Implicit characterization of the class of Basic Feasible Functionals

Romain Péchoux

CNRS, Inria, Université de Lorraine - LORIA,
* joint work with Emmanuel Hainry, Bruce Kapron and Jean-Yves Marion

Complexity Days 2023

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 1/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Motivations

We aim at providing characterizations of complexity classes:
» machine-independent,

» with no prior knowledge on the complexity of analyzed codes.

If the characterization is tractable then we obtain an automated complexity
analysis for a high-level programming language.

State of the art:
» 30 years of intensive research,
» hundreds of publications,
» some tools: Costa, SPEED, TcT, ...

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 2/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

The Implicit Computational Complexity approach

Methodology

Consider your favorite programming language £ and your favorite complexity class C.
Find a tractable restriction R C L such that [R] =C,

where [X] is the set of functions computed by programs in X.

Examples of (type-1) complexity class C Examples of restriction R

> P, FP, > type systems:

> PSPACE, FPSPACE, > linear logic, sized types, ...
> NP, P interpretation methods,

> PP, BPP, EQP, BQP, » amortized resource analysis,
> > ..

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 3/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

What about type-2 complexity classes?

QEN
. . . \ 7 \ N P e N>
Type-2 objects are functions in (N—-N)x N — N /_e

ouTeuT EN
Type-2 polynomial time is taken to be the class of Basic Feasible Functionals (BFF)

Goal (Open problem for more than 20 years)

Find a tractable technique for certifying type-2 polynomial time complexity.

Rephrasing: Find a tractable restriction R such that [R] = BFF.

N.B.: The problem was solved for type-1 polytime FP by Bellantoni and Cook in 1992.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 4/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

A reminder on type-2 polynomial time

BFF was introduced by Melhorn in 1976.
T is a type-2 bounded iterator:

Theorem [Cook and Urquhart [1989]] I78(e,a) = a

BFF = A\(FPU {Z})> 758 (ix,a) = min(f(ix,Z78(x, a)), g(ix))

A(X)2: type-2 restriction of the simply-typed lambda-closure using constants in X.

Theorem [Kapron and Cook [FOCS1991]]

The set of functionals computable by an Oracle TM (OTM) in time P(|¢], |a|) is
exactly BFF.

Type-2 polynomials and size function are defined by:
> P(X1,X0) i=ceN|Xo | P+P|PxP|Xi(P)
> |¢|(n) = MaX|x|<n ’¢(X)|

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 5/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of type-2 polynomials?

— Type-2 polynomials are not tractable.

Definition [Oracle Polynomial Time (OPT) — Cook [1992]]

Let n»# be the biggest size of a and of an oracle's answer in the run of M(¢, a).
The OTM M is in OPT if its runtime is bounded by P(n??), for a type-1 polynomial P.

BFF C OPT, as OPT contains exponential functions.

Theorem [Kapron and Steinberg [LICS2018]]

BFF = A([OPT N FLAR]),

— FLAR = Finite LookAhead Revision

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 6/20

Motivations Type-2 complexity

Tractable characterizations of BFF Conclusion

Finite LookAhead Revision
Definition [Finite LookAhead Revision - Kapron and Steinberg [LICS52018]]

An OTM is in FLAR, if, for any input, the number of times a query is posed whose size
exceeds the size of all previous queries is bounded by a constant.

while (x>0){
y = ¢(x);
x = x—1;
}
in FLAR.

The constant bound is 0.

Romain Péchoux CNRS, Inria, UL, LORIA

while (x<z && y<8){
y = ¢(x);
X = x+1;

}

not in FLAR for ¢ = Ax.4
but is in FLR (I will briefly mention this
class in the conclusion)

Implicit characterization of BFF 7/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of (Oracle Turing) machines?

— Design a typed PL ensuring that computed functions are in OPT N FLAR.

Imperative PL on words with oracles

Expressions 5 E ::= x | true | false] op(E,...,E) | ¢(E | E)

(E){C}

Commands > C ::= x:=E

In an oracle call ¢(w [v):
> ¢ computes a type-1 function on words, i.e. o € W — W.
> w is the oracle input.

> v is the input bound: w [v =w1...w,,.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 8/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tier-based type discipline

Tiers k, k', ... are security levels (in N) assigned to Expressions and Commands.

The type system ensures some non-interference properties.

In a tier k command:
» the program flow cannot be controlled by expressions of a lower tier k= < k,

> data of upper tier k™ > k cannot increase (in size).

Judgments: T, A= C : (k, kin, kout) with (k, kin, koyr) € N3
1. The tier k implements the non-interference policy.
2. The innermost tier k;, is used for declassification.

3. The outermost tier koy: is used to ensure FLAR on oracle calls.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 9/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tier-based type system: an overview

Typing rules

Fx:(ki, kin, kout) F E: (ko kin, kout) ki < ko

As
l_ X = E : (k17kin> kout) (g)

FE: (k, Kin, kout) FC: (k7 k, kout) 1 <k <kout
- while(E){C} : (k. ki kout)

(Wh)

FE: (k7 kimkout) FE": (kout’ Kin, kout) k <kin < kout

(Orc)
F ¢(E f E/) : (k7 kim kout)

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 10/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

lllustrating example

Program computing the decision problem 3n < x, ¢(n) = 0.
y=x
z = false;
while(x! >= 0){
if(p(y° 1 x') == 0){

20 = true;

} else {;}

xt=x!—1;

}

return z

» The program is typable and the while body has tier (1,1, 1).
» The computed function is in OPT N FLAR.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 11/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

A tier-based characterization of BFF

> Let SAFE be the set of typable programs.
> Let SN be the set of strongly normalizing programs.
» Let [X] be the set of functions computed by programs in X.

Theorem [Hainry-Kapron-Marion-Péchoux [LICS2020]]

BFF = A([SAFE N SN]),

Main drawbacks:

» Lambda closure (for completeness)

» Termination assumption (for soundness)

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 12/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of the lambda-closure?

Naive idea: internalize lambda-abstraction and application into the language.
— cannot be done straightforwardly as it breaks soundness.

Extended language (e: e is a type-i object)

(Expressions) E:= xo|op(E,....,E) | x1(E| E)

(Statements) C:= [x0:=E]; | C C|if(E){C}{C} | while(E){C}
(Procedures) P = P(x1,%0){C return xp}

(Terms) t = x| Ax.t | tOt | call P({xo — to},%0)
(Programs) prog = to | declare P in prog

Solution: type-1 arguments in a procedure call are restricted to closures {xg — to}.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 13/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Type system

The extended type system just consists of two layers:
» SAFE procedures (using the HKMP[LICS2020] paper),
> Simply-typed terms on words W.

Definitions

A program is a type-i program if all its A-abstractions are of order < /.
» SAFE; is the set of type-i typable programs.
» Remark: SAFE; is the set of typable programs without lambda-abstraction.

» SN is still the set of strongly normalizing programs.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 14/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Example
prog(¢,w)= declare KS(Y, v) {
u = 10;
z = ¢;
while (v! # 0) { // kin=kou =1
vl o= v-1;
z0 = Y20 | ul)
¥

return =z

}
in call KS({x — ¢ @ (¢ @ x)}, w)

» [progle (W —->W)—->W > W

rogl(@W—=W Wy — wi Fo(¢) =
> Lprogl(#77%,wT) = Fia () with {Fm(qs)=(¢o¢)(Fn(¢)S'1°')

» prog € SAFEy N SN whereas [prog] ¢ OPT N FLAR.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 15/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

First characterizations of BFF

Characterizations without external lambda-closure:

Theorem [Hainry-Kapron-Marion-Péchoux [FoSSaCS22]]

Vi > 0, [SAFE; N SN] = BFF
Surprisingly, the internal lambda-abstraction is not required for completeness.

— Can we weaken the SN requirement?

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 16/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

How to get rid of Strong Normalization?
We consider Size Change Termination (SCT).

General idea

Program: Size change graph abstraction:
while (x>0){ L .\

y = ¢(x); —

x = x—1; y y
}

Theorem [Lee, Jones, and Ben Amram [POPL2001]]

“If every infinite computation would give rise to an infinitely decreasing value sequence
in the size-change graph, then no infinite computation is possible.”

— SCT is not “tractable”: PSPACE-complete.

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 17/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Tractable characterizations of BFF

Completeness is preserved for SCT and for an instance SCP (Ben Amram-Lee [2007]).

Vi >0, [SAFE; N SCPs] = BFF

SCPs can be decided in time quadratic in the program size.

Theorem [Type inference]

» prog € U;SAFE; N SCPgs is Ptime-complete (using Mairson[2004]).
» prog € SAFEq N SCPgs is in time cubic in |prog| (using HKMP[2022]).

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 18/20

Motivations Type-2 complexity Tier-based typing

Tractable characterizations of BFF Conclusion

Conclusion

Conclusion

We have obtained sound and complete characterizations of type-2 polynomial time:
» machine-independent (a typed programming language with procedure calls)
» implicit (no prior knowledge on the bound is required),

> tractable (decidable type inference in polytime) = it can be automated.

Open issues

> expressive power (capture more false negatives),
> extension to Finite Length Revision (harder, WIP using declassification).

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 19/20

Motivations Type-2 complexity Tier-based typing Tractable characterizations of BFF Conclusion

Thank you for your attention !

IOMY

BFF

Romain Péchoux CNRS, Inria, UL, LORIA Implicit characterization of BFF 20/20

	Main
	Motivations
	Type-2 complexity
	Tier-based typing
	Tractable characterizations of BFF
	Conclusion

