Tiered complexity at higher order

Emmanuel Hainry Bruce Kapron® Jean-Yves Marion
Romain Péchoux

LORIA, Université de Lorraine and University of Victoria*

MEEEEN 2> 7 — 2019

HKMP LORIA-UL and UV Tiered complexity at higher order 1/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction

Study of polynomial time complexity:

» Type-1 (N — N):
» Several tools for program analysis:
> type systems (light logics),

> interpretations (abstract, polynomial, ...),
> .

» Type-2 ((N — N) — N) and above:

> No tools.
» Programming languages with restrictions:

» BTLP, ITLP (lrwin-Kapron-Royer [2001])

Goal: a static analysis tool for certifying Type-2 polynomial time
complexity

HKMP LORIA-UL and UV Tiered complexity at higher order 2/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Introduction to type-2 complexity

Type-2 polynomial time FPy has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]

FP, = A(FPy U {R})>

P> FP; is the class of type-1 polynomial time functions,
> RTFXIF X (¥ = X)) x (XF = X*) — £* is defined by:

R(e, a,¢0,0) = a
R(ix, a, ¢, 1) = min($(ix, R(x, a, ¢, 1)), ¥ (ix)),

P> min returns the operand of minimal size.

HKMP LORIA-UL and UV Tiered complexity at higher order 3/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Basic Feasible Functionals

Theorem [OTM based characterization by Cook-Kapron[1990]]

The set of type-2 functionals computable by an Oracle Turing
Machine (OTM) M in time P(|¢|,|a|) is exactly FP.

» OTM are Turing Machines with an oracle ¢,
> P is a type-2 polynomial defined by:
P(Xl,Xo)ZZ:C€N|X0’X1(P) ’ P+ P ’ PXP,

> [¢](n) = maxix<n(|6(x)])-

The class FP5 is called BFF for Basic Feasible Functionals.

HKMP LORIA-UL and UV Tiered complexity at higher order 4/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook[1992]:

m(’z‘fa is the maximum of the size of the input a and of the biggest
oracle's answer in the run of M(¢,a).

An OTM is in OPT if it runs in time bounded by P(m(’;{a) on any
input, for some type-1 polynomial P.

However BFF C OPT as it contains exponential functions.

HKMP LORIA-UL and UV Tiered complexity at higher order 5/26

Introduction Type-2 complexity

Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP,: finite length revision

Definition [Finite Length Revision]

An OTM has Finite Length Revision (FLR), if, for any input, the

number of times the oracle answer is bigger than all of the previous
oracle answers is bounded by a constant.

not (FLR) if ¢ \,

HKMP LORIA-UL and UV

x = 0;

while (x<n && y<8){
y = é(x);
X = x+1;

}

(FLR) with constant 8

Tiered complexity at higher order 6/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP,: finite lookahead revision

Definition [Finite LookAhead Revision]

An OTM has Finite LookAhead Revision (FLAR), if, for any input,
the number of times a query is posed whose size exceeds the size
of all previous queries is bounded by a constant.

x = 0;
while (x>0){ while (x<n && y<8){
y = o(x); y = o(x);
x = x—1; x = x+1;
} }
(FLAR) with constant 0 not (FLAR) for ¢ = An.4

HKMP LORIA-UL and UV Tiered complexity at higher order 7/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

How to recover FP,?

» SPT = OPT N FLR
» MPT = OPT N FLAR

Both SPT C FP, and MPT C FP,.

Theorem [Kapron and Steinberg[2018]]

FPy = A\(SPT)2 = A\(MPT);

HKMP LORIA-UL and UV Tiered complexity at higher order 8/26

Conclusion

Safe recursion and tiering Tiers at type-2

Introduction Type-2 complexity

Motivations

» Find a criterion for complexity certificates.
» Provide a characterization of FP, on imperative languages.

P> Develop a static analysis technique with polynomial bounds:

> of type-1 (Hilbert's 10th pb, Tarski's Quantifier Elimination)

» implicit (not explicitly provided)

Objective: Adapt Implicit Computational Complexity
techniques to an imperative setting with oracles.

Tool: Safe recursion and Tiering

Tiered complexity at higher order 9/26

HKMP LORIA-UL and UV

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe recursion

Theorem [Bellantoni-Cook[1992]]

The class of functions:

> constants, projections, successor, predecessor, conditional,

> defined by safe composition:
f(?l;ﬁo) = s(r(il;)i t(?l;ﬁ)o)
» and defined by safe recursion:

fle,7"3%) = g(v":3")
Fi()N 74 3) = k(v (3 y5a)°) e fo,13,
provided s, r, t, g, h; are already defined in the class,

is exactly FP;.

HKMP LORIA-UL and UV Tiered complexity at higher order 10/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Tiering

Imperative language over binary words >*

E ::= x| true | false | op(E,...,E)
| == [x:=E]; | I | | while(E){/}| if(E){/}else{l}

Tier 7 € {0,1} with 0 < 1.

Intuition:
» 0: data may grow and cannot control the program flow.

» 1: data cannot grow and may control the program flow.

HKMP LORIA-UL and UV Tiered complexity at higher order 11/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Typing rules

MNx)=r NFe:T (Des) lFe:r (o)
e o Mop(e):r I~ op(e):0
Frel:7 7<7
— Cst =
N-c:71 re/:7 (Sub)
Freh:r ThEh: Fce:r THIL:

LT 2T (Seq) — (1
Frehbh:r I-if(E){h}else{h}: 7
l-x:7 THE: 7/ <7/ A I_I—E:.l H_I:T(Wh)
[Fx:=E:7T Fl—whlle(E){l}:l

HKMP LORIA-UL and UV Tiered complexity at higher order 12/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Safe operators

Extension to polynomial time computable operators:

OpTL X ...XTh—T

» Neutral operators computing a predicate :

7 < min T;
i€[1,n]

> Positive operators satisfying:

vw, |[op](wi, ..., wy)| < ,m[iax] |wi| 4+ ¢, for ¢ >0
IS

)

7=0

HKMP LORIA-UL and UV Tiered complexity at higher order

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: addition

Example (add :: int x int — int)

add (x,y){
while (x>0){
x = x—1;
y = y+L;

}

return vy,

}

» y is necessarily of tier 0.
> x is necessarily of tier 1.

> consequently, add :: 1 x 0 — 0.

HKMP LORIA-UL and UV Tiered complexity at higher order 14/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example: multiplication

Example (mult :: int X int — int)

mult(x,y){
int z = 0;
while (x>0){
x = x—1;
z = add(y,z); //add:1x0—0
}

return z;

}

> the output of add is 0. Consequently, z is of tier 0.
» both x and y are of tier 1.
» consequently, mult :: 1 x 1 — 0.

HKMP LORIA-UL and UV Tiered complexity at higher order 15/26

Introduction Type-2 complexity

Safe recursion and tiering

Tiers at type-2 Conclusion

Counter-example: exponential

Example (exp :: int — int)

exp (x){
int y=1;
while (x>0){
x = x—1;
7 =

y add(y*,z); //add:1x0—0
}

return vy,

}

» The tier of y cannot be defined!

HKMP LORIA-UL and UV

Tiered complexity at higher order

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating
program with safe operators is exactly FP;.

» Soundness:

> No flow from 0 to 1 (guards of tier 1)
> At most n* configurations under termination assumption

» Completeness:
» Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

» Reduction to 2-SAT

HKMP LORIA-UL and UV Tiered complexity at higher order 17/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Imperative language with oracles

Design a type system ensuring that programs are in
MPT = OPT N FLAR.

E = x| true | false | op(E,...,E) | ¢(E | E)
| == [x:=E]; | I | | while(E){/}| if(E){/}else{l}

In p(w [v):
P> w is the oracle input

» v is the oracle input bound

> wlv=w...wy,if [v] >k

HKMP LORIA-UL and UV Tiered complexity at higher order 18/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Towards a type system for MPT

Observations:
1. The number of lookahead revisions can be controlled by tiers.
2. A restriction on the oracle input bound is needed.

3. Operators are in need of a more flexible treatment.

Solutions:
1. Use more than two tiers: {0,1,2,3,... k,...}.
2. Keep track of the tier of the outermost while kgy;.

3. Keep track of the tier of the innermost while k;,.

Judgments: T, A+ [: (k,kin, Kout)

HKMP LORIA-UL and UV Tiered complexity at higher order 19/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (easy)

M(x) = k Vie{1,2}, F I : (k, ki, k
(X) / { } (OUt) (SEQ)
MAFx (K ki, Kout) Ehob o (k kins kout)
(SK) P (ko Kin kout) o
Fsoo (0, kin, kout) oo (k+1, ki, kout) ()

FE:(k kin, kout) Vie{1,2}, F i (k, kin, kout)

(IF)
Fif(E){h} else {h} :(k, kin, kout)

Fx: (ki,kin, koy FE : (ko, kin, kou k; <k
x (kg o) (ko ot 1 2(ASG)
|—X = E Z(kl,k,'n,kout)

HKMP LORIA-UL and UV Tiered complexity at higher order 20/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Type system (hard)

|
k]_ — - — kn — ke A(Op)(k,'n) VI', = E,' : (k,‘, k,‘n, kout)

(OP)
[A op(Er,. .., En) i (K, Kin, Kout)

with k; — -+ — k, — k € A(op)(kjy) if:
> k< min,-e[lm] k; and MaXije(1,n] ki < ki,
» k < k;, for positive operators.

FE: (ka kimkout) FE": (kouta kim kout) k <kin k<kout

(OR)
= ¢(E f El) : (k7 kina kout)

FE: (k, kimkout) =1 (ka k, kout) 1 <k <kout
Fwhile(E){/} : (k,kin, kout)

HKMP LORIA-UL and UV Tiered complexity at higher order 21/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Example

The program computes the decision problem 3n < x, ¢(n) = 0.

y=x,
z = false ;
while(x1 >=0){
if(p(y° | x') == 0){
z0 = true ;

}else {;}

x=x!—1;

}

return z;

The program is in MPT.

The program is typable and the inner command has tier (1,1, 1).

HKMP LORIA-UL and UV Tiered complexity at higher order 22/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

A more complex example

smax_g ¢(><)¢(,') can be computed by:

i=0

x:=n; while(z? >= 0){

y2 — X3 : Wl = ¢(V1 [22)1 :

z?:=0; while(w! >= 0){

while(x3 >= 0){ wWi=u+1°;
z? := max(o(y? | x%)%,2?) ; whi=w—1%;
X3=x—1%; |

+ 22 =22-1;

= }

wW=0; return u;

This program can be typed by (3,0,0).

HKMP LORIA-UL and UV Tiered complexity at higher order 23/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

False negative

The program computes the decision problem 3n < x, ¢(n) = 0.

S0

while(y >= x)¥{
1£(0(y [%) == 0){z := 1} else {;}
x=x+1;: (k,k7k/)

}

return z ;

x and y have tier at least k in the guard.
x is of tier strictly less than the inner tier k as +1 is positive.

But it is not in FLAR.

HKMP LORIA-UL and UV Tiered complexity at higher order 24/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2 Conclusion

Results

Let ST be the class of typable and terminating programs.

Theorem [Soundness]

ST C A(MPT),.

Theorem [Completeness|

ST, =FPq
A(ST)s = FP,.

By simulating a variant of R.

HKMP LORIA-UL and UV Tiered complexity at higher order 25/26

Introduction Type-2 complexity Safe recursion and tiering Tiers at type-2

Conclusion

Conclusion

Conclusion

We have presented:

P> a completeness result at type-1,
» a completeness result at type-2 for a natural extension,

» a decidable type inference (in polynomial time).

Drawbacks and Open questions

» Termination is assumed.

» Completeness is obtained under lambda-closure.

HKMP LORIA-UL and UV Tiered complexity at higher order 26/26

	Main
	Introduction
	Type-2 complexity
	Safe recursion and tiering
	Tiers at type-2
	Conclusion

