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Curry-Howard isomorphism

Coherence theorem

Principal typing

Subject reduction

Subject expansion
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Back to the example

H := λf. f (λz. a z) (λz. b z) (λz. c z) : (A−◦A−◦A−◦ S)−◦ S
I := λf. λx. f x : L−◦ S
E := λx. x : L
C := λx. λy. λz. x (y z) : A−◦ L−◦ L

A, L, S := s−◦ s
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Back to the example

H := λf. f (λz. a z) (λz. b z) (λz. c z) : (A−◦A−◦A−◦ S)−◦ S
I := λf. λx. f x : L−◦ S
E := λx. x : L
C := λx. λy. λz. x (y z) : A−◦ L−◦ L

A, L, S := s−◦ s

λz. a (c (b (a (b (c z))))) ?
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A first non deterministic algorithm

1. Try to prove S using the types of the abstract constants as proper axioms.

I.e, prove S using (A−◦A−◦A−◦ S)−◦ S, L−◦ S, L, and A−◦ L−◦ L.

2. By the Curry-Howard isomorphism, you have constructed a term of the
abstract language. Apply the lexicon to this term.

3. Check whether the resulting object term is equal to the term you have
to parse.
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The Coherence Theorem comes in

1. Specialize the object signature by distinguishing between the different
occurrences of a same object constant in the term to be parsed:

a1 : s5 −◦ s6

a2 : s2 −◦ s3

b1 : s3 −◦ s4

b2 : s1 −◦ s2

c1 : s4 −◦ s5

c2 : s0 −◦ s1

λz. a1 (c1 (b1 (a2 (b2 (c2 z))))) : s0 −◦ s6

2. Specialize the lexical entries accordingly:

λf. f (λz. a1 z) (λz. b1 z) (λz. c1 z) : · · ·
λf. f (λz. a1 z) (λz. b1 z) (λz. c2 z) : · · ·

. . . : . . .
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3. Try to prove 〈S, s0 −◦ s6〉 using:

〈(A−◦A−◦A−◦ S)−◦ S,
((s5 −◦ s6)−◦ (s3 −◦ s4)−◦ (s4 −◦ s5)−◦ (s0 −◦ s0))−◦ (s0 −◦ s0)〉
〈(A−◦A−◦A−◦ S)−◦ S,
((s5 −◦ s6)−◦ (s3 −◦ s4)−◦ (s4 −◦ s5)−◦ (s0 −◦ s1))−◦ (s0 −◦ s1)〉
...

〈(A−◦A−◦A−◦ S)−◦ S,
((s5 −◦ s6)−◦ (s3 −◦ s4)−◦ (s0 −◦ s1)−◦ (s0 −◦ s0))−◦ (s0 −◦ s0)〉
〈(A−◦A−◦A−◦ S)−◦ S,
((s5 −◦ s6)−◦ (s3 −◦ s4)−◦ (s0 −◦ s1)−◦ (s0 −◦ s1))−◦ (s0 −◦ s1)〉
...

〈L−◦ S, (s0 −◦ s0)−◦ (s0 −◦ s0)〉
〈L−◦ S, (s0 −◦ s1)−◦ (s0 −◦ s1)〉

...
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Eliminating redundancies

Consider the following pair:

〈(A−◦A−◦A−◦S)−◦S, ((s5−◦s6)−◦(s3−◦s4)−◦(s4−◦s5)−◦(s0−◦s0))−◦(s0−◦s0)〉

The shape of the specialized object type is completely specified by the
grammar. The only relevant information is given by the indices.

Replace the above pair by the following formula:

(A[5,6]−◦A[3,4]−◦A[4,5]−◦ S[0,0])−◦ S[0,0]
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Principal typing

Factorize the several formulas coming from a given lexical entry,
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Principal typing

Factorize the several formulas coming from a given lexical entry,

(A[5,6]−◦A[3,4]−◦A[4,5]−◦ S[0,0])−◦ S[0,0]
(A[5,6]−◦A[3,4]−◦A[4,5]−◦ S[0,1])−◦ S[0,1]

...
(A[5,6]−◦A[3,4]−◦A[0,1]−◦ S[0,0])−◦ S[0,0]
(A[5,6]−◦A[3,4]−◦A[0,1]−◦ S[0,1])−◦ S[0,1]

...

as follows:

a[i, j], b[k, l], c[m, n] ` (A[i, j]−◦A[k, l]−◦A[m, n]−◦ S[o, p])−◦ S[o, p]
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We end up with the following proof search problem:

Formulas coming from the lexicon:

a[i, j], b[k, l], c[m, n] ` (A[i, j]−◦A[k, l]−◦A[m, n]−◦ S[o, p])−◦ S[o, p]

` L[i, j]−◦ S[i, j]

` L[i, i]

` A[i, j]−◦ L[k, i]−◦ L[k, j]

Query (coming from the term to be parsed):

a[5,6], c[4,5], b[3,4], a[2,3], b[1,2], c[0,1] ` S[0,6]
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Correctness and Completeness

Correctness : by subject reduction.

Completeness : by subject expansion.
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The second-order case

— Kanazawa’s original construction

• Allow the lexicons to be compiled into datalog programs.

• Polynomiality of 2nd-order ACGs.

• Optimizations techniques are known.

• CFG, TAG, LCFRS, ... as 2nd-order ACGs.


