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Safe trajectory optimization for whole-body motion of humanoids
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I. INTRODUCTION

The generation of complex whole-body movements for
humanoid robots typically involves the definition of a set
of tasks (i.e., tracking a desired trajectory for the joints or
the end-effectors, either positions or forces), performance
objectives (e.g., minimize the torques), under a set of con-
straints (e.g., joint limits, motors limits) that assure that
the motion is physically feasible on the real robot. For
example, let us consider a stand up from a chair motion
for a humanoid robot. This motion, trivial for a human, is
very challenging for a humanoid. Guaranteeing the safety
of the desired trajectory plays a premiere part in a context
where human-humanoid interaction is involved. Safe motion
generation requires that the robot will perform the global
task while satisfying constraints on the feasibility of the final
motion like mechanical range, limitations stemming from
the interaction with the environment and conservation of the
balance.

Although the research community has converged to a con-
sensus framework to solve this multi-task, multi-constraint
problem (see [1] [2]), typically this framework requires a
great amount of manual tuning and when it is formulated as a
Quadratic Programming (QP) problem, it may not guarantee
that the final solutions will satisfy all the constraints (due to
relaxation).

In this paper we adopt the opposite approach followed in
our previous work [3]. Instead of automatically learning the
task priorities while keeping the tasks fixed, here we resolve
to adopt a predefined blending strategy for the tasks and
optimize the desired task trajectories.

II. METHOD

Given a balance and a posture task, in this work we
propose a framework that learns the optimal values of a
parametrized Center of Mass (CoM) trajectory in the sagit-
tal plane represented as a Radial Basis Functions (RBFs)
network. The balance torque controller of [4] tracks the
desired task trajectory sending joint torque commands to
the robot. In order to learn the trajectory parameters we
repeat the experiments numerous times in simulation. At
the end of each rollout we feed the resulting fitness to
an instance of (1+1)CMA-ES with Covariance Constrained
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Fig. 1: Overview of the proposed method. The balance
controller executes a desired task trajectory, represented by
a parametrized function. An outer learning loop enables the
optimization of the parameters of the task trajectory, taking
into account the constraint violations in an explicit way.

Adaption (CCA) to find an optimal solution that satisfies
the experiment constraints. The integration of the learning
module with an established feedback torque controller lets
us obtain solutions that are robust and that can be easily
extended to multi-contact scenarios. In Figure 1 a scheme
that outlines our method is presented.

III. RESULTS AND FUTURE WORK

We test our method in a simulation of a “stand-up from
the chair” task, to find an optimal CoM trajectory for an iCub
humanoid. The results show that the trajectories computed
with our method are safe and produce better results in terms
of energy consumption and task satisfaction than a hand-
tuned one. Realizing this kind of motion was not possible in
our previous framework where task priorities were optimized.

In order to improve the framework’s resilience against
disturbances and modeling errors, in the future we plan to
leverage transferability approaches for deploying and refining
the solution directly on the real robot. More specifically we
plan to apply a modified version of the "Intelligent Trial and
Error” approach [5], that performs an extensive search of the
parameter space to find multiple optimal solutions and selects
the one that has the best performances on the hardware.
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