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Abstract— In this work, we propose the generation of a
tube-shaped virtual fixture that guides the operator towards
a target position. This position is obtained through a Human-
Machine Interface (HMI) and it is used to adapt the endpoint
of the virtual fixture by means of a reactive constraint-based
approach. In parallel, a target object is inferred in real-
time through a Bayesian intent estimation algorithm that uses
information coming from a vision system and the HMI. A
shared control strategy is then used to attract the endpoint of
the virtual fixture towards the inferred target object. The path
of this reactive virtual fixture also adapts to avoid collisions
with dynamic obstacles. With our approach, we expect to
reduce the effort and fatigue of the operators when performing
telemanipulation tasks.

I. INTRODUCTION

According to the world health organization, between

250,000 and 500,000 people become spinal cord injured

each year. In order to improve their quality of life, robotic

solutions can be used to aid them in performing daily tasks.

These solutions should not be fully autonomous, since people

with nervous system lesions have the need of recovering

autonomy and they want to feel in control as much as

possible. Thus, researchers have proposed solutions in which

patients can teleoperate robot arms while being assisted by

a computer to perform the task (e.g. [1]).

For this reason, we are working on the development of

assistive strategies for patients with different levels of mobil-

ity. For patients that have very low mobility, a novel invasive

visuomotor Brain-Machine Interface (BMI3) is planned to be

used. Likewise, for patients with higher mobility, other less

invasive HMIs, with suitable number of degrees of freedom

(DoF), are being explored. Nevertheless, the same control

strategies are easily modifiable to match the different HMIs

due to our constraint-based approach.

For assisting the operators during telemanipulation tasks,

researchers often use virtual fixtures to constrain the desired

movement of the robot. In order to deal with the potential

change of the target related to the task, Weber et al. [2]

present a method where a modeled virtual fixture with

immutable shape follows the target. For a similar purpose,
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we propose the generation of a tube-shaped Reactive Virtual

Guidance Fixture (RVGF) that adapt its shape at two levels:

(i) globally, to adapt the target position of the RVGF

towards goals determined by online intent estimation,

while preserving the geometric shape learned from

demonstrations;

(ii) locally, to perform collision avoidance of dynamic

obstacles by deforming locally (i.e. a section of

the RVGF), while overcoming the limitations of the

learned information.

II. METHODOLOGY

Our assistive strategy is implemented within

the constraint-based task specification framework

eTaSL/eTC [3]. This strategy provides robotic assistance by

means of the generation of an RVGF that combines two

different behaviors: (i) an impedance outside a tube-shaped

volume attracts the end effector of the robot towards its

interior (where it can move freely), resulting in effective

guidance for the operator towards the goal; and (ii) an

attraction of the end position of the tube allows the proper

guidance towards intent-inferred targets.

Behavior (i) is obtained by generating the parametrized

path fg(χ, s) of the tube using (1), where b̄(s) represents the

mean of a set of demonstrations. The shape of this path is

encoded within the basis functions f
i
(s), which are obtained

by applying Probabilistic Principal Component Analysis

(PPCA) to a small set of demonstrations obtained through

kinesthetic teaching. These basis functions, depending on

a normalized progress variable s (from 0 to 1), are then

modulated by eTaSL feature variables χi [4]. This allows us

to adapt the RVGF towards new targets while preserving the

learned shape.

fg(χ, s) =

n∑

i=1

χif i
(s) + b̄(s). (1)

Collisions between the RVGF volume and the obstacles

are avoided by placing protective spheres along the RVGF

for different values of s (see Fig. 3). This allows the RVGF to

react and guide the operator through a collision-free volume.

In addition, a set of protective spheres is placed in the gripper

to ensure that there is no collision when the operator moves

the tool close to the boundaries of the RVGF.

In order to deviate from the obstacle, a set of local basis

functions is placed along fg to allow local deformations

of the RVGF. The amplitudes of these basis functions are

constrained to be zero, so that the generated RVGF preferably

has the same shape of fg. However, in presence of obstacles,



the amplitudes (modeled as feature variables) vary, since the

weights of the collision avoidance constraints are higher. This

results in a similar spring-like behavior as the one described

in [5] when interacting with the obstacle.

Behavior (ii) is obtained by means of a shared control

between the operator and the computer. The operator control

input is given by the decoded target position xhmi from an

HMI. On the other hand, the computer control is given by a

Bayesian intent estimation algorithm that infers the desired

target object (selected from a set of objects detected by a

vision system).

This leads to two conflicting constraints eop = fg(χ, 1)−
xhmi → 0 and epred = fg(χ, 1) − xpred → 0, that constrain

the endpoint of fg respectively to xhmi and the position

of the predicted target xpred. The associated weights of

these constraints are modulated according to the posterior

probability P (Opred|xhmi) (see Fig. 1a) and determine who

is in control (see Fig. 1b). This modulation creates a behavior

that attracts the endpoint of the RVGF towards the inferred

target object Opred when P (Opred|xhmi) is above a threshold.

0 0.2 0.4 0.6 0.8 1
P(Opred |x hmi )

0

5

10

C
on

st
ra

in
t W

ei
gh

t

Operator
in control

Both in
control

Computer
in control

Weight of e pred

Weight of e op

(a) (b)

Fig. 1. Shared control that attracts the end position of the RVGF towards
the inferred target object. (a) Constraint weights vs probability, (b) Example
of autonomy regions for 3 objects in a 2D dimensionless space (based on
the Mahalanobis distance).

III. RESULTS AND DISCUSSION

The control strategy was tested in a 7 DoF Kinova Gen3

robot in simulation. An operator with full mobility in the

upper limbs commands the target position by using a joystick

with the left hand, and controls the position of end effector

by using a 3DConnexion SpaceMouse with the right hand4.

Fig. 2. Snapshots of online change of intention in simulation when the
target position is continuously shifted from one target object to another.
The red sphere represents the target position, the blue spheres represent
known objects, the opaque yellow path represents the center of the RVGF
(equal to fg(χ, s) when there are no obstacles), and the translucent yellow
path represents the tube of the RVGF.

Fig. 2 shows how an RVGF adapts when the goal position

xhmi is continuously shifted from one object to another by

4This input mode is for demonstration purposes only.

a joystick. The goal position coincides with the position of

the upper object in snapshot I and starts moving towards

the bottom left object. Snapshot II shows how the RVGF

adapts towards xhmi since P (Opred|xhmi) is low (left section

of Fig.1a). In snapshot III the middle section depicted in

Fig.1a is reached and the autonomy of the operator and the

computer is weighted. Finally, in snapshot IV xhmi is close

enough to the object and the end position of the RVGF

becomes the position of the object. The parametrized path (1)

was generated with PPCA from five demonstrations.

Fig. 3 shows how the robot and the RVGF behave when a

dynamic obstacle approaches, while the operator controls the

position of the end effector with the SpaceMouse. The RVGF

pulls the end effector towards the inner part of the tube-

shaped collision-free volume with a specified impedance.

Observe in snapshots II and III how the RVGF adapts its

shape due to the collision constraints with the protective

spheres. Afterwards, in snapshot IV it can be observed how

the RVGF recovers its original shape (given by the path fg).

Fig. 3. Snapshots of dynamic obstacle avoidance in simulation. The protec-
tive spheres placed along the RVGF and the gripper are depicted in green
and in orange, respectively, and the moving obstacle is represented by the
purple sphere.

The orientation Rtcp(sa) of the end effector (see Fig. 3) is

autonomously controlled from an initial to a final orientation

(the latter will be provided by a vision system). Notice that

Rtcp(sa) is a function of the actual progress variable sa,

which indicates the progress of the end effector along the

path fg(χ, s).
Operators are expected to be able to control the robot

without any significant effort or previous training. In a later

phase we plan to perform clinical trials in a physical setup

for validation.
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