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Abstract— In this paper, we propose a formalism for shared
control, which is the problem of defining a policy that blends di-
rect user control and autonomous control. The challenge posed
by any shared autonomy system is to maintain user control
authority while allowing the robot to support the user. Our
proposed solution relies on natural gradients emerging from
the divergence constraint between the robot and the shared
policy. We approximate the Fisher information by sampling a
learned robot policy and computing the local gradient. We use
this as a measure to represent how sensitive the autonomous
policy changes in the local region and augment the user control
when necessary. A user study performed on a manipulation task
demonstrates that our approach allows for more efficient task
completion while keeping control authority against a number
of baseline methods.

I. INTRODUCTION

Shared control has been studied to exploit the maximum
performance of a robot system, by combining human un-
derstanding and decision making with robot computation
and execution capabilities. A linear blending paradigm in-
troduced in Dragan et. al [1] is still widely applied [2]–[4].
In the approach, the amount of arbitration is dependent on
the confidence of user prediction. When the robot predicts
the user’s intent with high confidence, the user often loses
control authority. This has been reported to generate mixed
preferences from users, and some users prefered to keep con-
trol authority despite longer completion times [5], [6]. When
assistance is against the user’s intentions, it can aggravate the
user’s workload [1]; the user “fights” the assistance rather
than gain help from it.

We formulate shared control as an optimization problem
(see Figure 1). The shared control action is chosen to
maximize the user’s internal action-value function while
constraining it to be close to the autonomous robot policy. We
construct the Fisher information matrix F that expresses how
sensitive a distribution changes in the local neighborhood of
the state. When the autonomous robot policy is represented
as a vector field over the state space, the user can maintain
more control authority in regions where the field does not
diverge. On the contrary, at a state where the robot policy is
rapidly changing in the local region (e.g. near an obstacle or
near a goal), the inverse Fisher information matrix adjusts the
user’s actions so that the robot gains more authority. Utilizing
the Fisher information matrix we introduce the term “Natural
gradient shared control”.

We defined a teleoperation task where a user performs
pick-and-place tasks with a simulated robot arm and com-
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Fig. 1: Overview of our method. F is estimated by sam-
pling the robot policy and computing a local gradient. F−1

augments the user policy, resulting in a natural gradient step
update.

pared the quantitative metrics. We show that our shared
control paradigm can assist the user towards accomplishing
the goal while enabling more control authority to the user.

II. METHODS

A. Natural Gradient Shared Control

Let s ∈ S be the state of the system, aH ∈ AH as the
user action, aR ∈ AR be the autonomous robot action, and
u ∈ U be the shared control action. The human and the robot
agent each select actions following their stochastic policies,
πH , and πR. Our goal is to find a shared control policy πS
that solves the following optimization problem.

arg max
ut

QH(st, ut)

subject to KL(πR‖πS) < ε
(1)

The shared control policy is chosen to maximize the user’s
internal action-value function QH(st, ut) at each step. Pre-
dicting QH can be challenging due to interpersonal differ-
ences. Instead, we regard the user action as an estimate of
∇sQH(st, a

H
t ) at each step.

The constraint on the KL-divergence between the robot
policy and the shared policy ensures that the shared pol-
icy does not deviate from the autonomous robot policy.
The problem can be expressed using a Lagrange Mul-
tiplier, assuming a linear approximation of our objective
∇sQH(st, a

H
t ) and a quadratic approximation of the KL-

divergence constraint. This leads to an update rule which



introduces natural gradient adaptation.

st+1 = st + ηF (st)
−1∇sQH(st, a

H
t ) (2)

= st + ηF (st)
−1aHt (3)

= st + ηut (4)

η is the step size and the natural gradient corresponds to
the shared control action ut ∼ πS(·|st, aHt , aRt ). We utilize
the approximation aHt ∝ ∇sQH(st, a

H
t ) in Equation 3. The

proportionality constant is absorbed by the step size η.
The Fisher information matrix F (st) can be interpreted

as the sensitivity of the autonomous robot policy πR to
changes of the parameter. Intuitively, a deterministic robot
policy regressed over the whole state space defines a vector
field. This vector field integrates information about which
optimality and constraint trade-offs are made about the
underlying actions. For example when an obstacle is in an
environment, it acts as a source (positive divergence) in
the vector field resulting in a repulsive action. When the
policy is goal-directed, the goal acts as a sink (negative
divergence). The vectors around the goal point inward. F
measures how sensitive the field changes and emphasizes or
discounts towards certain directions of ut.

B. Computing the Fisher Information Matrix

We approximate F as the curvature of the robot’s action-
value function at a given state:

F (st) = E
πH

[∇s log πR(aRt |st)∇s log πR(aRt |st)T ] (5)

≈ ∇2
sQR(st, at) (6)

≈ 1

2
(∇sãRt,g +∇sã

R,T
t,g ) (7)

πR is represented as a neural network policy that outputs
an optimal velocity towards a known goal given the state
of the environment. We use Locally Weighted Regression
(LWR) to fit a local model Lg using a set of sampled
states and actions inferred using πR. As we consider action
(velocity) as an approximate of the first derivative of the Q-
function, we consider the Jacobian of the robot action w.r.t.
state ∇saRt as the Hessian of the Q-function. ∇sãRt is the
Jacobian computed using the finite difference method with
actions ãRt,g from Lg . We decompose the matrix as a sum
of symmetric and a skew-symmetric matrix and apply the
symmetric matrix.

Figure 2 shows F (s)−1 computed over the state space
with different assistance modes. The ellipse represents the
direction that the user’s action is stretched along. When the
ellipse is close to a circle the user has more control authority
over the system. When the ellipse is narrow, for example near
an obstacle, the robot augments the user’s action towards one
direction.

III. EXPERIMENTS AND RESULTS

A user study with 16 participants (12 male, 4 female) was
conducted to assess the efficacy of our method. We defined a
teleoperation task where the user controls the robot’s gripper
using a joystick to grab a cylinder and bring it to a position

(a) Single goal (b) Belief-weighted
over goals

(c) Obstacle avoidance

Fig. 2: Ellipse plots from the eigenvalues, eigenvectors of
F (s)−1 for (a) a single goal, (b) in the presence of multiple
goals computed as weighted sum over beliefs, (c) obstacle
avoidance
while avoiding a static obstacle. We hypothesized that our
method allows the user to take more control during the task
while ensuring safety and efficiency.

Each user performed three sets of demonstrations, where
each set consisted of four different environments repeated
over the control methods, a total of 16 episodes. The order
of teleoperation methods was random, and the random order
was predefined and balanced over the study. The teleop-
eration methods were as following: Direct Control (DC),
Natural Gradient Shared Control (NG), Linear Blending
(LB), Obstacle Avoidance (OB). For LB, we followed the
“timid” mode suggested in Dragan et.al. [1]. The method OA
provides minimal assistance near the obstacle using a signed
distance function as shown in Figure 2(c).

Overall, our method showed reliable performance in task
execution while still maintaining compliance with user com-
mands. We believe the results are convincing towards pos-
itive user experience and we plan to investigate it in our
future work.

(a) Average time steps (b) Travel distance

(c) Proximity to obstacle (d) Cosine distance

Fig. 3: Boxplots for each control paradigm across all users
for (a) time steps, (b) travel distance, (c) proximity to
obstacle, (d) cosine distance.
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