
Tiered complexity at higher order

Emmanuel Hainry Bruce Kapron∗ Jean-Yves Marion
Romain Péchoux

LORIA, Université de Lorraine and Victoria University∗

MLA 2019

HKMP LORIA-UL and VU Tiered complexity at higher order 1/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction

Study of polynomial time complexity:

I Type-1 (N→ N):
I Several tools for program analysis:

I type systems (light logics),
I interpretations (astract, polynomial, ...),
I . . .

I Type-2 ((N→ N)→ N) and above:
I No tools.
I Programming languages with restrictions:

I BTLP, ITLP (Irwin-Kapron-Royer [2001])

Goal: a static analysis tool for certifying Type-2 polynomial time
complexity

HKMP LORIA-UL and VU Tiered complexity at higher order 2/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction to type-2 complexity

Type-2 polynomial time FP2 has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]

FP2 = λ(FP1 ∪ {R})2

I FP1 is the class of type-1 polynomial time functions,

I R : Σ∗ ×Σ∗ × (Σ∗ → Σ∗)× (Σ∗ → Σ∗)→ Σ∗ is defined by:

R(ε, a, φ, ψ) = a

R(ix , a, φ, ψ) = min(φ(ix ,R(x , a, φ, ψ)), ψ(ix)),

I min returns the operand of minimal size.

HKMP LORIA-UL and VU Tiered complexity at higher order 3/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Basic Feasible Functionals

Theorem [OTM based characterization by Cook-Kapron[1990]]

The set of type-2 functionals computable by an Oracle Turing
Machine (OTM) M in time P(|φ|, |a|) is exactly FP2.

I OTM are Turing Machines with an oracle φ,

I P is a type-2 polynomial defined by:

P(Y ,X) ::= c ∈ N | X0 | X1(P) | P + P | P × P,

I |φ|(n) = max|x |≤n(|φ(x)|).

The class FP2 is called BFF for Basic Feasible Functionals.

HKMP LORIA-UL and VU Tiered complexity at higher order 4/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook[1992]:

Definition

mM
φ,a is the maximum of the size of the input a and of the biggest

oracle’s answer in the run of M(φ, a).

Definition

An OTM is in OPT if it runs in time bounded by P(mM
φ,a) on any

input, for some type-1 polynomial P.

However BFF (OPT as it contains exponential functions.

HKMP LORIA-UL and VU Tiered complexity at higher order 5/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2: finite length revision

Definition [Finite Length Revision]

An OTM has Finite Length Revision (FLR), if, for any input, the
number of times the oracle answer is bigger than all of the previous
oracle answers is bounded by a constant.

Example

whi le (x>0){
y = φ(x) ;
x = x−1;

}

not (FLR) if φ↘

Example

x = 0 ;
whi le (x<n && y<8){

y = φ(x) ;
x = x +1;

}

(FLR) with constant 8

HKMP LORIA-UL and VU Tiered complexity at higher order 6/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2: finite lookahead revision

Definition [Finite LookAhead Revision]

An OTM has Finite LookAhead Revision (FLAR), if, for any input,
the number of times a query is posed whose size exceeds the size
of all previous queries is bounded by a constant.

Example

whi le (x>0){
y = φ(x) ;
x = x−1;

}

(FLAR) with constant 0

Example

x = 0 ;
whi le (x<n && y<8){

y = φ(x) ;
x = x +1;

}

not (FLAR) for φ = λn.4

HKMP LORIA-UL and VU Tiered complexity at higher order 7/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2?

Definition

I SPT = OPT ∩ FLR

I MPT = OPT ∩ FLAR

Both SPT (FP2 and MPT (FP2.

Theorem [Kapron and Steinberg[2018]]

FP2 = λ(SPT)2 = λ(MPT)2

HKMP LORIA-UL and VU Tiered complexity at higher order 8/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Motivations

I Find a criterion for complexity certificates.

I Provide a characterization of FP2 on imperative languages.

I Develop a static analysis technique with polynomial bounds:

I of type-1 (Hilbert’s 10th pb, Tarski’s Quantifier Elimination)

I implicit (not explicitly provided)

Objective: Adapt Implicit Computational Complexity
techniques to an imperative setting with oracles.

Tool: Safe recursion and Tiering

HKMP LORIA-UL and VU Tiered complexity at higher order 9/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe recursion

Theorem [Bellantoni-Cook[1992]]

The class of functions:

I constants, projections, successor, predecessor, conditional,

I defined by safe composition:

f (x1; a0) = s(r(x1;); t(x1; a)0)

I and defined by safe recursion:

f (ε, y1; a0) = g(y1; a0)

f (i(x)1, y1; a) = hi (x
1, y1; f (x1, y1; a)0) i ∈ {0, 1},

provided s, r , t, g , hi are already defined in the class,

is exactly FP1.

HKMP LORIA-UL and VU Tiered complexity at higher order 10/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Tiering

Imperative language over binary words Σ∗

E ::= x | true | false | op(E , . . . ,E)

I ::= [x:=E]; | I I | while(E){I}| if(E){I}else{I}

Tier τ ∈ {0, 1} with 0 < 1.

Intuition:

I 0: data may grow and cannot control the program flow.

I 1: data cannot grow and may control the program flow.

HKMP LORIA-UL and VU Tiered complexity at higher order 11/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Typing rules

Γ (x) = τ

Γ ` x : τ

Γ ` e : τ
(Des)

Γ ` op(e) : τ

Γ ` e : τ
(Cons)

Γ ` op(e) : 0

Cst
Γ ` c : τ

Γ ` I : τ τ ≤ τ ′
(Sub)

Γ ` I : τ ′

Γ ` I1 : τ Γ ` I2 : τ
(Seq)

Γ ` I1 I2 : τ

Γ ` e : τ Γ ` Ii : τ
(If)

Γ ` if(E){I1}else{I2} : τ

Γ ` x : τ Γ ` E : τ ′ τ ≤ τ ′
(A)

Γ ` x := E : τ

Γ ` E : 1 Γ ` I : τ
(Wh)

Γ ` while(E){I} : 1

HKMP LORIA-UL and VU Tiered complexity at higher order 12/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe operators

Extension to polynomial time computable operators:

op :: τ1 × . . .× τn → τ

I Neutral operators computing a predicate :

τ ≤ min
i∈[1,n]

τi

I Positive operators satisfying:

∀w , |JopK(w1, . . . ,wn)| ≤ max
i∈[1,n]

|wi |+ c, for c ≥ 0

τ = 0

HKMP LORIA-UL and VU Tiered complexity at higher order 13/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: addition

Example (add :: int × int → int)

add (x , y) {
wh i l e (x>0){

x = x−1;
y = y+1;

}
r e t u r n y ;

}

I y is necessarily of tier 0.

I x is necessarily of tier 1.

I consequently, add :: 1× 0→ 0.

HKMP LORIA-UL and VU Tiered complexity at higher order 14/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: multiplication

Example (mult :: int × int → int)

mult (x , y) {
i n t z = 0 ;
wh i l e (x>0){

x = x−1;
z = add (y , z) ; //add :1× 0→ 0

}
r e t u r n z ;

}

I the output of add is 0. Consequently, z is of tier 0.

I both x and y are of tier 1.

I consequently, mult :: 1× 1→ 0.

HKMP LORIA-UL and VU Tiered complexity at higher order 15/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Counter-example: exponential

Example (exp :: int → int)

exp (x) {
i n t y=1;
wh i l e (x>0){

x = x−1;
z = y ;

y0 = add (y1 , z) ; //add :1× 0→ 0
}
r e t u r n y ;

}

I The tier of y cannot be defined!

HKMP LORIA-UL and VU Tiered complexity at higher order 16/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating
program with safe operators is exactly FP1.

I Soundness:
I No flow from 0 to 1 (guards of tier 1)
I At most nk configurations under termination assumption

I Completeness:
I Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

I Reduction to 2-SAT

HKMP LORIA-UL and VU Tiered complexity at higher order 17/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Imperative language with oracles

Design a type system ensuring that programs are in
MPT = OPT ∩ FLAR.

E ::= x | true | false | op(E , . . . ,E) | φ(E � E)
I ::= [x:=E]; | I I | while(E){I}| if(E){I}else{I}

In φ(w � v):

I w is the oracle input

I v is the oracle input bound

I w � v = w1 . . .w|v |, if |v | ≥ k

HKMP LORIA-UL and VU Tiered complexity at higher order 18/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Towards a type system for MPT

Observations:

1. The number of lookahead revisions can be controlled by tiers.

2. A restriction on the oracle input bound is needed.

3. Operators are in need of a more flexible treatment.

Solutions:

1. Use more than two tiers: {0, 1, 2, 3, . . . , k, . . .}.
2. Keep track of the tier of the outermost while kout .

3. Keep track of the tier of the innermost while kin.

Judgments: Γ,∆ ` I : (k, kin, kout)

HKMP LORIA-UL and VU Tiered complexity at higher order 19/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (easy)

Γ (x) = k

Γ,∆ ` x : (k, kin, kout)

∀i ∈ {1, 2}, ` Ii : (k, kin, kout)
(SEQ)

` I1 I2 : (k, kin, kout)

(SK)
` ; : (0, kin, kout)

` I : (k, kin, kout)
(SUB)

` I : (k+1, kin, kout)

` E : (k, kin, kout) ∀i ∈ {1, 2}, ` Ii : (k, kin, kout)
(IF)

` if(E){I1} else {I2} : (k, kin, kout)

` x : (k1, kin, kout) ` E : (k2, kin, kout) k1 � k2
(ASG)

` x := E : (k1, kin, kout)

HKMP LORIA-UL and VU Tiered complexity at higher order 20/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (hard)

k1 → · · · → kn → k ∈ ∆(op)(kin) ∀i , ` Ei : (ki , kin, kout)
(OP)

Γ,∆ ` op(E1, . . . ,En) : (k, kin, kout)

with k1 → · · · → kn → k ∈ ∆(op)(kin) if:

I k ≤ mini∈[1,n] ki and maxi∈[1,n] ki ≤ kin
I k < kin for positive operators.

` E : (k, kin, kout) ` E ′ : (kout , kin, kout) k < kin k ≤ kout
(OR)

` φ(E � E ′) : (k, kin, kout)

` E : (k, kin, kout) ` I : (k, k, kout) 1 � k � kout
(W)

` while(E){I} : (k, kin, kout)

HKMP LORIA-UL and VU Tiered complexity at higher order 21/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example

Example

The program computes the decision problem ∃n ≤ x , φ(n) = 0.

y = x ;
z = false ;

while(x1 >= 0){
if(φ(y0 � x1) == 0){

z0 = true ;
} else {; }
x1 = x1 − 1;

}
return z;

The program is in MPT.

The program is typable and the inner command has tier (1, 1, 1).

HKMP LORIA-UL and VU Tiered complexity at higher order 22/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

A more complex example

Example

Σ
maxnx=0 φ(x)
i=0 φ(i) can be computed by:

x := n ;

y2 := x3 ;

z2 := 0 ;

while(x3 >= 0){
z2 := max(φ(y2 � x3)2, z2) ;

x3 := x− 13 ;
};
v1 := z2 ;

u0 := 0 ;

while(z2 >= 0){
w1 := φ(v1 � z2)1 ;

while(w1 >= 0){
u0 := u + 10 ;

w1 := w− 11 ;
} ;

z2 := z2 − 1 ;
}
return u ;

This program can be typed by (3, 0, 0).

HKMP LORIA-UL and VU Tiered complexity at higher order 23/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

False negative

Example

The program computes the decision problem ∃n ≤ x , φ(n) = 0.

x := ε ;
z := 0 ;

while(y >= x)k{
if(φ(y � x) == 0){z := 1} else {; }
x := x + 1 ; : (k, k, k′)

}
return z ;

x and y have tier at least k in the guard.

x is of tier strictly less than the inner tier k as +1 is positive.

But it is not in FLAR.

HKMP LORIA-UL and VU Tiered complexity at higher order 24/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Let ST be the class of typable and terminating programs.

Theorem [Soundness]

ST ⊆ λ(MPT)2.

Theorem [Completeness]

ST1 = FP1

λ(ST)2 = FP2.

By simulating a variant of R.

HKMP LORIA-UL and VU Tiered complexity at higher order 25/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Conclusion

Conclusion

We have presented:

I a completeness result at type-1,

I a completeness result at type-2 for a natural extension,

I a decidable type inference (in polynomial time).

Drawbacks and Open questions

I Termination is assumed.

I Completeness is obtained under lambda-closure.

HKMP LORIA-UL and VU Tiered complexity at higher order 26/26

	Main
	Introduction
	Type-2 complexity
	Safe recursion and tiering
	Tiers at type-2
	Conclusion

