
A tier-based typed programming language characterizing Feasible
Functionals

Emmanuel Hainry Bruce Kapron∗ Jean-Yves Marion Romain Péchoux

CNRS, Inria, Université de Lorraine - LORIA, and University of Victoria∗

LICS 2020

HKMP LORIA and UV A tier-based typed PL characterizing BFF 1/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction

Studies of polynomial time complexity:

I Type-1 (N→ N): FP1
I Several tools for program analysis:

I type systems (linear, affine, light, tiering, ...)
I interpretations (abstract, polynomial, ...)
I and other techniques of Implicit Computational Complexity

I Type-2 ((N→ N)→ N) and above: FP2, ...
I No (tractable) tools
I Programming languages with restrictions:

I BTLP, ITLP (Irwin-Kapron-Royer [2001])

Goal: a static analysis technique for certifying type-2 polynomial time complexity

HKMP LORIA and UV A tier-based typed PL characterizing BFF 2/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction to type-2 complexity
Type-2 polynomial time FP2 has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]

FP2 = λ(FP1 ∪ {R})2

I λ(X)2: type-2 restriction of the simply typed lambda closure with constants in X

I R : Σ∗ × Σ∗ × (Σ∗ → Σ∗)× (Σ∗ → Σ∗)→ Σ∗ is defined by:

R(ε, a, φ, ψ) = a

R(ix , a, φ, ψ) = min(φ(ix ,R(x , a, φ, ψ)), ψ(ix))

min returns the operand of minimal size.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 3/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Basic Feasible Functionals

Theorem [Cook and Kapron [1990]]

The set of type-2 functionals computable by an Oracle Turing Machine (OTM) M in
time P(|φ|, |a|) is exactly FP2.

I OTM are Turing Machines with an oracle φ

I P is a type-2 polynomial defined by:

P(X1,X0) ::= c ∈ N | X0 | X1(P) | P + P | P × P.

I |φ|(n) = max|x |≤n(|φ(x)|)

The class FP2 is called BFF for Basic Feasible Functionals.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 4/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook [1992]:

Definition

mM
φ,a is the maximum of the size of the input a and of the biggest oracle’s answer in

the run of M(φ, a).

Definition

An OTM is in OPT if it runs in time bounded by P(mM
φ,a) on any input, for some

type-1 polynomial P.

However BFF (OPT as it contains exponential functions.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 5/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2: finite length revision

Definition [Finite Length Revision - Kawamura and Steinberg [2017]]

An OTM has Finite Length Revision (FLR), if, for any input, the number of times the
oracle answer is bigger than all of the previous oracle answers is bounded by a constant.

Example

whi le (x>0){
y = φ(x) ;
x = x−1;

}

not (FLR) if φ↘

Example

x = 0 ;
whi le (x<n && y<8){

y = φ(x) ;
x = x +1;

}

(FLR) with constant 8

HKMP LORIA and UV A tier-based typed PL characterizing BFF 6/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2: finite lookahead revision

Definition [Finite LookAhead Revision - Kapron and Steinberg [2018]]

An OTM has Finite LookAhead Revision (FLAR), if, for any input, the number of
times a query is posed whose size exceeds the size of all previous queries is bounded by
a constant.

Example

whi le (x>0){
y = φ(x) ;
x = x−1;

}

(FLAR) with constant 0

Example

x = 0 ;
whi le (x<n && y<8){

y = φ(x) ;
x = x +1;

}

not (FLAR) for φ = λn.4

HKMP LORIA and UV A tier-based typed PL characterizing BFF 7/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP2?

Definition

I SPT = OPT ∩ FLR

I MPT = OPT ∩ FLAR

Both SPT (FP2 and MPT (FP2 hold.

Theorem [Kapron and Steinberg [2018]]

FP2 = λ(SPT)2 = λ(MPT)2

HKMP LORIA and UV A tier-based typed PL characterizing BFF 8/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Summary

Goal: a static analysis tool for certifying type-2 polynomial time

I tractable (no type-2 polynomial)

I automatic (polynomials are not explicitly provided)

Idea: adapt a type-1 Implicit Computational Complexity tool to type-2 and combine it
with the MPT technique (FLAR ∩ OPT).

I Tool: Safe recursion and tiering

I PL: Imperative with oracles

HKMP LORIA and UV A tier-based typed PL characterizing BFF 9/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe recursion and tiering

Theorem [Bellantoni and Cook [1992]]

The class of functions that contains:

I constants, projections, successor, predecessor, conditional,

I functions defined by safe composition:

f (x1; a0) = s(r(x1;); t(x1; a)0),

I functions defined by safe recursion:

f (ε, y1; a0) = g(y1; a0)

f (i(x)1, y1; a) = hi (x
1, y1; f (x1, y1; a)0), with i ∈ {0, 1},

provided s, r , t, g , hi are already defined in the class,

is exactly FP1.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 10/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Tiering for imperative PL

Imperative language over binary words Σ∗

E ::= x | true | false | op(E , . . . ,E)

I ::= [x:=E]; | I I | while(E){I}| if(E){I}else{I}

Tier τ ∈ {0, 1} with 0 < 1

Intuition:

I 0: data may grow and cannot control the program flow.

I 1: data cannot grow and may control the program flow.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 11/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Typing rules

Γ(x) = τ
(Var)

Γ ` x : τ

Γ ` e : τ
(Des)

Γ ` op(e) : τ

Γ ` e : τ
(Cons)

Γ ` op(e) : 0

Cst
Γ ` c : τ

Γ ` I : τ τ ≤ τ ′
(Sub)

Γ ` I : τ ′

Γ ` I1 : τ Γ ` I2 : τ
(Seq)

Γ ` I1 I2 : τ

Γ ` e : τ Γ ` Ii : τ
(If)

Γ ` if(E){I1}else{I2} : τ

Γ ` x : τ Γ ` E : τ ′ τ ≤ τ ′
(A)

Γ ` x := E : τ

Γ ` E : 1 Γ ` I : τ
(Wh)

Γ ` while(E){I} : 1

HKMP LORIA and UV A tier-based typed PL characterizing BFF 12/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe operators

Extension to polynomial time computable operators:

op :: τ1 × . . .× τn → τ

I Neutral operators computing a predicate :

τ ≤ min
i∈[1,n]

τi

I Positive operators satisfying:

∀w , |JopK(w1, . . . ,wn)| ≤ max
i∈[1,n]

|wi |+ c, for c ≥ 0

τ = 0

HKMP LORIA and UV A tier-based typed PL characterizing BFF 13/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: addition

Example (add :: int× int→ int)

add (x , y) {
wh i l e (x>0){

x = x−1;
y = y+1;

}
r e t u r n y ;

}

I y is necessarily of tier 0.

I x is necessarily of tier 1.

I Consequently, add is typed by 1× 0→ 0.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 14/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: multiplication

Example (mult :: int× int→ int)

mult (x , y) {
i n t z = 0 ;
wh i l e (x>0){

x = x−1;
z = add (y , z) ; //add :1× 0→ 0

}
r e t u r n z ;

}

I The output of add is 0. Consequently, z is of tier 0.

I Both x and y are of tier 1.

I Consequently, mult is typed by 1× 1→ 0.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 15/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Counter-example: exponential

Example (exp :: int→ int)

exp (x) {
i n t y=1;
wh i l e (x>0){

x = x−1;
z = y ;

y0 = add (y1 , z) ; //add :1× 0→ 0
}
r e t u r n y ;

}

I The tier of y cannot be defined.

I Consequently, exp do not type.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 16/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating program is exactly FP1.

I Soundness:
I No flow from 0 to 1 (guards of tier 1)
I At most nk configurations under termination assumption

I Completeness:
I Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

I Reduction to 2-SAT

HKMP LORIA and UV A tier-based typed PL characterizing BFF 17/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Imperative language with oracles

Design a type system ensuring that programs are in MPT.

PL with oracles

E ::= x | true | false | op(E , . . . ,E) | φ(E � E)
I ::= [x:=E]; | I I | while(E){I}| if(E){I}else{I}

In an oracle call φ(w � v):

I w is the oracle input.

I v is the oracle input bound.

I If |v | ≥ k then w � v = w1 . . .w|v |.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 18/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Towards a type system for MPT

Observations:

1. The number of lookahead revisions can be controlled by tiers.

2. A restriction on the oracle input bound is needed.

3. Operators are in need of a more flexible treatment.

Solutions:

1. Use more than two tiers: {0, 1, 2, 3, . . . , k, . . .}.
2. Keep track of the tier of the outermost while kout .

3. Keep track of the tier of the innermost while kin.

Judgments: Γ,∆ ` I : (k, kin, kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 19/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (easy)

Γ(x) = k
(VAR)

Γ,∆ ` x : (k, kin, kout)

∀i ∈ {1, 2}, ` Ii : (k, kin, kout)
(SEQ)

` I1 I2 : (k, kin, kout)

(SK)
` ; : (0, kin, kout)

` I : (k, kin, kout)
(SUB)

` I : (k+1, kin, kout)

` E : (k, kin, kout) ∀i ∈ {1, 2}, ` Ii : (k, kin, kout)
(IF)

` if(E){I1} else {I2} : (k, kin, kout)

` x : (k1, kin, kout) ` E : (k2, kin, kout) k1 � k2
(ASG)

` x := E : (k1, kin, kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 20/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (hard)

k1 → · · · → kn → k ∈ ∆(op)(kin) ∀i , ` Ei : (ki , kin, kout)
(OP)

Γ,∆ ` op(E1, . . . ,En) : (k, kin, kout)

with k1 → · · · → kn → k ∈ ∆(op)(kin) if:

I k ≤ mini∈[1,n] ki and maxi∈[1,n] ki ≤ kin
I k < kin for positive operators.

` E : (k, kin, kout) ` E ′ : (kout , kin, kout) k < kin k ≤ kout
(OR)

` φ(E � E ′) : (k, kin, kout)

` E : (k, kin, kout) ` I : (k, k, kout) 1 � k � kout
(W)

` while(E){I} : (k, kin, kout)

HKMP LORIA and UV A tier-based typed PL characterizing BFF 21/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example

Example

The program computes the decision problem ∃n ≤ x , φ(n) = 0.

y = x ;
z = false ;

while(x1 >= 0){
if(φ(y0 � x1) == 0){

z0 = true ;
} else {; }
x1 = x1 − 1;

}
return z;

I The program is in MPT.
I The program is typable and the inner command has tier (1, 1, 1).

HKMP LORIA and UV A tier-based typed PL characterizing BFF 22/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

False negative

Example

The program computes the decision problem ∃n ≤ x , φ(n) = 0.

x := ε ;
z := 0 ;

while(y >= x)k{
if(φ(y � x) == 0){z := 1} else {; }
x := x + 1 ; : (k, k, k′)

}
return z ;

I x and y have tier at least k in the guard.

I x is of tier strictly less than the inner tier k as +1 is positive.

I But it is not in FLAR.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 23/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Let ST be the class of typable and terminating programs.

Theorem [Soundness]

ST ⊆ λ(MPT)2

Theorem [Completenesses]

I ST1 = FP1

I λ(ST)2 = FP2

By simulating a variant of R.

HKMP LORIA and UV A tier-based typed PL characterizing BFF 24/25

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Conclusion

Conclusion

We have presented:

I a completeness result at type-1,

I a completeness result at type-2 for a strict natural extension,

I a decidable type inference (in polynomial time).

Completeness is preserved for some decidable termination techniques (size-change
principle, Lee-Jones-Ben-Amram[2001]).

Open issues

I How to get rid of the lambda-closure?

I What are the completeness preserving termination techniques?

I Are there sound extensions to capture more false negatives?

HKMP LORIA and UV A tier-based typed PL characterizing BFF 25/25

	Main
	Introduction
	Type-2 complexity
	Safe recursion and tiering
	Tiers at type-2
	Conclusion

