
Implicit characterization of the class of Basic Feasible Functionals

Romain Péchoux

CNRS, Inria, Université de Lorraine - LORIA,
* joint work with Emmanuel Hainry, Bruce Kapron and Jean-Yves Marion

Complexity Days 2023

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 1/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Motivations

We aim at providing characterizations of complexity classes:

I machine-independent,

I with no prior knowledge on the complexity of analyzed codes.

If the characterization is tractable then we obtain an automated complexity
analysis for a high-level programming language.

State of the art:

I 30 years of intensive research,

I hundreds of publications,

I some tools: Costa, SPEED, TcT, ...

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 2/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

The Implicit Computational Complexity approach

Methodology

Consider your favorite programming language L and your favorite complexity class C.

Find a tractable restriction R ⊆ L such that JRK = C,

where JX K is the set of functions computed by programs in X .

Examples of (type-1) complexity class C
I P, FP,

I PSPACE, FPSPACE,

I NP,

I PP, BPP, EQP, BQP,

I . . .

Examples of restriction R
I type systems:

I linear logic, sized types, ...

I interpretation methods,

I amortized resource analysis,

I ...

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 3/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

What about type-2 complexity classes?

Type-2 objects are functions in

φ︷ ︸︸ ︷
(N→ N)×

a︷︸︸︷
N → N

Type-2 polynomial time is taken to be the class of Basic Feasible Functionals (BFF)

Goal (Open problem for more than 20 years)

Find a tractable technique for certifying type-2 polynomial time complexity.

Rephrasing: Find a tractable restriction R such that JRK = BFF.

N.B.: The problem was solved for type-1 polytime FP by Bellantoni and Cook in 1992.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 4/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

A reminder on type-2 polynomial time

BFF was introduced by Melhorn in 1976.

Theorem [Cook and Urquhart [1989]]

BFF = λ(FP ∪ {I})2

I is a type-2 bounded iterator:

I f ,g (ε, a) = a

I f ,g (ix , a) = min(f (ix , I f ,g (x , a)), g(ix))

λ(X)2: type-2 restriction of the simply-typed lambda-closure using constants in X .

Theorem [Kapron and Cook [FOCS1991]]

The set of functionals computable by an Oracle TM (OTM) in time P(|φ|, |a|) is
exactly BFF.

Type-2 polynomials and size function are defined by:
I P(X1,X0) ::= c ∈ N | X0 | P + P | P × P | X1(P)
I |φ|(n) = max|x |≤n |φ(x)|

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 5/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of type-2 polynomials?

→ Type-2 polynomials are not tractable.

Definition [Oracle Polynomial Time (OPT) – Cook [1992]]

Let nφ,A be the biggest size of a and of an oracle’s answer in the run of M(φ, a).
The OTM M is in OPT if its runtime is bounded by P(nφ,a), for a type-1 polynomial P.

BFF (OPT, as OPT contains exponential functions.

Theorem [Kapron and Steinberg [LICS2018]]

BFF = λ(JOPT ∩ FLARK)2

→ FLAR = Finite LookAhead Revision

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 6/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Finite LookAhead Revision

Definition [Finite LookAhead Revision - Kapron and Steinberg [LICS2018]]

An OTM is in FLAR, if, for any input, the number of times a query is posed whose size
exceeds the size of all previous queries is bounded by a constant.

Example

whi le (x>0){
y = φ(x) ;
x = x −1;

}

in FLAR.
The constant bound is 0.

Example

whi le (x<z && y<8){
y = φ(x) ;
x = x +1;

}

not in FLAR for φ = λx .4
but is in FLR (I will briefly mention this
class in the conclusion)

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 7/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of (Oracle Turing) machines?

→ Design a typed PL ensuring that computed functions are in OPT ∩ FLAR.

Imperative PL on words with oracles

Expressions 3 E ::= x | true | false | op(E , . . . ,E) | φ(E � E)

Commands 3 C ::= x:=E ; | C C | if(E){C}else{C} | while(E){C}

In an oracle call φ(w � v):

I φ computes a type-1 function on words, i.e. φ ∈W→W.

I w is the oracle input.

I v is the input bound: w � v = w1 . . .w|v |.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 8/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tier-based type discipline

Tiers k, k′, ... are security levels (in N) assigned to Expressions and Commands.

The type system ensures some non-interference properties.

In a tier k command:

I the program flow cannot be controlled by expressions of a lower tier k− < k,

I data of upper tier k+ ≥ k cannot increase (in size).

Judgments: Γ,∆ ` C : (k, kin, kout) with (k, kin, kout) ∈ N3

1. The tier k implements the non-interference policy.

2. The innermost tier kin is used for declassification.

3. The outermost tier kout is used to ensure FLAR on oracle calls.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 9/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tier-based type system: an overview

Typing rules

` x : (k1, kin, kout) ` E : (k2, kin, kout) k1 ≤ k2
(Asg)

` x := E : (k1, kin, kout)

` E : (k, kin, kout) ` C : (k, k, kout) 1 ≤ k ≤ kout
(Wh)

` while(E){C} : (k, kin, kout)

` E : (k, kin, kout) ` E ′ : (kout , kin, kout) k < kin ≤ kout
(Orc)

` φ(E � E ′) : (k, kin, kout)

...

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 10/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Illustrating example

Program computing the decision problem ∃n ≤ x , φ(n) = 0.

y = x;
z = false;

while(x1 >= 0){
if(φ(y0 � x1) == 0){

z0 = true;
} else {; }
x1 = x1 − 1;

}
return z

I The program is typable and the while body has tier (1, 1, 1).

I The computed function is in OPT ∩ FLAR.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 11/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

A tier-based characterization of BFF

I Let SAFE be the set of typable programs.

I Let SN be the set of strongly normalizing programs.

I Let JXK be the set of functions computed by programs in X.

Theorem [Hainry-Kapron-Marion-Péchoux [LICS2020]]

BFF = λ(JSAFE ∩ SNK)2

Main drawbacks:

I Lambda closure (for completeness)

I Termination assumption (for soundness)

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 12/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of the lambda-closure?

Näıve idea: internalize lambda-abstraction and application into the language.
→ cannot be done straightforwardly as it breaks soundness.

Extended language (ei: e is a type-i object)

(Expressions) E ::= x0 | op(E , . . . ,E) | x1(E � E)

(Statements) C ::= [x0 := E]; | C C | if(E){C}{C} | while(E){C}
(Procedures) P ::= P(x1, x0){C return x0}
(Terms) t ::= x | λx.t | t@t | call P({x0 → t0}, t0)

(Programs) prog ::= t0 | declare P in prog

Solution: type-1 arguments in a procedure call are restricted to closures {x0 → t0}.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 13/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Type system

The extended type system just consists of two layers:

I SAFE procedures (using the HKMP[LICS2020] paper),

I Simply-typed terms on words W.

Definitions

A program is a type-i program if all its λ-abstractions are of order ≤ i .
I SAFEi is the set of type-i typable programs.

I Remark: SAFE0 is the set of typable programs without lambda-abstraction.

I SN is still the set of strongly normalizing programs.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 14/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Example

prog(φ,w), declare KS(Y, v) {

u := 10;

z := ε;

while (v1 6= 0) { // kin = kout = 1

v1 := v-1;

z0 := Y(z0 � u1)

}

return z

}

in call KS({x → φ @ (φ @ x)}, w)

I JprogK ∈ (W→W)→W→W

I JprogK(φW→W, wW) = F|w|(φ) with

{
F0(φ) = ε

Fn+1(φ) = (φ ◦ φ)(Fn(φ)≤|10|)

I prog ∈ SAFE0 ∩ SN whereas JprogK /∈ OPT ∩ FLAR.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 15/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

First characterizations of BFF

Characterizations without external lambda-closure:

Theorem [Hainry-Kapron-Marion-Péchoux [FoSSaCS22]]

∀i ≥ 0, JSAFEi ∩ SNK = BFF

Surprisingly, the internal lambda-abstraction is not required for completeness.

→ Can we weaken the SN requirement?

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 16/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of Strong Normalization?
We consider Size Change Termination (SCT).

General idea

Program:

whi le (x>0){
y = φ(x) ;
x = x −1;

}

=⇒

Size change graph abstraction:

x x

y y

 ω−1

Theorem [Lee, Jones, and Ben Amram [POPL2001]]

“If every infinite computation would give rise to an infinitely decreasing value sequence
in the size-change graph, then no infinite computation is possible.”

→ SCT is not “tractable”: PSPACE-complete.
Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 17/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tractable characterizations of BFF

Completeness is preserved for SCT and for an instance SCP (Ben Amram-Lee [2007]).

Theorem

∀i ≥ 0, JSAFEi ∩ SCPSK = BFF

SCPS can be decided in time quadratic in the program size.

Theorem [Type inference]

I prog ∈ ∪iSAFEi ∩ SCPS is Ptime-complete (using Mairson[2004]).

I prog ∈ SAFE0 ∩ SCPS is in time cubic in |prog| (using HKMP[2022]).

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 18/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Conclusion

Conclusion

We have obtained sound and complete characterizations of type-2 polynomial time:

I machine-independent (a typed programming language with procedure calls)

I implicit (no prior knowledge on the bound is required),

I tractable (decidable type inference in polytime) ⇒ it can be automated.

Open issues

I expressive power (capture more false negatives),

I extension to Finite Length Revision (harder, WIP using declassification).

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 19/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Thank you for your attention !

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 20/20

	Main
	Motivations
	Type-2 complexity
	Tier-based typing
	Tractable characterizations of BFF
	Conclusion

