Implicit characterization of the class of Basic Feasible Functionals

Romain Péchoux

CNRS, Inria, Université de Lorraine - LORIA, * joint work with Emmanuel Hainry, Bruce Kapron and Jean-Yves Marion

Complexity Days 2023

Romain Péchoux

CNRS, Inria, UL, LORIA

Motivations

We aim at providing characterizations of complexity classes:

- machine-independent,
- with no prior knowledge on the complexity of analyzed codes.

If the characterization is **tractable** then we obtain an **automated complexity analysis** for a high-level programming language.

State of the art:

- ▶ 30 years of intensive research,
- hundreds of publications,
- some tools: Costa, SPEED, TcT, …

Implicit characterization of BFF

The Implicit Computational Complexity approach

Methodology

Consider your favorite programming language $\mathcal L$ and your favorite complexity class $\mathcal C$.

Find a tractable restriction $\mathcal{R}\subseteq\mathcal{L}$ such that $[\![\mathcal{R}]\!]=\mathcal{C},$

where [X] is the set of functions computed by programs in X.

Romain Péchoux

3/20

What about type-2 complexity classes?

Type-2 objects are functions in $(\mathbb{N} \to \mathbb{N}) \times (\mathbb{N} \to \mathbb{N})$

Type-2 polynomial time is taken to be the class of Basic Feasible Functionals (BFF)

Goal (Open problem for more than 20 years)

Find a tractable technique for certifying type-2 polynomial time complexity.

Rephrasing: Find a tractable restriction \mathcal{R} such that $\llbracket \mathcal{R} \rrbracket = BFF$.

N.B.: The problem was solved for type-1 polytime FP by Bellantoni and Cook in 1992.

Romain Péchoux

A reminder on type-2 polynomial time

BFF was introduced by Melhorn in 1976.

Theorem [Cook and Urquhart [1989]]

 $ext{BFF} = \lambda(ext{FP} \cup \{\mathcal{I}\})_2$

 \mathcal{I} is a type-2 bounded iterator: $\mathcal{I}^{f,g}(\epsilon, a) = a$

 $\mathcal{I}^{f,g}(ix,a) = \min(f(ix,\mathcal{I}^{f,g}(x,a)),g(ix))$

 $\lambda(X)_2$: type-2 restriction of the simply-typed lambda-closure using constants in X.

Theorem [Kapron and Cook [FOCS1991]]

The set of functionals computable by an Oracle TM (OTM) in time $P(|\phi|, |a|)$ is exactly BFF.

Type-2 polynomials and size function are defined by:

▶
$$P(X_1, X_0) ::= c \in \mathbb{N} | X_0 | P + P | P \times P | X_1(P)$$

▶ $|\phi|(n) = \max_{|x| \le n} |\phi(x)|$

Romain Péchoux

CNRS, Inria, UL, LORIA

How to get rid of type-2 polynomials?

\rightarrow Type-2 polynomials are not tractable.

Definition [Oracle Polynomial Time (OPT) – Cook [1992]]

Let $n^{\phi,A}$ be the biggest size of *a* and of an oracle's answer in the run of $M(\phi, a)$. The OTM M is in OPT if its runtime is bounded by $P(n^{\phi,a})$, for a type-1 polynomial *P*.

BFF \subsetneq OPT, as OPT contains exponential functions.

Theorem [Kapron and Steinberg [LICS2018]]

 $\texttt{BFF} = \lambda(\llbracket\texttt{OPT} \cap \texttt{FLAR}\rrbracket)_2$

$$\rightarrow$$
 FLAR = Finite LookAhead Revision

Finite LookAhead Revision

Definition [Finite LookAhead Revision - Kapron and Steinberg [LICS2018]]

An OTM is in FLAR, if, for any input, the number of times a query is posed whose size exceeds the size of all previous queries is bounded by a constant.

Example while (x>0){ $y = \phi(x);$ x = x-1;} in FLAR. The constant bound is 0.

Example

while
$$(x < z \&\& y < 8) \{$$

y = $\phi(x);$
x = x+1;

not in FLAR for $\phi = \lambda x.4$ but is in FLR (I will briefly mention this class in the conclusion)

How to get rid of (Oracle Turing) machines?

 \rightarrow Design a typed PL ensuring that computed functions are in OPT \cap FLAR.

Imperative PL on words with oracles

$$\begin{aligned} & \textit{Expressions} \ni E ::= x \mid \texttt{true} \mid \texttt{false} \mid \textit{op}(E, \dots, E) \mid \textit{\phi}(\texttt{E} \upharpoonright \texttt{E}) \\ & \textit{Commands} \ni C ::= x := E; \mid C \mid C \mid \texttt{if}(E) \{C\} \texttt{else}\{C\} \mid \texttt{while}(E) \{C\} \end{aligned}$$

In an oracle call $\phi(w \upharpoonright v)$:

- ▶ ϕ computes a type-1 function on words, i.e. $\phi \in \mathbb{W} \to \mathbb{W}$.
- w is the oracle input.

▶ *v* is the **input bound**:
$$w \upharpoonright v = w_1 \dots w_{|v|}$$
.

Tier-based type discipline

Tiers $\mathbf{k}, \mathbf{k}', \dots$ are security levels (in \mathbb{N}) assigned to Expressions and Commands.

The type system ensures some non-interference properties.

In a tier **k** command:

- \blacktriangleright the program flow cannot be controlled by expressions of a lower tier $\mathbf{k}^- < \mathbf{k}$,
- data of upper tier $\mathbf{k}^+ \geq \mathbf{k}$ cannot increase (in size).

Judgments: $\Gamma, \Delta \vdash C : (\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out})$ with $(\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out}) \in \mathbb{N}^3$

- 1. The tier \mathbf{k} implements the non-interference policy.
- 2. The *innermost* tier \mathbf{k}_{in} is used for declassification.
- 3. The *outermost* tier \mathbf{k}_{out} is used to ensure FLAR on oracle calls.

Tier-based type system: an overview

Typing rules

$$\frac{\vdash \mathbf{x} : (\mathbf{k}_1, \mathbf{k}_{in}, \mathbf{k}_{out}) \quad \vdash E : (\mathbf{k}_2, \mathbf{k}_{in}, \mathbf{k}_{out}) \quad \mathbf{k}_1 \leq \mathbf{k}_2}{\vdash \mathbf{x} := E \ : (\mathbf{k}_1, \mathbf{k}_{in}, \mathbf{k}_{out})}$$
(Asg)

$$\frac{\vdash E: (\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out}) \quad \vdash C: (\mathbf{k}, \mathbf{k}, \mathbf{k}_{out}) \quad \mathbf{1} \le \mathbf{k} \le \mathbf{k}_{out}}{\vdash \texttt{while}(E)\{C\} : (\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out})}$$
(Wh)

$$\frac{\vdash E : (\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out}) \vdash E' : (\mathbf{k}_{out}, \mathbf{k}_{in}, \mathbf{k}_{out}) \quad \mathbf{k} < \mathbf{k}_{in} \leq \mathbf{k}_{out}}{\vdash \phi(E \upharpoonright E') : (\mathbf{k}, \mathbf{k}_{in}, \mathbf{k}_{out})}$$
(Orc)

÷

Romain Péchoux

CNRS, Inria, UL, LORIA

Illustrating example

Program computing the decision problem $\exists n \leq x, \phi(n) = 0$.

y = x; z = false; while($x^1 >= 0$){ if($\phi(y^0 \upharpoonright x^1) == 0$){ z^0 = true; } else {;} x^1 = x^1 - 1; } return z

▶ The program is typable and the while body has tier (1, 1, 1).

• The computed function is in OPT \cap FLAR.

A tier-based characterization of BFF

- Let SAFE be the set of typable programs.
- Let SN be the set of strongly normalizing programs.
- Let [X] be the set of functions computed by programs in X.

Theorem [Hainry-Kapron-Marion-Péchoux [LICS2020]]

 $\mathtt{BFF} = \lambda(\llbracket \mathsf{SAFE} \cap \mathsf{SN} \rrbracket)_2$

Main drawbacks:

- Lambda closure (for completeness)
- Termination assumption (for soundness)

Romain Péchoux

CNRS, Inria, UL, LORIA

How to get rid of the lambda-closure?

Naïve idea: internalize lambda-abstraction and application into the language. \rightarrow cannot be done straightforwardly as it breaks soundness.

Extended language (e_i : e is a type-i object)

(Expressions)	$E ::= x_0 \mid op(E, \ldots, E) \mid x_1(E \restriction E)$
(Statements)	$C ::= [x_0 := E]; C C if(E){C} while(E){C}$
(Procedures)	$P ::= P(\overline{x_1}, \overline{x_0}) \{ C \text{ return } x_0 \}$
(Terms)	$\mathtt{t} ::= \mathtt{x} \mid \lambda \mathtt{x}.\mathtt{t} \mid \mathtt{t} \texttt{@t} \mid \mathtt{call} \ \mathtt{P}(\overline{\{ \mathtt{x}_0 \rightarrow \mathtt{t}_0 \}}, \overline{\mathtt{t}_0})$
(Programs)	$prog ::= t_0 \mid declare P in prog$

Solution: type-1 arguments in a procedure call are restricted to closures $\{x_0 \rightarrow t_0\}$.

Romain Péchoux

Type system

The extended type system just consists of two layers:

- SAFE procedures (using the HKMP[LICS2020] paper),
- ► Simply-typed terms on words W.

Definitions

A program is a **type-i** program if all its λ -abstractions are of order $\leq i$.

- SAFE_i is the set of type-i typable programs.
 - Remark: SAFE₀ is the set of typable programs without lambda-abstraction.
- SN is still the set of strongly normalizing programs.

Example

$$\begin{array}{rcl} \operatorname{prog}(\phi, w) \triangleq \ \operatorname{declare} \ \operatorname{KS}(Y, \ v) & \{ & u := 10; \\ & z := \varepsilon; \\ & \text{while} \ (v^1 \neq 0) \ \{ \ // \ \mathbf{k}_{in} = \mathbf{k}_{out} = \mathbf{1} \\ & v^1 := v - 1; \\ & z^0 := \ Y(z^0 \upharpoonright u^1) \\ & \} \\ & \text{return } z \\ & \} \\ & \text{in call} \ \operatorname{KS}(\{x \rightarrow \phi \ @ \ (\phi \ @ \ x)\}, \ w) \end{array}$$

$$\begin{split} & [\![\operatorname{prog}]\!] \in (\mathbb{W} \rightarrow \mathbb{W}) \rightarrow \mathbb{W} \rightarrow \mathbb{W} \\ & [\![\operatorname{prog}]\!](\phi^{\mathbb{W} \rightarrow \mathbb{W}}, w^{\mathbb{W}}) = F_{|w|}(\phi) \ \text{with} \ \begin{cases} F_0(\phi) = \epsilon \\ F_{n+1}(\phi) = (\phi \circ \phi)(F_n(\phi)^{\leq |10|}) \\ & \text{prog} \in \operatorname{SAFE}_0 \cap \operatorname{SN} \ \text{whereas} \ [\![\operatorname{prog}]\!] \notin \operatorname{OPT} \cap \operatorname{FLAR}. \end{cases}$$

Romain Péchoux

First characterizations of BFF

Characterizations without external lambda-closure:

Theorem [Hainry-Kapron-Marion-Péchoux [FoSSaCS22]]

 $\forall i \geq 0, \ [SAFE_i \cap SN] = BFF$

Surprisingly, the internal lambda-abstraction is not required for completeness.

 \rightarrow Can we weaken the SN requirement?

How to get rid of Strong Normalization?

We consider Size Change Termination (SCT).

General idea

Program: while (x>0){ $y = \phi(x)$; x = x-1; } Size change graph abstraction: $\begin{pmatrix} x \xrightarrow{-1} \\ y \\ y \\ y \end{pmatrix}^{\omega}$

Theorem [Lee, Jones, and Ben Amram [POPL2001]]

"If every infinite computation would give rise to an infinitely decreasing value sequence in the size-change graph, then no infinite computation is possible."

 \rightarrow SCT is not "tractable": PSPACE-complete.

Romain Péchoux

Tractable characterizations of BFF

Completeness is preserved for SCT and for an instance SCP (Ben Amram-Lee [2007]).

Theorem $\forall i \ge 0, \ [SAFE_i \cap SCP_S]] = BFF$

 SCP_S can be decided in time quadratic in the program size.

Theorem [Type inference]

- ▶ $prog \in \bigcup_i SAFE_i \cap SCP_S$ is Ptime-complete (using Mairson[2004]).
- ▶ $prog \in SAFE_0 \cap SCP_S$ is in time cubic in |prog| (using HKMP[2022]).

Romain Péchoux

CNRS, Inria, UL, LORIA

Conclusion

Conclusion

We have obtained **sound** and **complete** characterizations of type-2 polynomial time:

- machine-independent (a typed programming language with procedure calls)
- implicit (no prior knowledge on the bound is required),
- **tractable** (decidable type inference in polytime) \Rightarrow it can be automated.

Open issues

expressive power (capture more false negatives),

• extension to Finite Length Revision (harder, WIP using declassification).

Thank you for your attention !

Romain Péchoux

CNRS, Inria, UL, LORIA