
Combining Multi-class SVMs with Linear Ensemble

Methods that Estimate the Class Posterior Probabilities

Yann Guermeur

LORIA-CNRS

Campus Scienti�que, BP 239

54506 Vand÷uvre-lès-Nancy Cedex, France

(e-mail: Yann.Guermeur@loria.fr)

January 8, 2013

Running Title: Linear ensemble methods for M-SVMs

Keywords: multi-class support vector machines, ensemble methods, multivariate linear

models, class posterior probability estimates, capacity control

Mathematics Subject Classi�cation: 68T10, 62G08



Abstract

Roughly speaking, there is one main model of pattern recognition support vec-

tor machine, with several variants of lower popularity. On the contrary, among the

di�erent multi-class support vector machines which can be found in the literature,

none is clearly favoured. On the one hand, they exhibit distinct statistical properties.

On the other hand, multiple comparative studies between multi-class support vector

machines and decomposition methods have highlighted the fact that each model has

its advantages and drawbacks. These observations call for the evaluation of combina-

tions of multi-class support vector machines. In this article, we study the combination

of multi-class support vector machines with linear ensemble methods. Their sample

complexity is low, which should prevent them from over�tting, and the outputs of two

of them are estimates of the class posterior probabilities.

1 Introduction

The inferential principles of most of the models developed for pattern recognition share

a common property: they do not change fundamentally with the number of categories.

This is not the case for the support vector machines (SVMs). Initially, Vapnik and his

co-authors devised a (1-norm) machine dedicated to the computation of dichotomies [5].

Although bi-class variants of this machine exist that exhibit appealing properties, such as

the 2-norm SVM [5] or the least squares SVM [25], their use has remained marginal so

far. The �rst studies dealing with the use of SVMs for multi-category classi�cation report

results obtained with decomposition methods [24] involving Vapnik's machine. Multi-class

support vector machines (M-SVMs) were only introduced three years later [31].

During the last decade, many M-SVMs and decomposition methods involving bi-class

SVMs have been introduced and evaluated (see [9, 11] for a survey). Currently, the atten-

tion of the community is focused on four main models of M-SVMs: the model of Weston

and Watkins [31], the one of Crammer and Singer [6], the one of Lee, Lin, and Wahba

[17] and the M-SVM2 [12]. From an analytical point of view, their learning problems can

be seen as straightforward extensions of those of bi-class SVMs. However, they exhibit

distinct statistical properties (see for instance [19, 26] for analyses of their consistency).

In recent years, several comparative studies between M-SVMs and decomposition methods

have been published [8, 15]. In short, they establish that in practice, no model is uni-

formly superior or inferior to the others with respect to the standard criteria: prediction

accuracy, sparsity, computational complexity, etc. In accordance with what was predicted
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by the theory, the behaviours observed are di�erent. Strangely enough, to the best of

our knowledge, nobody has tried so far to take bene�t of that phenomenon by combining

di�erent M-SVMs. Filling this void is the subject of this article. More precisely, we deal

with the combination of M-SVMs with two requirements in mind: the outputs must be ex-

ploitable class posterior probability estimates and the sample complexity of the combiners

must be low. The �rst requirement is motivated by the will to make the post-processing of

the outputs easier. Indeed, it is well know that none of these machines produces outputs

from which class posterior probability estimates can be derived straightforwardly. As for

the second requirement, it simply stems from the fact that over�tting is one of the main

limiting factors in the �eld of model combination.

Taking our inspiration from the works of Breiman and Friedman dealing with multi-

variate regression [4], we propose to combine the post-processed outputs of M-SVMs with

linear ensemble methods. These methods are based on a multivariate linear model and

di�er with respect to their objective function. Their sample complexity can be upper

bounded thanks to the use of a γ-Ψ-dimension [10] and two of them generate class pos-

terior probability estimates. Their use requires to post-process beforehand the outputs of

the machines so that they are nonnegative and sum to one. This is obtained by applying

a polytomous logistic regression.

The organization of the paper is as follows. Section 2 introduces the M-SVMs through

our generic model encompassing all of them. Section 3 is devoted to the de�nition and

statistical analysis of the linear ensemble methods. Their implementation and assessment

are addressed in Section 4. At last, we draw conclusions and outline our ongoing research

in Section 5. To make reading easier, proofs have been gathered in appendix.

2 Multi-class support vector machines

The theoretical framework for the M-SVMs is the one of large margin multi-category clas-

si�ers [10]. It is summarized below.

2.1 Theoretical framework

We consider the case of Q-category classi�cation problems with Q ∈ N\ [[ 0, 2 ]]. Each object

is represented by its description x ∈ X and the set Y of the categories y can be identi�ed

with the set of indices of the categories: [[ 1, Q ]]. We assume that (X ,A) and (Y,B) are

measurable spaces and the link between descriptions and categories can be characterized
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by an unknown probability measure P on the measurable space (X × Y,A⊗ B). (X,Y )

is a random pair with values in X × Y, distributed according to P . We are given a class

G of functions g = (gk)16k6Q from X into RQ. By default, it is supposed to be of in�nite

cardinality. To each function g in G corresponds a decision rule dg from X into [[ 1, Q ]]
⋃
{∗}

de�ned as follows:

∀x ∈ X ,

if ∃k ∈ [[ 1, Q ]] : gk(x) > maxl 6=k gl(x), then dg(x) = k

else dg(x) = ∗

where ∗ denotes a dummy category introduced to deal with the cases of ex æquo. In that

context, the learning problem consists in minimizing over G the risk P (dg (X) 6= Y ). In

practice, since P is unknown, the risk cannot be used directly as objective function. The

optimization process, called training, makes use of a training sample, i.e., an m-sample

Dm = ((Xi, Yi))16i6m made up of independent copies of (X,Y ), to infer knowledge on P .

2.2 Class of functions and learning problem

De�ning a bi-class SVM is simple once the concept of maximum margin hyperplane [28]

has been introduced. This initial linear separator can be turned into a nonlinear separator

(in the description space), the hard margin SVM [3], by substituting in the formulas the

Euclidean inner product by a kernel, i.e., a real-valued positive type function [1]. The model

is then linear in the reproducing kernel Hilbert space (RKHS) [1] spanned by the kernel.

Finally, tolerance to misclassi�cations is obtained by introducing slack variables in the

constraints and the objective function of the learning problem. This last model is called

the soft margin SVM [5]. Unfortunately, the concept of maximum margin hyperplane

does not extend nicely to the multi-class case. One can �nd in this di�culty the main

reason why among the di�erent models of M-SVM, none is clearly favoured, and the �rst

unifying de�nition of this family of machines, introduced with minor di�erences by several

researchers (see for instance [33, 19, 10]), is recent. Its main drawback rests in the fact

that it does not cover the class of quadratic loss M-SVMs [12]. In [11], we introduced the

�rst generic model of M-SVM encompassing all the machines of this kind published so far.

In the sequel, the M-SVMs are considered as instances of this model. To keep the article

self-contained, the rest of the section is devoted to its presentation. Given κ, a real-valued

positive type function on X 2, a Q-category M-SVM with kernel κ operates on a vector

space of RQ-valued functions: Hκ,Q. This class is derived from another one, Hκ,Q, which

is endowed with a structure of RKHS of RQ-valued functions according to the de�nition
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provided in Section 6 of [30].

De�nition 1 (RKHS of RQ-valued functions Hκ,Q) Let X be a non empty set and

Q ∈ N \ [[ 0, 2 ]]. Let κ be a real-valued positive type function on X 2 and let κ̃ be the real-

valued positive type function on (X × [[ 1, Q ]])2 deduced from κ as follows:

∀
(
x, x′

)
∈ X 2, ∀ (k, l) ∈ [[ 1, Q ]]2 , κ̃

(
(x, k) ,

(
x′, l

))
= δk,lκ

(
x, x′

)
where δ is the Kronecker symbol. For each (x, k) in X × [[ 1, Q ]], let us de�ne the RQ-valued

function κ̃
(Q)
x,k on X by the formula

κ̃
(Q)
x,k (·) = (κ̃ ((x, k) , (·, l)))16l6Q . (1)

The RKHS of RQ-valued functions at the basis of a Q-category M-SVM whose kernel is

κ,
(
Hκ,Q, 〈·, ·〉Hκ,Q

)
, consists of the linear manifold of all �nite linear combinations of

functions of the form (1) as (x, k) varies in X × [[ 1, Q ]], and its closure with respect to the

inner product

∀
(
x, x′

)
∈ X 2, ∀ (k, l) ∈ [[ 1, Q ]]2 , 〈κ̃(Q)

x,k , κ̃
(Q)
x′,l 〉Hκ,Q

= κ̃
(
(x, k) ,

(
x′, l

))
.

Proposition 1 (Alternative characterization of Hκ,Q) Let X be a non empty set and

Q ∈ N \ [[ 0, 2 ]]. Let κ be a real-valued positive type function on X 2 and let
(
Hκ, 〈·, ·〉Hκ

)
be

the corresponding RKHS. Then, Hκ,Q = HQ
κ . Furthermore, the inner product of Hκ,Q can

be expressed as a function of the inner product of Hκ as follows:

∀
(
h̄, h̄′

)
∈ H2

κ,Q, h̄ =
(
h̄k
)

16k6Q , h̄
′ =

(
h̄′k
)

16k6Q , 〈h̄, h̄
′〉Hκ,Q

=

Q∑
k=1

〈h̄k, h̄′k〉Hκ
.

De�nition 2 (Class of functions Hκ,Q) Let X be a non empty set and Q ∈ N \ [[ 0, 2 ]].

Let κ be a real-valued positive type function on X 2 and let Hκ,Q be the class of functions

derived from κ according to De�nition 1. Let {1} be the one-dimensional space of real-valued

constant functions on X . The class of functions at the basis of a Q-category M-SVM whose

kernel is κ is

Hκ,Q = Hκ,Q ⊕ {1}Q = (Hκ ⊕ {1})Q .

For all x in X , κx denotes the element of Hκ such that for all x′ in X , κx (x′) = κ (x, x′).

For all h in Hκ,Q, there exist h̄ =
(
h̄k
)

16k6Q ∈ HQ
κ and b = (bk)16k6Q ∈ RQ such that

∀x ∈ X , h (x) = h̄ (x) + b =
(
〈h̄k, κx〉Hκ

+ bk
)

16k6Q
.
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Thus, the functions in Hκ,Q can also be seen as multivariate a�ne functions on Hκ. For

dm = ((xi, yi))16i6m in (X × [[ 1, Q ]])m, RQm (dm) denotes the subset of RQm made up of

the vectors v = (vt)16t6Qm satisfying:(
v(i−1)Q+yi

)
16i6m

= 0m. (2)

For the sake of simplicity, the components of the vectors of RQm (dm) are written with two

indices, i.e., vik in place of v(i−1)Q+k, for (i, k) in [[ 1,m ]]× [[ 1, Q ]]. Thus, (2) simpli�es into

(viyi)16i6m = 0m. For n in N∗, letMn,n (R) be the algebra of n× n matrices over R. Let

MQm,Qm (dm) be the subset ofMQm,Qm (R) made up of the matrices M = (mtu)16t,u6Qm

satisfying:

∀j ∈ [[ 1,m ]] ,
(
mt,(j−1)Q+yj

)
16t6Qm

= 0Qm.

Our generic model of M-SVM is de�ned as follows.

De�nition 3 (Generic model of M-SVM, De�nition 4 in [11]) Let X be a non empty

set and Q ∈ N \ [[ 0, 2 ]]. Let κ be a real-valued positive type function on X 2. Let Hκ,Q

and Hκ,Q be the two classes of functions induced by κ according to De�nitions 1 and 2.

Let PHκ,Q
be the orthogonal projection operator from Hκ,Q onto Hκ,Q. For m ∈ N∗, let

dm = ((xi, yi))16i6m ∈ (X × [[ 1, Q ]])m and ξ ∈ RQm (dm). A Q-category M-SVM with ker-

nel κ and training set dm is a large margin discriminant model trained by solving a convex

quadratic programming (QP) problem of the form

Problem 1 (Learning problem of an M-SVM, primal formulation)

min
h,ξ

{
‖Mξ‖pp + λ

∥∥PHκ,Q
h
∥∥2

Hκ,Q

}

s.t.



∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , K1hyi(xi)− hk(xi) > K2 − ξik

∀i ∈ [[ 1,m ]] , ∀(k, l) ∈ ([[ 1, Q ]] \ {yi})2 , K3 (ξik − ξil) = 0

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , (2− p)ξik > 0

(1−K1)
∑Q

k=1 hk = 0

where λ ∈ R∗+, M ∈ MQm,Qm (dm) is a matrix of rank (Q− 1)m, p ∈ {1, 2}, (K1,K3) ∈

{0, 1}2, and K2 ∈ R∗+. If p = 1, then M is a diagonal matrix.

2.3 Discussion

The reformulations of the learning problems of the four main M-SVMs evoked in introduc-

tion as instances of Problem 1 can be found in [11]. Looking at this problem, it appears
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clearly that even though the concept of maximum margin hyperplane is no longer at the

origin of the M-SVMs, the meaning of the values taken by their outputs remains geometri-

cal. Indeed, denoting Hk,l the hyperplane separating categories k and l in the RKHS Hκ,

for all x in X , the distance between κx and Hk,l is given by:

d (κx, Hk,l) =
|hk(x)− hl(x)|∥∥h̄k − h̄l∥∥Hκ

.

In contrast, the values of the outputs do not provide directly class posterior probability

estimates.

3 Linear ensemble methods

For all n in N∗, let Un be the unit (n−1)-simplex, i.e., Un =
{
u = (up)16p6n ∈ Rn+ :

∑n
p=1 up = 1

}
.

In this section, we make the hypothesis that N classi�ers (functions from X into RQ) are

available to perform the classi�cation task of interest. Their outputs are supposed to be

nonnegative and sum to one, so that they belong to UQ. We �rst give a general description

of the multivariate linear model (MLM) at the basis of the combiners considered. The

linear ensemble methods (LEMs) are obtained by minimizing over this class of functions

di�erent objective functions derived from convex loss functions.

3.1 Multivariate linear model

Let g(j) =
(
g

(j)
k

)
16k6Q

be the jth classi�er. Let g̃ denote the function from X into UNQ

obtained by appending the component functions of the classi�ers g(j), i.e., g̃ =
(
g(j)
)

16j6N .

Precisely, g
(j)
k is its component function of index (j − 1)Q+ k.

De�nition 4 (Multivariate linear model) We consider the multivariate linear model

parameterized by the matrix B ∈MQ,NQ (R) such that

∀x ∈ X , gB(x) = Bg̃(x)

s.t. ∀v ∈ UNQ , Bv ∈ UQ.

This model generalizes the convex combination gΘc =
∑N

j=1 Θc,jg
(j) with Θc = (Θc,j)16j6N ∈

UN . The transposes of the rows of B are denoted βk, so that the model can be rewritten

as:

∀x ∈ X , ∀k ∈ [[ 1, Q ]] , (gB)k(x) = gβk(x) = βTk g̃(x). (3)
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We denote β = (βk)16k6Q ∈ RNQ2
and use alternatively gβ to designate gB. For the sake

of interpretability, the general term of B (or β) is written with three indices, i.e., βkjl (βkjl

is the component of vector βk of index (j − 1)Q+ l). This provides a simple reformulation

of (3):

∀x ∈ X , ∀k ∈ [[ 1, Q ]] , gβk(x) =

N∑
j=1

Q∑
l=1

βkjlg
(j)
l (x).

The convex combination is the degenerate case obtained by setting βkjl = Θc,jδk,l. We

de�ne:

∀ (k, j) ∈ [[ 1, Q ]]× [[ 1, N ]] , β′kj = min
16l6Q

βkjl.

For all n in N∗, let 1n be the vector of Rn whose components are all equal to 1. The

constraint ∀v ∈ UNQ , Bv ∈ UQ de�nes a convex polytope in RNQ2
.

Proposition 2 The expression of the system of constraints of the MLM as a function of

the components of matrix B (vector β) is:
∀k ∈ [[ 1, Q ]] ,

∑N
j=1 β

′
kj > 0

∀j ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q− 1 ]] ,
∑Q

k=1 (βkjl − βkjQ) = 0

1TNQ2β = Q

.

3.2 Generic de�nition of a linear ensemble method

We consider LEMs corresponding to choosing the matrix B as a sample-based minimizer

of a convex risk functional subject to the constraints of Proposition 2.

De�nition 5 (Linear ensemble method) Given a convex loss function `LEM, a linear

ensemble method trained on dm is an instance of the MLM whose matrix of parameters,

B∗, is obtained by solving the following convex programming problem:

Problem 2

min
B

m∑
i=1

`LEM (g̃ (xi) , yi, B)

s.t. ∀v ∈ UNQ , Bv ∈ UQ.

Remark 1 Problem 2 is underdetermined. This is due to the fact that the predictors

g
(j)
l (x) are linearly dependent. Let

(
UNQ

)⊥
=
{
w ∈ RNQ : ∀v ∈ UNQ , wT v = 0

}
. If β∗ is

an optimal solution of Problem 2 and γ ∈
{(

UNQ

)⊥}Q
, then β∗ + γ is also an optimal

solution of Problem 2.
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Since we are only looking for one optimal solution of Problem 2, the linear dependency

of the predictors can be turned into an advantage by making use of Remark 1 to apply a

restriction on the feasible region keeping the quality of the optima unchanged while simpli-

fying computation. The restriction systematically considered in the sequel is characterized

by Proposition 3.

Proposition 3 Irrespective of the nature of `LEM, there is an optimal solution of Problem 2

which belongs to the nonnegative hyperorthant, i.e., to the convex polytope VN,Q given by:
β ∈ RNQ

2

+

∀j ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q− 1 ]] ,
∑Q

k=1 (βkjl − βkjQ) = 0

1TNQ2β = Q

.

An additional bene�t of this restriction is that the set of constraints is directly expressed in

standard form. Above all, it makes it possible to characterize the LEMs as implementing

a two-level weighting of the predictors. This weighting is de�ned by Proposition 4.

Proposition 4 (Alternative characterization of VN,Q) A vector β in RNQ2
belongs to

VN,Q if and only if there exists a vector Θ = (Θj)16j6N in UN and a vector θ in [0, 1]NQ
2

satisfying

∀ (j, l) ∈ [[ 1, N ]]× [[ 1, Q ]] , (θkjl)16k6Q ∈ UQ

such that

∀ (j, l) ∈ [[ 1, N ]]× [[ 1, Q ]] , (βkjl)16k6Q = Θj (θkjl)16k6Q .

This proposition highlights the di�erence between an LEM (with β in VN,Q) and a con-

vex combination. With a convex combination, each predictor g
(j)
l (x) gives its �vote� to

the corresponding category (θkjl = δk,l), and this vote is weighted by the weight of the

corresponding classi�er, Θc,j . With an LEM, each predictor can split its vote between the

di�erent categories ((θkjl)16k6Q ∈ UQ). The introduction of this degree of freedom can

a�ect the weighting of the classi�ers, i.e., for a given loss function, one can have Θ∗ 6= Θ∗c .

3.3 Estimation of the class posterior probabilities

In this subsection, we focus on two natural choices for the loss function `LEM that give

rise to class posterior probability estimates. For all k in [[ 1, Q ]], let tk denote the one of Q

coding of category k, i.e., tk = (δk,l)16l6Q. The quadratic loss `Quad is de�ned as:

∀ (x, y, β) ∈ X × Y × VN,Q, `Quad (g̃(x), y, β) =
1

2
‖ty − gβ (x)‖22 .
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Let G̃ be the matrix of Mm,NQ (R) such that its row of index i is the transpose of the

vector g̃ (xi). For all k in [[ 1, Q ]], let yk = (δyi,k)16i6m ∈ {0, 1}
m and let y = (yk)16k6Q ∈

{0, 1}Qm. The objective function corresponding to the quadratic loss is given by:

JQuad (β) =
1

2
βT
{
IQ ⊗

(
G̃T G̃

)}
β −

{
yT
(
IQ ⊗ G̃

)}
β

where ⊗ denotes the Kronecker product. The minimization of JQuad (β) subject to β ∈

VN,Q is a convex QP problem. The expression of the cross-entropy loss `CE is:

∀ (x, y, β) ∈ X × Y × VN,Q, `CE (g̃(x), y, β) = −
Q∑
k=1

δy,k ln (gβk (x)) .

The expression of the corresponding objective function is

JCE (β) = −
m∑
i=1

Q∑
k=1

δyi,k ln
(
βTk g̃ (xi)

)
.

The minimization of JCE (β) subject to β ∈ VN,Q is a convex programming problem.

To specify the way those two LEMs estimate the class posterior probabilities, we need

to introduce additional notations. For all x in X , let Px be the probability measure on Y

given by:

∀k ∈ [[ 1, Q ]] , Px (k) = P (k | x) .

For all x in X and all β in VN,Q, let Px,β be the probability measure on Y given by:

∀k ∈ [[ 1, Q ]] , Px,β (k) = gβk (x) .

Furthermore, let DKL denote the Kullback-Leibler divergence. The aforementioned speci-

�cation is provided by the following proposition.

Proposition 5 Irrespective of the nature of `LEM, let β
∗ (m) = (β∗k (m))16k6Q in VN,Q be

an optimal solution of Problem 2 with Dm as training sample. Then if the loss function is

the quadratic one,

EX

{
Q∑
k=1

[
P (k | X)− gβ∗k(m) (X)

]2
}

P−−−−−−→
m−→+∞

inf
β∈VN,Q

EX

{
Q∑
k=1

[P (k | X)− gβk (X)]2
}
,

(4)

whereas with the cross-entropy loss we get

EX
[
DKL

(
PX

∥∥ PX,β∗(m)

)] P−−−−−−→
m−→+∞

inf
β∈VN,Q

EX [DKL (PX ‖ PX,β)] . (5)

9



The proof of Proposition 5 is inspired from the proofs of similar results obtained for

neural networks (see for instance [22]). There are however two fundamental di�erences

regarding the asymptotic behaviour. On the one hand, the classes of functions at the

basis of the neural networks considered are universal approximators [13], unlike the MLM.

This means that in the �rst case, the approximation error could be null, whereas in the

second case, it should be positive. On the other hand, an advantage of the LEMs over

the aforementioned neural networks, for which the training algorithm may get stuck in

local (suboptimal) minima, is that since Problem 2 is a convex programming problem,

the training procedure systematically produces an optimal solution. In other words, the

estimation error should asymptotically be null. This analysis calls for a justi�cation of the

choice of an LEM. As was pointed out in the introduction, it rests on our concern to devise

combiners of low capacity, with the aim to avoid over�tting. We conjecture that in many

practical cases of pattern recognition, the capacity of a combiner should be superior to that

of a simple convex combination and inferior to that of a neural network (or an M-SVM).

The quality of the class posterior probability estimates is primarily governed by three

factors: the number of classi�ers combined, the nature of their outputs, and the correlation

of their errors. Obviously, this quality will be all the better as the predictors g
(j)
k (x) are

themselves good estimates of those probabilities. This should be taken into account when

processing the outputs of the M-SVMs so as to obtain vectors in UQ (see Section 4).

3.4 Model selection with the `1 norm

The main advantage of the choice of the `1 norm in place of the `2 one is well known in

machine learning: it leads to sparse solutions. In the framework of our study, instantiating

`LEM with

∀ (x, y, β) ∈ X × Y × VN,Q, ``1 (g̃(x), y, β) = ‖ty − gβ (x)‖1

produces the following linear programming (LP) problem:

Problem 3

min
β

−
[
m∑
i=1

(tyi ⊗ g̃ (xi))

]T
β


s.t. β ∈ VN,Q.

The sparsity of the optimal solutions of Problem 3 can be characterized exactly. This calls

for the characterization of the extreme points of VN,Q.
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Lemma 1 (Extreme point of VN,Q) A vector β in VN,Q is an extreme point of VN,Q if

and only if

∃j0 ∈ [[ 1, N ]] :

∀l ∈ [[ 1, Q ]] , ∃k0 (l) ∈ [[ 1, Q ]] : (βkj0l)16k6Q = tk0(l)

∀j ∈ [[ 1, N ]] \ {j0} , ∀ (k, l) ∈ [[ 1, Q ]]2 , βkjl = 0
. (6)

Remark 2 A vector β0 in VN,Q is an extreme point of VN,Q if and only if

‖β0‖2 = max
β∈VN,Q

‖β‖2 =
√
Q.

The following proposition is a direct consequence of Lemma 1.

Proposition 6 There exists an optimal solution β∗ = (β∗k)16k6Q of Problem 3 that can be

characterized as follows: there exists j0 in [[ 1, N ]] and a map k0 from [[ 1, Q ]] to itself such

that

∀k ∈ [[ 1, Q ]] , gβ∗k =
∑

l:k0(l)=k

g
(j0)
l . (7)

Corollary 1 Let us consider the LEM whose learning problem is speci�ed by Problem 3.

Keeping the notations of Proposition 6, it appears that except in pathological cases, the map

k0 should be the identity, with the consequence that gβ∗ = g(j0): the LEM is in fact a model

selection method.

3.5 Sample complexity of the linear ensemble methods

To compute the sample complexity of the LEMs, we derive an upper bound on the capacity

of the MLM. To that end, we consider an extended de�nition of this model, corresponding

to changing its domain for UNQ . Indeed, the bound only depends on the predictor vector

through the domain in which it takes its value (irrespective of the nature of its components).

The extension of De�nition 4 is thus:

∀β = (βk)16k6Q ∈ VN,Q, gβ : UNQ −→ UQ

v 7→ gβ(v) =
(
βTk v

)
16k6Q .

In [10], we enriched the Vapnik-Chervonenkis (VC) theory of large margin multi-

category classi�ers by proving that for the classes of functions at the basis of these classi-

�ers, the appropriate generalizations of the standard capacity measure of the binary models,

the VC dimension [29], are the γ-Ψ-dimensions. Their use is based on the application of

margin operators. The operator needed to characterize the capacity of the MLM is the ∆

one.
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De�nition 6 (∆ operator) Let G be a class of functions on a set X taking their values

in RQ. ∆ is de�ned as an operator on G such that:

∆ : G −→ ∆G

g 7→ ∆g = ((∆g)k)16k6Q

∀x ∈ X , ∆g(x) =
1

2

(
gk(x)−max

l 6=k
gl(x)

)
16k6Q

.

The γ-Ψ-dimension used is a scale-sensitive extension of the Natarajan dimension [20].

De�nition 7 (Natarajan dimension with margin γ) Let G be a class of functions on

a set X taking their values in RQ. For γ in R∗+, a subset sXn = {xi : 1 6 i 6 n} of X is

said to be γ-N-shattered by ∆G if there is a set I (sXn) = {(i1 (xi) , i2 (xi)) : 1 6 i 6 n} of

n pairs of distinct indices in [[ 1, Q ]] and a vector c = (ci)16i6n in Rn such that, for each

vector y = (yi)16i6n in {−1, 1}n, there is a function gy in G satisfying

∀i ∈ [[ 1, n ]] ,

 if yi = 1, (∆gy)i1(xi)
(xi)− ci > γ

if yi = −1, (∆gy)i2(xi)
(xi) + ci > γ

.

The Natarajan dimension with margin γ of the class ∆G, N-dim(∆G, γ), is the maximal

cardinality of a subset of X γ-N-shattered by ∆G, if this cardinality is �nite. If no such

maximum exists, ∆G is said to have in�nite Natarajan dimension with margin γ.

Let Gβ = {gβ : β ∈ VN,Q}. An upper bound on N-dim(∆Gβ, γ) is provided by Theorem 1.

Theorem 1 (Upper bound on the capacity of the MLM)

∀γ ∈
(

0,
1

2

]
, N-dim (∆Gβ, γ) 6

(
Q

2

)
NQ

4γ2
. (8)

For γ > 1
2 , N-dim (∆Gβ, γ) = 0. Theorem 1 thus deals with the nontrivial case. In

conjunction with Theorem 4.1 in [10], it can be used to optimize the split of the training

set into data used to train the M-SVMs, their post-processing, and the selected LEM. It

is noteworthy that for the di�erent models of interest, a guaranteed risk can be obtained

that involves an alternative measure of capacity: the Rademacher average [7].

4 Implementation and assessment of the linear ensemble meth-

ods

Since the M-SVMs do not take their values in UQ, their outputs must be post-processed

prior to being combined. This post-processing is all the more important as it performs a
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LEM

Logistic reg. 1 Logistic reg. N... ...

M−SVM N... ...

Logistic reg. j

M−SVM jM−SVM 1Penalized convexified error rate

Cross−entropy

gβ(x)

h(j)(x)h(1)(x)

g(1)(x) g(j)(x)

x

h(N)(x)

g(N)(x)

Quadratic error

Cross-entropy

Figure 1: Flowchart of the computation of the outputs of an LEM. For each level, the set

of possible training criteria is mentioned on the left.

transition between models based on di�erent notions of risk. The objective function of an

M-SVM is more directly related to the ultimate criterion, the recognition rate, than the

objective function of an LEM (using the quadratic loss or the cross-entropy loss) with the

problematic consequence that there is no guarantee that the combination should improve

this rate. This calls for the choice of a post-processing maximizing the correlation between

the behaviours assessed by means of the di�erent measures of prediction accuracy involved.

The solution we propose is a variant of the polytomous logistic regression model [14]. Thus,

the functional dependency between an input x ∈ X and the corresponding output of an

LEM, gβ (x) ∈ UQ, is represented by Figure 1.

The predictors of the LEMs take the form

∀j ∈ [[ 1, N ]] , ∀k ∈ [[ 1, Q ]] , ∀x ∈ X , g
(j)
k (x) =

exp
(
ajkh

(j)
k (x) + bjk

)
∑Q

l=1 exp
(
ajlh

(j)
l (x) + bjl

) .
This formulation is used to emphasize the fact that the classi�ers g(j) actually take their

values in UQ. It is noteworthy that this model can also be seen as a multivariate extension

of Platt's model [21] consisting in �tting a sigmoid after a bi-class SVM. A maximum

likelihood estimation of the N models is performed, thanks to an extension of the training

algorithm introduced in [18]. The outputs g
(j)
k (x) are initial estimates of the class posterior

probabilities, which is a useful feature given the speci�cations of the LEMs. The learning
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problems of the two LEMs introduced in Section 3.3 are solved by means of a variant of

the gradient projection method [23].

An evaluation of the LEMs can be found in [2]. This comparative study of the accuracy

of several combiners focuses on two criteria: the recognition rate and the quality of the class

posterior probability estimates. LEMs are also used as structure-to-structure classi�ers in

our method of protein secondary structure prediction [27]. In this hybrid architecture

inspired from [16], discriminant models organized in cascade generate estimates of the

class posterior probabilities from which the emission probabilities of a generative model

are derived. Thus, this application in structural biology provides another evaluation of the

LEMs with respect to the aforementioned criteria.

5 Conclusions and ongoing research

In this article, a class of linear ensemble methods devoted to the combination, after an

appropriate post-processing, of Q-category classi�ers taking their values in RQ, has been

introduced. Their speci�cations should make them well suited for the combination of M-

SVMs. Indeed, the corresponding loss function can be chosen so that the outputs are class

posterior probability estimates and their low sample complexity should prevent them from

over�tting.

We are currently performing a large scale comparative study of the performance of the

LEMs. The focus is laid on the quality of the probability estimates. The application on

problems involving large numbers of categories and base classi�ers, i.e., large numbers of

parameters, calls for the design of dedicated training algorithms. From a theoretical point

of view, it should be instructive to carry on this study by comparing the combinations of

M-SVMs we consider with the extension of the M-SVM of Lee and co-authors to a Bayesian

model described in [32].

Acknowledgements The author would like to thank the anonymous reviewers for their

comments.

A Proofs of the main results of the article

A.1 Proof of Proposition 2

The proof of Proposition 2 is made up of three steps.
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1. ∀v ∈ UNQ , Bv ∈ RQ+

∀k ∈ [[ 1, Q ]], ∀v ∈ UNQ , βTk v =
∑N

j=1

∑Q
l=1 βkjlv(j−1)Q+l. Given the vector βk, the

minimum of this inner product is obtained for a vector v satisfying:

∀j ∈ [[ 1, N ]] ,
∑

l:βkjl=β
′
kj

v(j−1)Q+l = 1.

As a consequence, minv∈UNQ
βTk v =

∑N
j=1 β

′
kj , from which it springs that ∀k ∈

[[ 1, Q ]] ,
∑N

j=1 β
′
kj > 0 is a necessary and su�cient condition of nonnegativity of

the outputs.

2. ∃K : ∀v ∈ UNQ , 1TQBv = K

To derive the corresponding constraints, it su�ces to notice that given any two vectors

v(0) and w in UNQ , one can generate a �nite sequence
(
v(n)

)
16n6n∗ of vectors in U

N
Q

such that v(n∗) = w and v(n+1) is deduced from v(n) by applying an elementary step

of the form:

(a) choose (j, l1, l2) ∈ [[ 1, N ]]× [[ 1, Q ]]× [[ 1, Q ]] such that l1 6= l2, v
(n)
(j−1)Q+l1

< 1 and

v
(n)
(j−1)Q+l2

> 0;

(b) choose δ ∈ R∗+ satisfying v
(n)
(j−1)Q+l1

+ δ 6 1 and v
(n)
(j−1)Q+l2

− δ > 0;

(c) set v(n+1) equal to v(n) except for its components of indices (j − 1)Q + l1 and

(j − 1)Q+ l2 which are respectively set to v
(n)
(j−1)Q+l1

+ δ and to v
(n)
(j−1)Q+l2

− δ.

Given the generative algorithm detailed above, keeping the sum 1TQBv constant over

the whole set UNQ boils down to ensuring that this sum does not vary when an

elementary step is applied, so that

∃K ∈ R : ∀v ∈ UNQ , 1TQBv = K ⇐⇒

∀ (j, l1, l2) ∈ [[ 1, N ]]× [[ 1, Q ]]× [[ 1, Q ]] ,

Q∑
k=1

(βkjl1 − βkjl2) = 0⇐⇒

∀j ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q− 1 ]] ,

Q∑
k=1

(βkjl − βkjQ) = 0.

3. K = 1

Once the conditions of the second step of the proof are satis�ed, 1TQBv does not

depend on v anymore. Thus, the constraint corresponding to K = 1 can be derived
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from an arbitrary choice of v in UNQ . Setting v = 1
Q1NQ gives:

K = 1⇐⇒ 1

Q

Q∑
k=1

N∑
j=1

Q∑
l=1

βkjl = 1⇐⇒ 1TNQ2β = Q.

The conjunction of this constraint and the ones obtained at the second step provides

us with a stronger result that will prove useful in the sequel:

∀l ∈ [[ 1, Q ]] ,

Q∑
k=1

N∑
j=1

βkjl = 1. (9)

A.2 Proof of Proposition 3

With Remark 1 in mind, to prove Proposition 3, it su�ces to establish that for all vector

β satisfying the constraints of Proposition 2, one can exhibit a vector γ in

{(
UNQ

)⊥}Q
such that β + γ ∈ RNQ

2

+ . For β satisfying the constraints of Proposition 2 and k ∈ [[ 1, Q ]],

let Ik− and Ik+ be the subsets of [[ 1, N ]] such that Ik− =
{
j ∈ [[ 1, N ]] : β′kj < 0

}
and

Ik+ = [[ 1, N ]] \ Ik−. The vector γ∗ = (γ∗k)16k6Q de�ned as follows:

∀k ∈ [[ 1, Q ]] , ∀j0 ∈ [[ 1, N ]] , ∀l ∈ [[ 1, Q ]] ,


if j0 ∈ Ik−, γ∗kj0l = −β′kj0
if j0 ∈ Ik+, γ∗kj0l = β′kj0

∑
j∈Ik−

β′kj∑
j∈Ik+

β′kj

with γ∗kj0l being the component of index (j0 − 1)Q+ l of γ∗k ∈ RNQ, meets the aforemen-

tioned requirements.

A.3 Proof of Proposition 4

A possible construction of vectors Θ and θ corresponding to a given vector β in VN,Q is:

∀j ∈ [[ 1, N ]] , Θj =

Q∑
k=1

βkjQ

and

∀ (j, l) ∈ [[ 1, N ]]× [[ 1, Q ]] ,

if Θj > 0, (θkjl)16k6Q = Θ−1
j (βkjl)16k6Q

if Θj = 0, (θkjl)16k6Q = 1
Q1Q

.

Indeed, we deduce from (9) that

N∑
j=1

Θj =
N∑
j=1

Q∑
k=1

βkjQ = 1,

which implies that Θ ∈ UN . Proving that the vectors (θkjl)16k6Q belong to UQ is also

straightforward. Conversely, if two vectors Θ and θ satisfy the hypotheses of Proposition 4,

then obviously the vector β of general term βkjl = Θjθkjl belongs to VN,Q.
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A.4 Proof of Proposition 5

Given the hypotheses made in Section 2.1,

2E(X,Y ) [`Quad (g̃ (X) , Y, β)] =

∫
X×Y

‖ty − gβ (x)‖22 dP (x, y) ,

and Fubini's theorem for nonnegative measurable functions can be applied to the measure

P . This gives:

2E(X,Y ) [`Quad (g̃ (X) , Y, β)] = EX

{
Q∑
k=1

‖tk − gβ (X)‖22 P (k | X)

}

= EX

{
Q∑
k=1

Q∑
l=1

[
δ2
k,l − 2δk,lgβl (X) + gβl (X)2

]
P (k | X)

}

= 1− 2EX

{
Q∑
k=1

gβk (X)P (k | X)

}
+ EX

{
Q∑
k=1

gβk (X)2

}

= 1− EX

{
Q∑
k=1

P (k | X)2

}
+ EX

{
Q∑
k=1

[P (k | X)− gβk (X)]2
}
.

Thus,

argmin
β∈VN,Q

E(X,Y ) [`Quad (g̃ (X) , Y, β)] = argmin
β∈VN,Q

EX

{
Q∑
k=1

[P (k | X)− gβk (X)]2
}
. (10)

Given (10), (4) simply expresses the consistency of the principle of empirical risk mini-

mization for the class of functions {`Quad (·, ·, β) : β ∈ VN,Q} (see Chapters 3 and 5 in [29]).

Thus, to �nish the proof of (4), it su�ces to establish this consistency. Without going into

particulars, this can be done by proving the �niteness of the capacity of the MLM. A result

of this kind is provided by Theorem 1.

E(X,Y ) [`CE (g̃ (X) , Y, β)] = −
∫
X×Y

Q∑
k=1

δy,k ln (gβk (x)) dP (x, y) .

Applying Fubini's theorem for nonnegative measurable functions to the measure P gives:

E(X,Y ) [`CE (g̃ (X) , Y, β)] = −EX

[
Q∑
k=1

P (k | X) ln (gβk (X))

]

= −EX

[
Q∑
k=1

P (k | X) ln

(
gβk (X)

P (k | X)

)]
− EX

[
Q∑
k=1

P (k | X) ln (P (k | X))

]

= EX [DKL (PX ‖ PX,β)]− EX

[
Q∑
k=1

P (k | X) ln (P (k | X))

]
.
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Thus,

argmin
β∈VN,Q

E(X,Y ) [`CE (g̃ (X) , Y, β)] = argmin
β∈VN,Q

EX [DKL (PX ‖ PX,β)] .

With this equation at hand, the proof of (5) can be completed by using the line of argument

used to complete the proof of (4).

A.5 Proof of Lemma 1

The simplest way to establish Lemma 1 consists in making use of the alternative represen-

tation of the vectors of VN,Q introduced in Proposition 4. Then, the proof is made up of

two proofs by contradiction. Since they present no di�culty, we only give the sketch of the

reasoning. The �rst proof by contradiction consists in establishing that if β is an extreme

point of VN,Q, then necessarily Θ is an extreme point of UN , which implies that

∃j0 ∈ [[ 1, N ]] :

Θj0 = 1

∀j ∈ [[ 1, N ]] \ {j0} , ∀ (k, l) ∈ [[ 1, Q ]]2 , βkjl = 0
.

The second proof by contradiction establishes that for all value of l in [[ 1, Q ]], the vector

(θkj0l)16k6Q must be an extreme point of UQ. This means that:

∀l ∈ [[ 1, Q ]] , ∃k0 (l) ∈ [[ 1, Q ]] : (θkj0l)16k6Q = tk0(l).

Combining the two partial results and using the fact that for all (k, l) in [[ 1, Q ]]2, βkj0l =

θkj0l, we get (6), which concludes the proof.

A.6 Proof of Proposition 6

Since Problem 3 is an LP problem in standard form, there exists an extreme point of the

feasible region which is an optimal solution. Thus, (7) simply corresponds to a restriction

of (6) to the extreme points of VN,Q that are also optimal solutions of Problem 3.

A.7 Proof of Theorem 1

The proof of Theorem 1 follows the sketch of the proof of Theorem 4.1 in [10]. In the same

way as this proof, it is based on two lemmas.

Lemma 2 Let γ ∈
(
0, 1

2

]
and n ∈ N∗. If a subset sn = {vi : 1 6 i 6 n} of UNQ is N-

shattered with margin γ by ∆Gβ, then there exists a subset sp of sn of cardinality p equal
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to

⌈
n

(Q2)

⌉
such that for every split of sp into two subsets sp,1 and sp,2, the following bound

holds true: ∥∥∥∥∥∥
∑

vi∈sp,1

vi −
∑

vi∈sp,2

vi

∥∥∥∥∥∥
2

>
2

⌈
n

(Q2)

⌉
√
Q

γ.

Proof Suppose that sn = {vi : 1 6 i 6 n} is a subset of UNQ N-shattered with margin γ

by ∆Gβ . Let (I (sn) , c) witness this shattering. Without loss of generality, we can assume

that I (sn) satis�es: ∀i ∈ [[ 1, n ]], i1(vi) < i2(vi). According to the pigeonhole principle,

there is at least one couple of indices (k1, k2) with 1 6 k1 < k2 6 Q such that there

are at least p =

⌈
n

(Q2)

⌉
points in sn for which the couple (i1(vi), i2(vi)) is (k1, k2). For

the sake of simplicity, the points in sn are reordered so that the p �rst of them exhibit

this property. The corresponding subset of sn is denoted sp. This means that for all

vector y = (yi) in {−1, 1}n, there is a function gβ(y) in Gβ characterized by the vector

β(y) = (βk(y))16k6Q ∈ VN,Q such that:

∀i ∈ [[ 1, p ]] ,

 if yi = 1, 1
2

(
βk1(y)T vi −maxk 6=k1 βk(y)T vi

)
− ci > γ

if yi = −1, 1
2

(
βk2(y)T vi −maxk 6=k2 βk(y)T vi

)
+ ci > γ

which implies that

∀i ∈ [[ 1, p ]] ,

 if yi = 1, 1
2

(
βk1(y)T vi − βk2(y)T vi

)
− ci > γ

if yi = −1, 1
2

(
βk2(y)T vi − βk1(y)T vi

)
+ ci > γ

. (11)

Consider now any split of sp into two subsets sp,1 and sp,2. Consider any vector y in

{−1, 1}n such that yi = 1 if vi ∈ sp,1 and yi = −1 if vi ∈ sp,2. It results from (11) that:

1

2
(βk1(y)− βk2(y))T

 ∑
vi∈sp,1

vi −
∑

vi∈sp,2

vi

− ∑
vi∈sp,1

ci +
∑

vi∈sp,2

ci > pγ. (12)

Conversely, consider any vector y such that yi = −1 if vi ∈ sp,1 and yi = 1 if vi ∈ sp,2. We

have:

1

2
(βk2(y)− βk1(y))T

 ∑
vi∈sp,1

vi −
∑

vi∈sp,2

vi

+
∑

vi∈sp,1

ci −
∑

vi∈sp,2

ci > pγ. (13)

Combining (12), (13), and the Cauchy-Schwarz inequality, it appears that (whatever the

sign of
∑

vi∈sp,1 ci −
∑

vi∈sp,2 ci is) there is a function gβ in Gβ such that

1

2
‖βk1 − βk2‖2

∥∥∥∥∥∥
∑

vi∈sp,1

vi −
∑

vi∈sp,2

vi

∥∥∥∥∥∥
2

> pγ. (14)
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∀β ∈ VN,Q, ∀(k, l) : 1 6 k < l 6 Q, ‖βk − βl‖22 = ‖βk‖22 + ‖βl‖22− 2βTk βl 6 ‖βk‖
2
2 + ‖βl‖22 .

Thus,

∀β ∈ VN,Q, max
16k<l6Q

‖βk − βl‖22 6 max
16k<l6Q

{
‖βk‖22 + ‖βl‖22

}
6 ‖β‖22 .

Since we know that maxβ∈VN,Q ‖β‖2 =
√
Q (see Remark 2), we get

∀β ∈ VN,Q, max
16k<l6Q

‖βk − βl‖2 6
√
Q.

A substitution of this upper bound in (14) then concludes the proof.

Lemma 3 For all n ∈ N∗, all subset sn = {vi : 1 6 i 6 n} of UNQ can be split into two

subsets sn,1 and sn,2 satisfying∥∥∥∥∥∥
∑

vi∈sn,1

vi −
∑

vi∈sn,2

vi

∥∥∥∥∥∥
2

6
√
Nn. (15)

Proof Let sn = {vi : 1 6 i 6 n} ⊂ UNQ . Let σ = (σi)16i6n be a Rademacher sequence,

i.e., a sequence of i.i.d. random variables taking the values −1 and 1 with probability 1
2 .

We have:

Eσ

∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
2

2

= Eσ

 n∑
i=1

n∑
j=1

σiσjv
T
i vj

 =

n∑
i=1

n∑
j=1

vTi vjEσ [σiσj ] =

n∑
i=1

‖vi‖22 6 n max
v∈UNQ

‖v‖22 .

Obviously, the vectors of UNQ whose `2 norm is maximum are its vertices (extreme points).

The corresponding value of the norm is
√
N . Thus,

Eσ

∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
2

2

6 Nn.

This implies that there exists a binary vector y = (yi)16i6n ∈ {−1, 1}n such that∥∥∥∥∥
n∑
i=1

yivi

∥∥∥∥∥
2

6
√
Nn.

Setting sn,1 = {vi ∈ sn : yi = 1} and sn,2 = sn \ sn,1 then concludes the proof.

With Lemmas 2 and 3 at hand, the proof of Theorem 1 is elementary.

Proof Let sq = {vi : 1 6 i 6 q} be a subset of UNQ N-shattered with margin γ by ∆Gβ .

According to Lemma 2, there is at least a subset sn of sq of cardinality n equal to

⌈
q

(Q2)

⌉
satisfying ∥∥∥∥∥∥

∑
vi∈sn,1

vi −
∑

vi∈sn,2

vi

∥∥∥∥∥∥
2

>
2n√
Q
γ
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for all its splits into two subsets sn,1 and sn,2. Since, according to Lemma 3, there is at

least one of these splits for which (15) holds true,

2n√
Q
γ 6
√
Nn

which implies that

q 6

(
Q

2

)
NQ

4γ2
,

which is precisely (8).
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