ACG parsing: the general case 1

Abstract Categorial Grammar Parsing

the general case

in Honor of Gérard Huet

Philippe de Groote

Inria-Lorraine

ACG parsing: the general case

A WN

Content

Definition of ACG
Examples

Some Key Properties

Constructing a Parsing Algorithm

ACG parsing: the general case

Definition

ACG parsing: the general case 4

Motivations

e TO provide a type-theoretic notion of grammar, taking advantages of
ideas by Curry and Lambek.

e To provide a grammatical framework in which other existing grammat-
ical models may be encoded.

e To see the parse-structures as first-class citizen.

e To allow the user to define grammatical composition combinators.

e To base the formalism on a small set of mathematical primitives that
combine via simple composition rules.

ACG parsing: the general case 5

Types, signatures and)\-terms

T(A) is the set of linear implicative types built on the set of atomic types
A:

T(A) == A | (T(A) -oT(A))

A higher-order linear signature is a triple X = (A, C,), where:
A is a finite set of atomic types;
C is a finite set of constants;

7:C — T(A) is a function that assigns each constant in C with a linear
implicative type built on A.

A(X) denotes the set of linear A-terms built upon a higher-order linear sig-
nature 2.

ACG parsing: the general case 6

Vocabularies and Lexicons

A vocabulary is simply defined to be a higher-order linear signature.

Given two vocabularies ¥; = (A;1,C1, 1) and X = (A,,Cor,), a lexicon
L = (n,0) from X; to X, is made of two functions:

n: A — T(A),
0:C1— /\(22),
such that

s, 0(c) 1 n(1(e)).

ACG parsing: the general case 7

Definition

An abstract categorial grammar is a quadruple

g = <Zl, ZQ,E,, S>

where :

>1 = (A1,C1,71) and Xy = (A, O, 12) are two higher-order linear signa-
tures; 37 is called the abstract vocabulary and %, is called the object
vocabulary;

L3271 — 25 is a lexicon from the abstract vocabulary to the object
vocabulary;

s € T(A;1) is a type of the abstract vocabulary; it is called the distin-
guished type of the grammar.

ACG parsing: the general case 38

Languages generated by an ACG

The abstract language generated by G (A(G)) is defined as follows:

A(G) ={t e N(Z1)| vx, t: s is derivable}

The object language generated by G (O(G)) is defined to be the image of
the abstract language by the term homomorphism induced by the lexicon L:

OG)={teN(Z2)|Fuec AG). t = L(u)}

ACG parsing: the general case 9

Some properties

e Membership is decidable if and only if Multiplicative Exponential Linear
Logic is decidable.

e Membership for lexicalized ACGs is NP-complete.

e Membership for second-order ACGs is polynomial.

ACG parsing: the general case

10

Examples

ACG parsing: the general case 11

Strings as linear \-terms

There is a canonical way of representing strings as linear A-terms. It consists
of representing strings as function composition:

Jabbac/ = Ax.a (b(b(a(cz))))

In this setting:

AT. X

Az.a(Bx)

> 1l

a—+ 6

ACG parsing: the general case 12

Signatures
2 0. N,NP,S : type
J : NP
u: N
A : N—o((NP—-oS)—oS9)
S ((NP - 8) —©08) —o (NP —8)

2 1. a, John, seeks, unicorn : STRING

ZQ: L,0 type
A o—o (0—00)
3 (t—0)—oo0
J L
unicorn @ (oo
find : t— (t—00)

try : +—o ((t —00) —0)

ACG parsing: the general case 13

Lexicons
£1 : ZO — 21
N,NP,S := STRING
J = /John/
U := /unicorn/
A = Xz.A\p.p(/a/+ z)
S = Ap.Az.p(\y.z + /seeks/ + y)
Lo 20— 29
N = i1—o0
NP = 1
S = o
J =
U = Az.unicornzx
A = Ap.Ag.dz.pxAqgzx
S = Ap.Az.tryx (A\y.p(Az.findy 2))

ACG parsing: the general case 14

We have that:

L1(S(AU)J) = /John/ 4+ /seeks/ + /a/ + /unicorn/

L>(S(AU)J) =tryj(Az. Jy. unicorny A find z y)

Li(AU(Ax.S(M\k.kx)J)) = /John/ 4 /seeks/ + /a/ + /unicorn/

Lo(AUMz.S(M\k.kx)J)) = Jy. unicorny A try j (Az. find x)

ACG parsing: the general case 15

A language-theoretic example
Abstract vocabulary:

S type

H: (A0A-—-o0A-—0S)—oS
I : L-—oS

E : L

C A—-oL—oL

Lexicon:

string

Aff/al /b [c/
M.z, fx

€

Ax. \y.x+y

Typically:

H ()\51311:131233'13. H ()\CB21$22:1323. - (C Lij (C Tkl - - (C Tmn E) ..)) ..)) 0 S

ACG parsing: the general case 16

Some Key Properties

ACG parsing: the general case

17

Curry-Howard isomorphism
Coherence theorem
Principal typing

Subject reduction

Subject expansion

ACG parsing: the general case 18

Constructing a Parsing Algorithm

ACG parsing: the general case 19

Back to the example

QA e~

A L,S

M. f(Mz.az)(Az.bz)(Mz.cz) : (A—0A—-o0A—o0S)—oS

Af.x. fx . L-—oS

Ax. x L

Az Ay. Az.x (y 2) . A—oL-—oL
s—os

Az.a(c(b(a(b(cz))))) 7

ACG parsing: the general case 20

A first non deterministic algorithm

1. Try to prove S using the types of the abstract constants as proper axioms.
I.e, prove S using (A—o0A-—o0A-—o0S)—oS, L-—-oS, L, and A—oL —oL.

2. By the Curry-Howard isomorphism, you have constructed a term of the
abstract language. Apply the lexicon to this term.

3. Check whether the resulting object term is equal to the term you have
to parse.

ACG parsing: the general case 21

T he Coherence Theorem comes in

1. Specialize the object signature by distinguishing between the different
occurrences of a same object constant in the term to be parsed:

aiy . Sy —O Sg
a» . 8p —0 83
b1 . 83 0584
b s1—0 s>
c1 . 84 —O Ss
Co> . Sp 081

Az. aq (Cl (bl (CL2 (b2 (CQ Z))))) . S0 —© Se

2. Specialize the lexical entries accordingly:

M. f(Az.a12) (Az.b12) (M\z.c1 2)
M. f(Mz.a12) (Az.b12) (A\z.c02)

ACG parsing: the general case

22

3. Try to prove (S, so —o se) USIiNg:

((A—0cA—o0A—o0S8) 0S5,
((s5 —086) —0 (53 —084) —0 (84 —0 85) —0 (80 —0 80)) —0 (80 —0 50))
((A—0cA—o0A—0S) oS5,

((s5 —0 86) —0 (83 —0 84) —0 (84 —0 85) —0 (89 —0 51)) —0 (80 —0 51))

((A:—OA—OA—OS)—OS,
((ss —056) —0 (53 —0 84) —0 (80 —0 51) —0 (50 —0 50)) —© (50 —0 50))
((A—0cA—o0A—o0S) 0S5,

((s5 —0 56) —0 (83 —084) —0 (50 —0 51) —0 (80 —0 51)) —0 (80 —0© 51))

<L.—o S, (so —0 s0) —o (80 —0 50))
(L — S, (80 —0 s1) —o (80 —0 1))

ACG parsing: the general case 23

Eliminating redundancies

Consider the following pair:
((A—0A—o0A—0S)—0S, ((s5—086)—0(s3—084)—0(s4—055)—0(s0—050))—0(s0—050))

The shape of the specialized object type is completely specified by the
grammar. The only relevant information is given by the indices.

Replace the above pair by the following formula:

(A[5,6] —o A[3,4] — A[4,5] —o S[0,0]) — S[0, 0]

ACG parsing: the general case 24

Principal typing

Factorize the several formulas coming from a given lexical entry,

(A[5,6] —o A[3,4] — A[4,5] — S[0,0]) — S[0, 0]
(A[5,6] —o A[3,4] — A[4,5] — S[0,1]) —o S[0, 1]

(A:[5,6] —o A[3,4] —o A[0, 1] —0 5[0, 0]) —o S[0, 0]
(A[5,6] — A[3,4] —0 A[0,1] —0 S[0,1]) — S[O, 1]

as follows:

ali, j],b[k, 1], c[m,n] + (A[i, j] —o A[k,l] —o A[m,n] —o S[o, p]) —o S|o, p]

ACG parsing: the general case 25

We end up with the following proof search problem:

Formulas coming from the lexicon:

ali, j],b[k, 1], c[m,n] = (A[i, j] —o A[k,1] —o A[m,n] —o S[o, p]) —o S|o, p]
= L[i, j] —o SIi, 4]

F L[z, 1]

= Ali, j] —o L[k, i] —o L[k, j]

Query (coming from the term to be parsed):

a[5, 6], c[4, 5], b[3, 4], a[2, 3],b[1, 2], ¢[0, 1] - S[O, 6]

ACG parsing: the general case 26

Correctness and Completeness

Correctness : by subject reduction.

Completeness : by subject expansion.

ACG parsing: the general case

27

The second-order case
— Kanazawa’s original construction

Allow the lexicons to be compiled into datalog programs.

Polynomiality of 2nd-order ACGs.

Optimizations techniques are known.

CFG, TAG, LCFRS, ... as 2nd-order ACGs.

