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Abstract— Humanoids can explore the environment not only
through bipedal locomotion but they could also operate like
quadrupeds when trying to scale challenging obstacles. The
ability to change from bipedal to quadruped locomotion could
help humanoid robots to significantly expand the reachable
space to include large obstacles and navigate in disaster
situations. We present an enhanced version of our previ-
ously proposed multi-contact motion planner. The approach
is validated on a humanoid robot COMAN with a multi-
contact task involving climbing of a large wooden obstacle.
Our multi-contact motion planner is initialized with a human
demonstration of the task. Limited-memory BFGS (L-BFGS)
optimization is used by our multi-contact planner to adapt
the demonstrations over contact and static stability costs to
make it suitable for the humanoid robot COMAN. Multi-
contact solutions are generated using QP formulation along
with adaption of priorities of the internal Cartesian tasks for
the humanoid robot.

I. INTRODUCTION

Humanoid research on non-periodic locomotion advanced
relatively slowly in the past decade. However, in the recent
years the state-of-the-art has improved mainly through re-
search on movement synthesis and character animation for
the performance of various actions like getting up, walking,
doing handstands etc. [1], and motion planning for climbing
stairs with hand supports using analysis of various ladder
climbing strategies [2].

For traditional bipedal robot walking the state of the art
has advanced rapidly, but, the main focus is on balancing
the robot via foot stepping [3] on flat or even terrains. These
bipedal walking robots try to avoid any other external contact
with the obstacles in the surrounding environment. In this
work, we want the humanoid robot to make external contacts
with the environment, to gain additional support, to improve
locomotion in even/uneven terrains. This capacity to deal
with all terrains will make humanoids much more helpful in
physical assistance scenarios or disaster response situations.

In the DARPA disaster response finals, most of the hu-
manoid robots failed at some point even with humans-in-the-
loop throughout the process. Although the final challenge
course was a human centered environment, none of the
humanoids tried to take due advantage of their surroundings
and many robots fell due to loss of balance while using only
their feet to maintain balance.
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The approach we use here contains four major steps:
demo of the task and demo sequence tagging, multi-contact
optimization using our algorithm and finally motion planning
with open loop control on the humanoid robot COMAN.
Generally a global planner using A* search algorithm along
with heuristics or RRT planning are used for contact planning
in humanoid robots. Here we perform a human demonstra-
tion of the task, which gives us a proper strategy for a
particular task.

Our multi-contact motion planning algorithm uses the
demonstration sequence to train an initial set of contacts
for the robot links to interact with the obstacle. This also
clearly specifies the goal of the task for our planner. Then
our algorithm optimizes these contacts to find stable contact
points over the obstacle.

II. DEMONSTRATIONS VIA OPTICAL TRACKING

Fig. 1: The demonstration of climbing a table at different contact
stages in a series of snapshots. The demonstrator shows good
enough number of intermediate steps to climb over the table.

A demonstration of climbing the table (used as an obsta-
cle) is performed by the demonstrator. The table’s height is
adjusted to a height, h = 0.65 m such that the person can
easily use both his arms and legs to climb on the table. We
use this demonstration to devise a multi-contact strategy to
overcome obstacles with full-body motions.

Optical markers are used along with an OptiTrack motion
capture system for tracking the marked individual parts in the
cartesian space during the task demonstration as shown in
Fig. 2. Optimal markers are used at places close to both left
and right knees, wrists, elbows and also one on the obstacle
to note the relative reference for the positions recorded. We
use the tracked position and orientation data to extract the
contact plan for the task along with contact references to
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aid as an initial reference for the climbing task. Optical
markers data are used to get the contact reference position,
orientation and sequence of contact placements. At each new
contact step during the demonstration, a mouse click is used
to acknowledge a newly made contact has occurred. The
process of tagging data, discretizes the recorded movements
into different contact stages as shown in Fig. 3. These contact
references are as initialization reference for our multi-contact
motion planning algorithm.

III. MULTI-CONTACT MOTION PLANNING ALGORITHM

The steps involved in the multi-contact motion planning
algorithm are listed. The contact stages from the demonstra-
tions shown in Fig. 1 are used as a initialization for the
planner.

Input: Position references
Output: Stable contact postures

1 while new position reference exists do
2 Initialization with next position references;
3 Formulate cartesian task T using QP;
4 Generate stable posture using common supporting

links;
5 Run the contact position optimizer;
6 Solve for whole body inverse kinematic (IK);
7 end

Algorithm 1: Multi-contact Planning Algorithm

A. Cartesian Task Formulation

Given a Cartesian reference, we can design a task T

defined by its Jacobian J and error e associated with it as

T = (J,e) (1)

These tasks are solved with a Quadratic Programming
(QP) formulation. In a humanoid robot we need multiple
tasks for each kinematic chain like legs and arms. QP based
OpenSoT control library allows such stacks of multiple tasks
to solve for IK by concatenating task Jacobians
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from demo, we define such stack of Cartesian tasks and solve
for contact reference inputs to generate whole body solutions
for a humanoid robot. Further using hard prioritization for
the tasks in stack, we define higher priorities for tasks related
to the support links like legs. The priority table used during
initial and final phases of the task is shown below.

Task Priority 1st Phase 2nd Phase

2 Legs Arms
1 Arms Legs

To guarantee stability at contacts in the robot legs, for
example if we have contact at the left foot we can guarantee
full stability if the projection of the left hip mass centroid
is coincident at foot position. We do this for shoulder mass
position if contact occurs at hands or elbows. We define our

stability cost as norm of projection offset between the contact
support link position and mass position, P
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as,
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where the summation denotes sum of all support mass
position offset when multiple links are providing support for
the robot, which is optimized using L-BFGS optimization.

B. Multiple contact points in the same kinematic chain

We have instances of multiple contact requirements in a
single kinematic chain. For example, in the fourth demon-
strated contact stage in Fig. 3, both elbow J1 and wrists J2
which are parts of the arm kinematic chain are in contact
with the table obstacle. The QP initialization to fails due to
inconsistencies in the task definition, since the rank of the
task Jacobian drops since we have common joints angles i.e.,
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Instead of enforcing hard priorities, we combine these task
with soft priorities to solve them together inside a single QP
problem with Jacobian J

A

as
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where W1 and W2 are weight diagonal matrices through
which we define soft priorities for the tasks by setting
their corresponding diagonal elements to a positive value.
Our algorithm automatically chooses priorities using the
following table to assign the soft priorities accordingly.

Precedence Low High

Kinematic chains
Arms Wrists Elbows Shoulders
Legs Feet Knees Hips

For lower precedence contacts we choose a weight matrix
with diagonal elements set to 0.1 and for higher precedence
contacts we set them to 1.

IV. CONCLUSION

We have presented multi-contact motion planner for
climbing obstacle with the humanoid robot COMAN from
demonstration. The strategy was demonstrated via optical
marker tracking to record the initialization of the planner.
Our multi-contact motion-planner optimizes these references
while ensuring stability and contact constraints to generate
intermediate stable postures. These postures can be used
further by a motion planner to generate solution for obstacle
climbing with the humanoid robot COMAN.
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