A tier-based typed programming language characterizing Feasible
Functionals

Emmanuel Hainry Bruce Kapron* Jean-Yves Marion Romain Péchoux

CNRS, Inria, Université de Lorraine - LORIA, and University of Victoria*

LICS 2020

HKMP LORIA and UV A tier-based typed PL characterizing BFF 1/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction
Studies of polynomial time complexity:

» Type-1 (N — N): FP;
» Several tools for program analysis:
> type systems (linear, affine, light, tiering, ...)
> interpretations (abstract, polynomial, ...)
P and other techniques of Implicit Computational Complexity

» Type-2 ((N — N) — N) and above: FP,, ...

> No (tractable) tools
» Programming languages with restrictions:

»> BTLP, ITLP (Irwin-Kapron-Royer [2001])

Goal: a static analysis technique for certifying type-2 polynomial time complexity

HKMP LORIA and UV A tier-based typed PL characterizing BFF 2/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction to type-2 complexity
Type-2 polynomial time FP, has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]
FP, = A(FP; U {R})>
» A\(X)a: type-2 restriction of the simply typed lambda closure with constants in X
> R XXX (I = X¥) x (¥ - X*) — XL* is defined by:

R(E’ a? ¢7 w) =a
R(ix, a, ¢, 1) = min(¢(ix, R(x, a, ¢, 1)), v(ix))
min returns the operand of minimal size.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 3/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Basic Feasible Functionals

Theorem [Cook and Kapron [1990]]

The set of type-2 functionals computable by an Oracle Turing Machine (OTM) M in
time P(|¢|, |a]) is exactly FP».

» OTM are Turing Machines with an oracle ¢
> P is a type-2 polynomial defined by:
P(X1,X0) i=ceN| Xo | Xe(P) | P+ P | PxP.

> |¢l(n) = maxiy<n(l¢(x)])

The class FP» is called BFF for Basic Feasible Functionals.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 4/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook [1992]:

Definition

mg/’a is the maximum of the size of the input a and of the biggest oracle’'s answer in

the run of M(¢, a).

Definition

An OTM is in OPT if it runs in time bounded by P(mgf’a) on any input, for some
type-1 polynomial P.

However BFF C OPT as it contains exponential functions.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 5/25

Introduction Type-2 complexity

Safe recursion and tiering Tiers at type-2

How to recover FP,: finite length revision

Conclusion

Definition [Finite Length Revision - Kawamura and Steinberg [2017]]

An OTM has Finite Length Revision (FLR), if, for any input, the number of times the
oracle answer is bigger than all of the previous oracle answers is bounded by a constant.

while (x>0){
y = é(x);
x = x—1;
}

not (FLR) if ¢ N\

HKMP LORIA and UV

x = 0;

while (x<n && y<8){
y = é(x);
x = x+1;

}

(FLR) with constant 8

A tier-based typed PL characterizing BFF

6/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP,: finite lookahead revision

Definition [Finite LookAhead Revision - Kapron and Steinberg [2018]]

An OTM has Finite LookAhead Revision (FLAR), if, for any input, the number of
times a query is posed whose size exceeds the size of all previous queries is bounded by

a constant.
x = 0;
while (x>0){ while (x<n && y<8){
y = o(x); y = o(x);
x = x—1; x = x+1;
} }
(FLAR) with constant 0 not (FLAR) for ¢ = An.4

HKMP LORIA and UV A tier-based typed PL characterizing BFF 7/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP,?

Definition

» SPT = OPT N FLR
» MPT = OPT N FLAR

Both SPT C FP, and MPT C FP; hold.

Theorem [Kapron and Steinberg [2018]]

FPy, =)\(SPT)Q =)\(MPT)2

HKMP LORIA and UV A tier-based typed PL characterizing BFF 8/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Summary

Goal: a static analysis tool for certifying type-2 polynomial time

> tractable (no type-2 polynomial)

» automatic (polynomials are not explicitly provided)

Idea: adapt a type-1 Implicit Computational Complexity tool to type-2 and combine it
with the MPT technique (FLAR N OPT).

» Tool: Safe recursion and tiering

» PL: Imperative with oracles

HKMP LORIA and UV A tier-based typed PL characterizing BFF 9/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe recursion and tiering
Theorem [Bellantoni and Cook [1992]]

The class of functions that contains:
P constants, projections, successor, predecessor, conditional,

» functions defined by safe composition:
f(x4 3% = s(r(z4;); t(x1;3)),
» functions defined by safe recursion:
fle,y:3°) = g(v":2")
F(i(x)L, 7 3) = hi(xL, 75 (XL, 74 3)0), with i € {0,1},
provided s, r, t, g, h; are already defined in the class,

is exactly FP;.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 10/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Tiering for imperative PL

Imperative language over binary words ¥*

E ::= x| true | false | op(E,...,E)
| :=[x:=E]; | I | | while(E){/}| if(E){/}else{l}

Tier 7 € {0,1} with 0 < 1

Intuition:
» 0: data may grow and cannot control the program flow.

> 1: data cannot grow and may control the program flow.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 11/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Typing rules
|
= N-e: M-e:
Mx)=r Var) T (Des) — "¢ T _(Cons)
N M+ op(e):r I-op(e):0
rel:7 7<7
— Cst - b
N-c:71 r=1/:+ Sus)
ML F=»b: N-e: M=
1:7 > T(Seq) . T T (1f)
Frehbh:r - if(E){h}else{h}: 7
: X e r-E:1 r=1:
N=x:7 THFE: 7 7<71 (A) : T(Wh)
MlFx:=E:7 I~ while(E){/}:1

HKMP LORIA and UV A tier-based typed PL characterizing BFF 12/25

Introduction Type-2 complexity Safe recursion and tiering iers a - Conclusion

Safe operators

Extension to polynomial time computable operators:

OP:TL X ...XTh—T

» Neutral operators computing a predicate :

7< min T;
i€[1,n]

> Positive operators satisfying:

Vw, |[[Op]](W1, SRR Wn)' < _nEaX] ‘Wl’ +c, forc >0
IS

)

7=0

HKMP LORIA and UV A tier-based typed PL characterizing BFF 13/25

Safe recursion and tiering

Example: addition

Example (add :: int x int — int)

add (x,y){
while (x>0){
x = x—1;
y =y+1L;

}

return vy,
}

> y is necessarily of tier 0.
» x is necessarily of tier 1.
» Consequently, add is typed by 1 x 0 — 0.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 14/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: multiplication

Example (mult :: int x int — int)

mult(x,y){
int z = 0;
while (x>0){
x = x—1;
z = add(y,z); //add:1x0—0
}

return z;
}

» The output of add is 0. Consequently, z is of tier 0.
> Both x and y are of tier 1.
» Consequently, mult is typed by 1 x 1 — 0.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 15/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Counter-example: exponential
Example (exp :: int — int)

exp (x){
int y=1;
while (x>0){
x = x—1;
z =y,
YO = add(y',z); //add:1x0—0
}

return vy,

}

» The tier of y cannot be defined.
> Consequently, exp do not type.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 16/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating program is exactly FP;.

» Soundness:

> No flow from 0 to 1 (guards of tier 1)
> At most n* configurations under termination assumption

» Completeness:
» Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

» Reduction to 2-SAT

HKMP LORIA and UV A tier-based typed PL characterizing BFF 17/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Imperative language with oracles

Design a type system ensuring that programs are in MPT.

PL with oracles

E ::=x | true | false | op(E,...,E) | ¢(E | E)
| == [x:=E]; | I | | while(E){/}| if(E){/}else{l}

In an oracle call ¢(w [v):
> w is the oracle input.
» v is the oracle input bound.

> If [v| > kthenw [v=wi...w,.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 18/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Towards a type system for MPT

Observations:
1. The number of lookahead revisions can be controlled by tiers.
2. A restriction on the oracle input bound is needed.

3. Operators are in need of a more flexible treatment.

Solutions:
1. Use more than two tiers: {0,1,2,3,... k,...}.
2. Keep track of the tier of the outermost while kg,;.

3. Keep track of the tier of the innermost while k;,.

Judgments: T, A F 1 (k, Kkin, kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 19/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (easy)
]

M(x) = k Vie{1,2}, F i (k, kin, k
(x) (VAR) i€{1,2} (k, kin, kout) (SEQ)
MAFx (K ki, Kout) Fh ko (k kin, kout)

(SK) A (k7 kina kout)

— : SUB
= y - (07kln7k0Ut) [l (k‘|‘1,kin,kout) ()

FE:(k kin, kour) Vi€ {1,2}, F 1 (k,kin, kout)

(IF)
Fif(E){h} else {h} : (k, kin, kout)

Fx: (ke Kin Koye) - E < (Ko, Kin kope) kg < k
x : (ki, Kin, kout) (k2, kin, kout) 1 = ko (ASG)
|— X = E . (kl,kin,kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 20/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (hard)
|

k1 — s —> kn — ke A(Op)(k,'n) Vi, = E,' : (k,‘, k,',,, kout)

(OP)
IAFop(E,. .., Ep): (k kin, kout)
with k; = -+ — k, = k € A(op)(kin) if:
> k < minjc[1,n ki and maxiey) ki < kin
> k < k;, for positive operators.
FE: (k,Kin, kout) F E": (Kout, Kin, kout) k < kin k < koyt (OR)

H QS(E r E/) . (ka kin7 kout)

FE:(kkin kout) F1:i(kkkout) 1=k=kou
+ While(E){l} : (k7 kin; kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 21/25

Tiers at type-2 Conclusion

Introduction Type-2 complexity Safe recursion and tiering

Example

Example

The program computes the decision problem 3n < x, ¢(n) = 0.
y=x,;
z = false ;
while(x! >= 0){
if(p(y° 1 x') == 0){
zo = true ;

}else {;}

xt=x!—1:

}

return z;

» The program is in MPT.
» The program is typable and the inner command has tier (1,1,1).

HKMP LORIA and UV A tier-based typed PL characterizing BFF 22/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

False negative

The program computes the decision problem 3n < x, ¢(n) = 0.
X =€
z:=0;
while(y >= x)¥{

12(6y | x) == 0){z := 1} else {;}
x:=x+1; :(kkk)

}

return z;

> x and y have tier at least k in the guard.
P x is of tier strictly less than the inner tier k as +1 is positive.
> But it is not in FLAR.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 23/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Let ST be the class of typable and terminating programs.

Theorem [Soundness]

ST € A(MPT),

Theorem [Completenesses]

» ST, =FP,
>)\(ST)2 = FP>,

By simulating a variant of R.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 24/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Conclusion

Conclusion

We have presented:
> a completeness result at type-1,
P> a completeness result at type-2 for a strict natural extension,
» a decidable type inference (in polynomial time).

Completeness is preserved for some decidable termination techniques (size-change
principle, Lee-Jones-Ben-Amram[2001]).

Open issues

» How to get rid of the lambda-closure?
» What are the completeness preserving termination techniques?

» Are there sound extensions to capture more false negatives?

HKMP LORIA and UV A tier-based typed PL characterizing BFF 25/25

	Main
	Introduction
	Type-2 complexity
	Safe recursion and tiering
	Tiers at type-2
	Conclusion

