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I. OVERVIEW

In teleoperation, humans produce action commands for
robotic control that vary in optimality due to factors such
as operator skill or understanding of the robotic system [1].
However, if the user has a poor understanding of the state
the robot is in (e.g. due to control interface limitations),
even particularly skilled operators may struggle to produce
optimal actions. We propose a shared control system for
mitigating suboptimality in user actions caused by improper
understanding of the environment state. To do this, we use
perspective taking to take into account the user’s knowledge
of the environment when interpreting their control signals.

Shared control systems that assist a human user with an
arbitrary goal often learn about this goal from the actions the
user takes [2]. In doing so, the user is often treated as optimal
— or at least noisily-optimal — with respect to choosing
actions at each state [3]. However, this assumption may not
always hold. The user may have some systematic bias due
to a misunderstanding about the robot’s current state, the
system dynamics, or the goal itself. In cases in which the
user has a systematic bias, modeling this bias can enable
shared control systems to assist users by correcting for this
bias before operational commands are sent to the robot.

We are interested in fixing bias which arises due to an
incorrect user estimate of the environment state. Intuitively,
the systematic bias that we wish to model is due to the
limitations of the user’s perspective in remote teleopera-
tion. In remote teleoperation, the user’s knowledge of the
environment is limited according to the data presented to
them by the control interface (e.g. a single camera’s field
of view). Additionally, users often have a limited sense of
the robot’s internal joint limits and the types of singularities
which prohibit it from arbitrary motion at certain states in
the configuration space. In either case, the user selects an
action according to an incomplete or erroneous estimate of
the current environment’s true state. This has the potential to
introduce suboptimality in the control actions the user issues
to the robot. Through perspective taking, we model the user’s
actions as optimal only in the environment state the user had
knowledge of when issuing the command.

II. BACKGROUND

Herman et al. [4] demonstrate the concept of modeling a
user’s systematic bias by creating a framework for estimating

1Connor Brooks is with the Department of Computer Science, University
of Colorado Boulder connor.brooks@colorado.edu

2Daniel Szafir is with the ATLAS Institute and the Depart-
ment of Computer Science, University of Colorado Boulder
daniel.szafir@colorado.edu

an agent’s internal model of system dynamics according
to their actions. Reddy et al. [5] apply a similar approach
to shared control by performing this estimation, then al-
tering the commands the user sends to a robot according
to the mapping from this internal dynamics model to the
true system dynamics. Both of these methods require first
collecting a round of data in which the user interacts with
the system, then performing an offline training step in
which the parameterization of the user’s internal model is
estimated. Finally, the internal model is applied to the user’s
future interactions with the system while assuming that the
user’s internal model remains consistent. While these existing
works focus on a different source of systematic bias than we
do, they demonstrate that correcting a systematic bias can
lead to improved performance in shared control.

Outside the context of shared control, the strategy of
estimating a human’s knowledge about environment or task
state has been shown to be useful for human-robot collab-
oration in contexts such as disambiguating human requests
[6] or improving robot learning from a human teacher [7].
Trafton et al. [8] use a cognitive architecture to simulate a
human’s perspective when responding to requests for help
from a robot assistant. Hiatt et al. [9] extend this approach
by simulating multiple possible human perspectives and
determining which is most likely according to the human’s
observed actions. Likewise, Devin et al. [10] model a hu-
man teammate’s knowledge about a task’s completion status
from their actions to improve team communication. These
prior works demonstrate that perspective taking can improve
understanding of human actions for various types of human-
robot interactions. Our proposal utilizes this idea to mitigate
systematic bias introduced through teleoperation interfaces.

III. FORMALISM

Formally, we model the user as acting within a Markov
Decision Process (MDP) defined by the tuple (S,A, T,R).
We introduce a function representing the user’s perspective
that maps the true state to the user’s understanding of the
state φ : S → S. This mapping represents the systematic
error in the user’s knowledge of the state. For example, in
a control interface that relies on a mounted camera, a state
s may contain obstacles outside the camera’s field of view
while φ(s) contains only the obstacles in view of the camera.

A. Myopic Correction

Correcting the limitations in the user’s perspective involves
inferring what action a∗t the user would have chosen in the
environment state st given their observed action aut in their
erroneous state φ(st). A straightforward way of applying



this correction is to determine what local state the user is
attempting to reach. This state, sut+1, is the immediate goal
of the user’s chosen action:

sut+1 = T (φ(st), a
u
t ) (1)

However, this state may not be reachable in the actual
environment; instead, it is a reachable state within the user’s
perspective-mapped set of states reached by φ. Consequently,
to model the true environment state they were attempting to
reach, we need to reverse the bias mapping:

s∗t+1 = φ−1(sut+1) (2)

Then, we choose the action that minimizes some distance
metric d1 to this desired state:

a∗t = argmin
a∈A

d1(T (st, a), φ
−1(T (φ(st), a

u
t ))) (3)

B. Predictive Correction

This myopic approach performs a local correction, but
it does not take advantage of knowledge that the user is
acting suboptimally in a systematic manner. Alternatively,
we propose utilizing knowledge of φ to prevent situations
in which a∗t is drastically different from aut . That is, by
looking ahead to states in which the user’s selected action
and the closest action for achieving their intended state will
differ greatly, we can make minor adjustments to the robot’s
movement proactively to avoid a potentially jarring mismatch
between user input and robot action.

In order to do this, we look ahead over a finite time horizon
of length n to possible future trajectories. A trajectory ξ
consists of state action pairs from each timestep t to t+ n:

ξt→n = {(st, at), ..., (st+n, at+n)} (4)

We first generate a user-perspective expected trajectory,
ξut→n. In generating this trajectory we assume knowledge
of the action the user would choose at each state. In im-
plementation, this action selection could be estimated by a
separate module that performs inference over user goal or
simply repeatedly applying the user’s last observed action.

ξut = (φ(st), a
u
t ) (5)

ξut+i = (T (st+i−1, a
u
t+i−1), a

u
t+i) for 1 ≤ i ≤ n (6)

We create an objective function for a candidate trajec-
tory that takes into account the difference in expectation
between the user-perspective expected trajectory and the
candidate trajectory. This objective function utilizes two
distance metrics: d1 is a distance metric over states and d2 is
a distance metric over actions. We use temporal discounting
to emphasize the states closest to the current timestep.

h(ξt→n, ξ
u
t→n) =

n∑
i=t

λi−t(αd1(si, φ
−1(sui )) + βd2(ai, a

u
i ))

(7)

The tuning parameters α and β weight the importance
given to matching user expected state and user chosen action,

respectively. At each timestep, we select the first action from
the trajectory that minimizes the objective function.

ξ∗t→n = argmin
ξ
h(ξt→n, ξ

u
t→n) (8)

a∗t ∼ ξ∗t (9)

This approach spreads out a needed correction over several
timesteps, minimizing the occurrence of large corrections
that drastically alter user controls.

IV. FUTURE WORK

Our continued work is primarily focused on developing
methods to efficiently perform the minimization in Eq. 8.
Additionally, we initially assume perfect knowledge of φ
for our proposed approach to mimic situations in which
the user’s misunderstanding of the state is due entirely to
the perspective of the control interface. In future work, we
will also investigate methods for relaxing this assumption by
estimating φ from observed user commands.

Through applying perspective taking to shared control, we
propose fixing a systematic bias that causes users to issue
suboptimal commands. We believe this approach is particu-
larly appropriate to the context of remote teleoperation due to
the limited environment awareness provided to a user through
control interfaces. In general, perspective taking for shared
control allows correction of errors in user understanding of
the environment while retaining user authority in determining
the desired path through the environment.
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