Logical Semantics

I. Montague Semantics

There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed, I consider it possible to comprehend the syntax and semantics of both kinds of languages within a single natural and mathematically precise theory. On this point I differ from a number of philosophers (...).

> R. Montague, Universal Grammar, *Theoria* 36:373–398 (1970)

Montague's legacy

- The notion of fragment.
- Semantics as an homomorphic image of syntax.
- Semantic interpretation through a translation into an intermediate logical form.

A direct naive interpretation

$$\begin{split} \mathbf{S} &\to \mathsf{NP} \ \mathsf{VP} \\ \mathsf{VP} &\to \mathsf{tV} \ \mathsf{NP} \\ \mathsf{tV} &= [\![\mathsf{VP}]\!] \ [\![\mathsf{NP}]\!] \\ \mathsf{tV} &\to \mathsf{loves} \\ \mathsf{NP} &\to \mathsf{John} \\ \mathsf{NP} &\to \mathsf{Mary} \\ \end{split} \begin{bmatrix} \mathsf{NP} \\ \mathsf{NP} \end{bmatrix} &= \mathbf{m} \\ \end{split}$$

where:

$$\mathbf{j}, \mathbf{m} : \iota$$
$$\mathbf{love} : \iota \to \iota \to o$$

Quantified noun phrases

$S \to NP VP$	$\llbracket S \rrbracket = \llbracket VP \rrbracket \llbracket NP \rrbracket$
$VP\totVNP$	$\llbracket VP \rrbracket = \llbracket tV \rrbracket \llbracket NP \rrbracket$
$tV \rightarrow loves$	$\llbracket tV \rrbracket = \lambda o. \lambda s. s (\lambda x. o (\lambda y. \mathrm{love} x y))$
$NP \rightarrow John$	$[\![NP]\!] = \lambda k. k \mathbf{j}$
$NP \rightarrow somebody$	$\llbracket NP \rrbracket = \lambda k. \exists x. k x$

Nouns, adjectives, and determiners

$S \to NP VP$	[S] = [VP] [NP]
$VP \to tV \; NP$	$\llbracket VP \rrbracket = \llbracket tV \rrbracket \llbracket NP \rrbracket$
$NP \rightarrow Det N$	[[NP]] = [[Det]] [[N]]
$N \rightarrow Adj N$	$\llbracket N \rrbracket = \llbracket Adj \rrbracket \llbracket N \rrbracket$
$tV \rightarrow \text{loves}$	$\llbracket tV \rrbracket = \lambda o. \lambda s. s (\lambda x. o (\lambda y. \mathrm{love} x y))$
$NP \rightarrow John$	$[\![NP]\!] = \lambda k. k \mathbf{j}$
$NP \rightarrow somebody$	$[\![NP]\!] = \lambda k. \exists x. k x$
$N \rightarrow$ woman	$\llbracket N \rrbracket = \lambda x. \operatorname{woman} x$
$N \rightarrow man$	$\llbracket N \rrbracket = \lambda x. \max x$
$Adj \rightarrow nice$	$\llbracket Adj \rrbracket = \lambda n. \lambda x. n x \wedge \operatorname{nice} x$
$Det \to every$	$\llbracket Det \rrbracket = \lambda n. \lambda m. \forall x. n x \supset m x$
$Det \to a$	$\llbracket Det \rrbracket = \lambda n. \lambda m. \exists x. n x \wedge m x$

where:

woman, man, nice : $\iota \rightarrow o$

Relative clauses

 $\begin{array}{ll} \mathsf{N} \to \mathsf{N} \ \mathsf{rC} & [\![\mathsf{N}]\!] = [\![\mathsf{RC}]\!] \, [\![\mathsf{N}]\!] \\ \mathsf{rC} \to \mathsf{rP} \ \mathsf{VP} & [\![\mathsf{RC}]\!] = [\![\mathsf{RP}]\!] \, [\![\mathsf{VP}]\!] \\ \mathsf{rP} \to \mathsf{who} & [\![\mathsf{rP}]\!] = \lambda r. \ \lambda n. \ \lambda x. \ n \ x \wedge r \ (\lambda k. \ k \ x) \end{array}$

The categorial syntax/semantics interface

)

:	$(NP \setminus S)/NP$
1	NP
:	NP
:	NP
1	N
1	Ν
1	N/N
1	NP/N
1	NP/N
1	$(N \setminus N)/(NP \setminus S)$

$$\begin{bmatrix} [S] &= o \\ [NP] &= (\iota \to o) \to o \\ [N] &= \iota \to o \\ [\alpha \setminus \beta] &= [\alpha] \to [\beta] \\ [\beta/\alpha] &= [\alpha] \to [\beta] \end{bmatrix}$$

Scope ambiguities				
	Every man loves a woman			
	$orall x. \mathbf{man} \ x \supset (\exists y. \mathbf{woman} \ y \wedge \mathbf{love} \ x \ y) \ \exists y. \mathbf{woman} \ y \wedge (orall x. \mathbf{man} \ x \wedge \mathbf{love} \ x \ y)$			
Subject wide scope:				
	$\lambda o. \lambda s. s (\lambda x. o (\lambda y. \text{love } x y))$			
Object wide scope:	$\lambda o. \lambda s. o(\lambda y. s(\lambda x. \mathbf{love} x y))$			
Another solution:				
with	every : (S/(NP\S))/N a : ((S/NP)\S)/N			
	$\begin{bmatrix} S \end{bmatrix} = o \\ \begin{bmatrix} NP \end{bmatrix} = \iota$			

Some intensional puzzles

De re and de dicto

John seeks a unicorn

Intersective and non-intersective adjectives

John is a french cook

John is an alleged cook

Partee's puzzle

The temperature is ninety. The temperature rises.

Montague's intentional logic

Higher-Order Classical Logic + modalities (necessity, past, and future).

One additional base type s, with the following associated terms, typing rules, and reduction rules:

 $\frac{\Gamma \vdash t: \alpha}{\Gamma \vdash \hat{t}: s \to \alpha} \quad \frac{\Gamma \vdash t: s \to \alpha}{\Gamma \vdash \tilde{t}: \alpha}$

 $\tilde{t} \to t$

More about time and tense

Reichenbach's three points of time: point of speech (S), point of event (E), and point of reference (R).

tense	example	structure
pluperfect	I had seen	E-R-S
simple past	I saw	E,R-S
future in the past	I would see	R-E-S / R-E,S / R-S-E
present perfect	I have seen	E-S,R
present	I see	E,S,R

Remember hybrid logic:

 $\mathsf{P}(\downarrow r. \, \mathbb{Q}_r \mathsf{P}\phi) \quad \mathsf{P}(\downarrow r. \, \mathbb{Q}_r\phi) \quad \mathsf{P}(\downarrow r. \, \mathbb{Q}_r \mathsf{F}\phi) \quad \mathsf{P}\phi \quad \phi$

II. Continuations

Invented to provide programming languages control operators (exit, goto,...) with a compositional semantics.

Continuation passing style (call by value)

- 1. $\overline{c} = \lambda k. k c$
- 2. $\overline{x} = \lambda k. k x$
- 3. $\overline{\lambda x.M} = \lambda k.k (\lambda x.\overline{M})$
- 4. $\overline{MN} = \lambda k. \overline{M} (\lambda m. \overline{N} (\lambda n. m n k))$

 $\overline{\alpha} = \neg \neg \alpha^*$, where:

- 1. $\bot^* = \bot$
- 2. $a^* = a$, for a atomic
- 3. $(\alpha \rightarrow \beta)^* = \alpha^* \rightarrow \overline{\beta}$

III. Abstract Categorial Grammars

Types, signatures and λ -terms:

 $\mathcal{T}(A)$ is the set of linear implicative types built on the set of atomic types A:

```
\mathcal{T}(A) ::= A \mid (\mathcal{T}(A) \multimap \mathcal{T}(A))
```

A higher-order linear signature is a triple $\Sigma = \langle A, C, \tau \rangle$, where:

A is a finite set of atomic types;

C is a finite set of constants;

 $\tau: C \to \mathcal{T}(A)$ is a function that assigns each constant in C with a linear implicative type built on A.

 $\Lambda(\Sigma)$ denotes the set of linear λ -terms built upon a higher-order linear signature Σ .

Vocabularies and Lexicons:

A vocabulary is simply defined to be a higher-order linear signature.

Given two vocabularies $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ and $\Sigma_2 = \langle A_2, C_2, \tau_2 \rangle$, a lexicon $\mathcal{L} = \langle F, G \rangle$ from Σ_1 to Σ_2 is made of two functions:

 $F:A_1\to \mathcal{T}(A_2),$

 $G: C_1 \rightarrow \Lambda(\Sigma_2),$

such that

 $\vdash_{\Sigma_2} G(c) : \widehat{F}(\tau_1(c)).$

Definition:

An abstract categorial grammar is a quadruple

 $\mathcal{G} = \langle \Sigma_1, \Sigma_2, \mathcal{L}, s \rangle$

where :

 $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ and $\Sigma_2 = \langle A_2, C_2, \tau_2 \rangle$ are two higher-order linear signatures; Σ_1 is called the abstract vocabulary and Σ_2 is called the object vocabulary;

 $\mathcal{L}: \Sigma_1 \to \Sigma_2$ is a lexicon from the abstract vocabulary to the object vocabulary;

 $s \in \mathcal{T}(A_1)$ is a type of the abstract vocabulary; it is called the distinguished type of the grammar.

Languages generated by an ACG:

The abstract language generated by $\mathcal{G}(\mathcal{A}(\mathcal{G}))$ is defined as follows:

 $\mathcal{A}(\mathcal{G}) = \{t \in \Lambda(\Sigma_1) \mid \vdash_{\Sigma_1} t \colon s \text{ is derivable} \}$

The object language generated by $\mathcal{G}(\mathcal{O}(\mathcal{G}))$ is defined to be the image of the abstract language by the term homomorphism induced by the lexicon \mathcal{L} :

 $\mathcal{O}(\mathcal{G}) = \{t \in \Lambda(\Sigma_2) \mid \exists u \in \mathcal{A}(\mathcal{G}). \ t = \mathcal{L}(u)\}$

Strings as linear λ -terms

There is a canonical way of representing strings as linear λ -terms. It consists of representing strings as function composition:

 $`abbac' = \lambda x. a (b (b (a (c x))))$

In this setting:

 $\epsilon \stackrel{\triangle}{=} \lambda x. x$ $\alpha + \beta \stackrel{\triangle}{=} \lambda \alpha. \lambda \beta. \lambda x. \alpha (\beta x)$

Example

Pierre lit un article que Marie a écrit

$$\Sigma_{0}: N, NP, S : type;$$

$$P, M : NP$$

$$A : N$$

$$L, AE : NP \rightarrow (NP \rightarrow S)$$

$$U : N \rightarrow NP$$

$$Q : (NP \rightarrow S) \rightarrow (N \rightarrow N)$$

Σ₁: /Pierre/, /Marie/, /article/, /lit/, /a écrit/, /un/, /que/ : *STRING*

Σ₂:

$$\iota, o : type;$$

$$\mathbf{p}, \mathbf{m} : \iota$$

article : $\iota \multimap o$
read, wrote : $\iota \multimap (\iota \multimap o)$
 $\land : o \multimap (o \multimap o)$
 $\exists : (\iota \multimap o) \multimap o$

$\mathcal{L}_1: \Sigma_0 \to \Sigma_1$

N, NP, S := STRING;

$$P := /Pierre/ : NP$$

$$M := /Marie/ : NP$$

$$A := /article/ : N$$

$$L := \lambda x. \lambda y. y + /lit/ + x : NP \rightarrow (NP \rightarrow S)$$

$$AE := \lambda x. \lambda y. y + /a \ écrit/ + x : NP \rightarrow (NP \rightarrow S)$$

$$U := \lambda x. /un/ + x : N \rightarrow NP$$

$$Q := \lambda x. \lambda y. y + /que/ + x \epsilon : (NP \rightarrow S) \rightarrow (N \rightarrow N)$$

Parsing

/Pierre/ + /lit/ + /un/ + /article/ + /que/ + /Marie/ + /a écrit/ yields the following λ -term of type S:

 $L(U(Q(\lambda x. AE x M) A))P$

 $\mathcal{L}_{2} : \Sigma_{0} \to \Sigma_{2}$ S := o; $N := \iota \multimap o;$ $NP := (\iota \multimap o) \multimap o;$ $P := \lambda k. k p : NP$ $M := \lambda k. k m : NP$ $A := \lambda x. \operatorname{article} x : N$ $L := \lambda p. \lambda q. p (\lambda x. q (\lambda y. \operatorname{read} y x)) : NP \multimap (NP \multimap S)$ $AE := \lambda p. \lambda q. p (\lambda x. q (\lambda y. \operatorname{wrote} y x)) : NP \multimap (NP \multimap S)$ $U := \lambda p. \lambda q. \exists x. (p x) \land (q x) : N \multimap NP$ $Q := \lambda r. \lambda p. \lambda x. (p x) \land (r (\lambda k. k x)) : (NP \multimap P) \multimap (N \multimap N)$

Applying \mathcal{L}_2 to

 $L(U(Q(\lambda x. AE x M) A)) P$

yields a term that β -reduces to:

 $\exists x. (\operatorname{article} x) \land (\operatorname{wrote} \mathbf{m} x) \land (\operatorname{read} \mathbf{p} x)$