
Implicit characterization of the class of Basic Feasible Functionals

Romain Péchoux
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Motivations

We aim at providing characterizations of complexity classes:

I machine-independent,

I with no prior knowledge on the complexity of analyzed codes.

If the characterization is tractable then we obtain an automated complexity
analysis for a high-level programming language.

State of the art:

I 30 years of intensive research,

I hundreds of publications,

I some tools: Costa, SPEED, TcT, ...
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The Implicit Computational Complexity approach

Methodology

Consider your favorite programming language L and your favorite complexity class C.

Find a tractable restriction R ⊆ L such that JRK = C,

where JX K is the set of functions computed by programs in X .

Examples of (type-1) complexity class C
I P, FP,

I PSPACE, FPSPACE,

I NP,

I PP, BPP, EQP, BQP,

I . . .

Examples of restriction R
I type systems:

I linear logic, sized types, ...

I interpretation methods,

I amortized resource analysis,

I ...
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What about type-2 complexity classes?

Type-2 objects are functions in

φ︷ ︸︸ ︷
(N→ N)×

a︷︸︸︷
N → N

Type-2 polynomial time is taken to be the class of Basic Feasible Functionals (BFF)

Goal (Open problem for more than 20 years)

Find a tractable technique for certifying type-2 polynomial time complexity.

Rephrasing: Find a tractable restriction R such that JRK = BFF.

N.B.: The problem was solved for type-1 polytime FP by Bellantoni and Cook in 1992.
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A reminder on type-2 polynomial time

BFF was introduced by Melhorn in 1976.

Theorem [Cook and Urquhart [1989]]

BFF = λ(FP ∪ {I})2

I is a type-2 bounded iterator:

I f ,g (ε, a) = a

I f ,g (ix , a) = min(f (ix , I f ,g (x , a)), g(ix))

λ(X )2: type-2 restriction of the simply-typed lambda-closure using constants in X .

Theorem [Kapron and Cook [FOCS1991]]

The set of functionals computable by an Oracle TM (OTM) in time P(|φ|, |a|) is
exactly BFF.

Type-2 polynomials and size function are defined by:
I P(X1,X0) ::= c ∈ N | X0 | P + P | P × P | X1(P)
I |φ|(n) = max|x |≤n |φ(x)|
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How to get rid of type-2 polynomials?

→ Type-2 polynomials are not tractable.

Definition [Oracle Polynomial Time (OPT) – Cook [1992]]

Let nφ,A be the biggest size of a and of an oracle’s answer in the run of M(φ, a).
The OTM M is in OPT if its runtime is bounded by P(nφ,a), for a type-1 polynomial P.

BFF ( OPT, as OPT contains exponential functions.

Theorem [Kapron and Steinberg [LICS2018]]

BFF = λ(JOPT ∩ FLARK)2

→ FLAR = Finite LookAhead Revision
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Finite LookAhead Revision

Definition [Finite LookAhead Revision - Kapron and Steinberg [LICS2018]]

An OTM is in FLAR, if, for any input, the number of times a query is posed whose size
exceeds the size of all previous queries is bounded by a constant.

Example

whi le ( x>0){
y = φ( x ) ;
x = x −1;

}

in FLAR.
The constant bound is 0.

Example

whi le ( x<z && y<8){
y = φ( x ) ;
x = x +1;

}

not in FLAR for φ = λx .4
but is in FLR (I will briefly mention this
class in the conclusion)
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How to get rid of (Oracle Turing) machines?

→ Design a typed PL ensuring that computed functions are in OPT ∩ FLAR.

Imperative PL on words with oracles

Expressions 3 E ::= x | true | false | op(E , . . . ,E ) | φ(E � E)

Commands 3 C ::= x:=E ; | C C | if(E ){C}else{C} | while(E ){C}

In an oracle call φ(w � v):

I φ computes a type-1 function on words, i.e. φ ∈W→W.

I w is the oracle input.

I v is the input bound: w � v = w1 . . .w|v |.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 8/20



Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tier-based type discipline

Tiers k, k′, ... are security levels (in N) assigned to Expressions and Commands.

The type system ensures some non-interference properties.

In a tier k command:

I the program flow cannot be controlled by expressions of a lower tier k− < k,

I data of upper tier k+ ≥ k cannot increase (in size).

Judgments: Γ,∆ ` C : (k, kin, kout) with (k, kin, kout) ∈ N3

1. The tier k implements the non-interference policy.

2. The innermost tier kin is used for declassification.

3. The outermost tier kout is used to ensure FLAR on oracle calls.
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Tier-based type system: an overview

Typing rules

` x : (k1, kin, kout) ` E : (k2, kin, kout) k1 ≤ k2
(Asg)

` x := E : (k1, kin, kout)

` E : (k, kin, kout) ` C : (k, k, kout) 1 ≤ k ≤ kout
(Wh)

` while(E ){C} : (k, kin, kout)

` E : (k, kin, kout) ` E ′ : (kout , kin, kout) k < kin ≤ kout
(Orc)

` φ(E � E ′) : (k, kin, kout)

...
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Illustrating example

Program computing the decision problem ∃n ≤ x , φ(n) = 0.

y = x;
z = false;

while(x1 >= 0){
if(φ(y0 � x1) == 0){

z0 = true;
} else {; }
x1 = x1 − 1;

}
return z

I The program is typable and the while body has tier (1, 1, 1).

I The computed function is in OPT ∩ FLAR.
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A tier-based characterization of BFF

I Let SAFE be the set of typable programs.

I Let SN be the set of strongly normalizing programs.

I Let JXK be the set of functions computed by programs in X.

Theorem [Hainry-Kapron-Marion-Péchoux [LICS2020]]

BFF = λ(JSAFE ∩ SNK)2

Main drawbacks:

I Lambda closure (for completeness)

I Termination assumption (for soundness)
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How to get rid of the lambda-closure?

Näıve idea: internalize lambda-abstraction and application into the language.
→ cannot be done straightforwardly as it breaks soundness.

Extended language (ei: e is a type-i object)

(Expressions) E ::= x0 | op(E , . . . ,E ) | x1(E � E )

(Statements) C ::= [x0 := E ]; | C C | if(E ){C}{C} | while(E ){C}
(Procedures) P ::= P(x1, x0){C return x0}
(Terms) t ::= x | λx.t | t@t | call P({x0 → t0}, t0)

(Programs) prog ::= t0 | declare P in prog

Solution: type-1 arguments in a procedure call are restricted to closures {x0 → t0}.
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Type system

The extended type system just consists of two layers:

I SAFE procedures (using the HKMP[LICS2020] paper),

I Simply-typed terms on words W.

Definitions

A program is a type-i program if all its λ-abstractions are of order ≤ i .
I SAFEi is the set of type-i typable programs.

I Remark: SAFE0 is the set of typable programs without lambda-abstraction.

I SN is still the set of strongly normalizing programs.
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Example

prog(φ,w), declare KS(Y, v) {

u := 10;

z := ε;

while (v1 6= 0) { // kin = kout = 1

v1 := v-1;

z0 := Y(z0 � u1)

}

return z

}

in call KS({x → φ @ (φ @ x)}, w)

I JprogK ∈ (W→W)→W→W

I JprogK(φW→W, wW) = F|w|(φ) with

{
F0(φ) = ε

Fn+1(φ) = (φ ◦ φ)(Fn(φ)≤|10|)

I prog ∈ SAFE0 ∩ SN whereas JprogK /∈ OPT ∩ FLAR.
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First characterizations of BFF

Characterizations without external lambda-closure:

Theorem [Hainry-Kapron-Marion-Péchoux [FoSSaCS22]]

∀i ≥ 0, JSAFEi ∩ SNK = BFF

Surprisingly, the internal lambda-abstraction is not required for completeness.

→ Can we weaken the SN requirement?
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How to get rid of Strong Normalization?
We consider Size Change Termination (SCT).

General idea

Program:

whi le ( x>0){
y = φ( x ) ;
x = x −1;

}

=⇒

Size change graph abstraction:

x x

y y

 ω−1

Theorem [Lee, Jones, and Ben Amram [POPL2001]]

“If every infinite computation would give rise to an infinitely decreasing value sequence
in the size-change graph, then no infinite computation is possible.”

→ SCT is not “tractable”: PSPACE-complete.
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Tractable characterizations of BFF

Completeness is preserved for SCT and for an instance SCP (Ben Amram-Lee [2007]).

Theorem

∀i ≥ 0, JSAFEi ∩ SCPSK = BFF

SCPS can be decided in time quadratic in the program size.

Theorem [Type inference]

I prog ∈ ∪iSAFEi ∩ SCPS is Ptime-complete (using Mairson[2004]).

I prog ∈ SAFE0 ∩ SCPS is in time cubic in |prog| (using HKMP[2022]).
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Conclusion

Conclusion

We have obtained sound and complete characterizations of type-2 polynomial time:

I machine-independent (a typed programming language with procedure calls)

I implicit (no prior knowledge on the bound is required),

I tractable (decidable type inference in polytime) ⇒ it can be automated.

Open issues

I expressive power (capture more false negatives),

I extension to Finite Length Revision (harder, WIP using declassification).
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Thank you for your attention !
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