Model Selection for Multi-class SVMs

Yann Guermeur!, Myriam Maumy?2, and Frédéric Sur!
, MY Y,

' LORIA-CNRS

Campus Scientifique, BP 239,

54506 Vandceuvre-les-Nancy Cedex, France

(e-mail: Yann.Guermeur@loria.fr, Frederic.Sur@loria.fr)
? IRMA-ULP

7 rue René Descartes

67084 Strasbourg Cedex, France

(e-mail: mmaumy@math.u-strasbg.fr)

Abstract. In the framework of statistical learning, fitting a model to a given
problem is usually done in two steps. First, model selection is performed, to set
the values of the hyperparameters. Second, training results in the selection, for
this set of values, of a function performing satisfactorily on the problem. Choosing
the values of the hyperparameters remains a difficult task, which has only been
addressed so far in the case of bi-class SVMs. We derive here a solution dedicated
to M-SVMs. It is based on a new bound on the risk of large margin classifiers.
Keywords: Multi-class SVMs, hyperparameters, soft margin parameter.

1 Introduction

When support vector machines (SVMs) [Vapnik, 1998] were introduced in
the early nineties, they were seen by some as off-the-shelf tools. This ideal-
istic picture soon proved too optimistic. Not only does their training raise
technical difficulties, but the tuning of the kernel parameters and the soft
margin parameter C' also remains a difficult task. In literature, this ques-
tion is addressed for (two-class) pattern recognition and function estima-
tion SVMs. The methods proposed often rest on estimates of the true risk
of the machine [Chapelle et al., 2002]. The case of multi-class discriminant
analysis was only considered in the framework of decomposition schemes
[Passerini et al., 2004]. The case of multi-class SVMs (M-SVMs) calls for
specific solutions. Indeed, the implementation of the structural risk mini-
mization (SRM) inductive principle [Vapnik, 1982] utterly rests on the avail-
ability of tight error bounds and the standard uniform convergence results
do not carry over nicely to the case of multi-category large margin classifiers.
In this paper, we derive a new bound on the generalization performance of
M-SVMs in terms of constraints on the hyperplanes. This bound, interesting
in its own right, makes central use of a result relating covering problems and
the degree of compactness of operators. It serves as an objective function to
tune the value of the soft margin parameter. This way, the value of C' and
the dual variables o can be determined simultaneously, at a cost of the same
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order of magnitude as the one of a standard training. The organization of
the paper is as follows. Section 2 is devoted to the description of the bound
on which the study is based. In Section 3, the measure of capacity involved is
bounded in terms of the entropy numbers of a linear operator. The resulting
objective function is used in Section 4, to derive the algorithm tuning C' and
the parameters «. A first assessment of this algorithm on a toy problem is
described in Section 5. Due to lack of space, proofs are omitted.

2 Bound on the risk of large margin classifiers

We consider the case of a Q-category pattern recognition problem, with @ > 3
to exclude the degenerate case of dichotomies. Let X be the space of de-
scription and C = {C4,...,Ck,...,Cq} the set of categories. We make the
assumption that there is a joint probability measure u, fixed but unknown,
on (X x C,B), where B is a o-algebra on X’ x C. This measure utterly char-
acterizes the problem of interest. Our goal is to find, in a given set H of
functions from X into R¥, a function with the lowest “error rate” on this
problem. The “error rate” of a function h in H with component functions
hi, (1 <k < Q), is the expected risk of the corresponding discrimination func-
tion, obtained by assigning each pattern x to the category C} in C satisfying:
hi(z) = max; hy(z). The patterns for which this assignation is ambiguous are
assigned to a dummy category, so that they contribute to the computation of
the different risks considered below. Hereafter, C'(z) will denote indifferently
the category of the (labelled) pattern x, or the index of this category. To
simplify notations, when no confusion is possible, the labels of the categories
will be identified with their indices, i.e. k could be used in place of Cf. First
of all, we define the functional that is to be minimized, the expected risk.

Definition 1 (Expected risk). The ezpected risk of a function f from X
into C is the probability that f(z) # C(z) for a labelled example (z,C(x))
chosen randomly according to p, i.e.:

R(f) = p{(z, k) : f(x) # k} = /ch Ui (o)2hy (2, K)dp(, k) (1)

where g f(;)25} is the indicator function of the set {(x, k) € X x C: f(x) # k}.

In the framework of large margin multi-category pattern recognition, the
class of functions of interest is not H itself, but rather its image by an ade-
quately chosen operator. Basically, this is due to the fact that the two central
elements to assign a pattern to a category and to derive a level of confidence
in this assignation are respectively the index of the highest output and the
difference between this output and the second highest one. The operator
used here was introduced in previous works.
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Definition 2 (A operator). Define A as an operator on H such that:

A:H— AH

h = (hk)lgng — Ah = (Ahk g %{hk(x) — InaXjL£g hl(x)})ISkSQ .
Let s,, be a m-sample of examples independently drawn from p. The empir-
ical margin risk is defined as follows:

Definition 3 (Empirical margin risk). The empirical risk with margin
v >0 of h on a set s, is

Ry, (h) = % # {(@,C(1) € sm: Ahooy (@) <), )

where # returns the cardinality of the set to which it is applied.

For technical reasons, it is useful to bound the values taken by the functions
Ahy in [—7, ], the smallest interval such that this change has no incidence on
the empirical margin risk. This is achieved by application of the 7, operator.

Definition 4 (7, operator [Bartlett, 1998]). Let G be a set of func-
tions from X into R?. For v > 0, let m, : g = (91)1<r<q > T(9) =
(my (9k))1 << be the piecewise-linear squashing operator defined as:

.sign (gg(z if |gk(x)| >
v m (g~ { TP EE@) Fla@lzy
gk () otherwise
Let A, denote 7y 0 A and A,H be defined as the set of functions A,h. Our
guaranteed risk is made up of two terms, the empirical margin risk given
above and a “confidence interval” involving a covering number of A,H.

Definition 5 (e-cover, e-net and covering numbers). Let (E,p) be a
pseudo-metric space and E’ be a subset of E. An e-cover of E’ is a coverage of
E’ with balls of radius € the centers of which belong to E. These centers form
an e-net of E''. If E’ has an e-cover of finite cardinality, then its covering
number N (e, E’, p) is the smallest cardinality of its e-covers. If there is no
such finite cover, then the covering number is defined to be oo.

The covering number of interest uses the following pseudo-metric:

Definition 6. Let G be a set of functions from X into R¥. For a set s of
points in X' of finite cardinality, define the pseudo-metric ds on G as:

¥(9,9') € 9%, ds(9,9') = max|lg(z) — ¢'(2)]] - (4)

! Hereafter, we will only consider a restricted case in which the e-nets of E’ will
be supposed to be subsets of E’ itself.
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Let Noo,oo(€, AyH,m) = sup, cxym N(€, AyH, ds,, ). These definitions being
given, we can formulate the following theorem, which extends to the multi-
class case Corollary 9 in [Bartlett, 1998].

Theorem 1 (Theorem 1 in [Guermeur, 2004]). Let s, be a m-sample
of examples independently drawn from p. With probability at least 1 — 9§, for
every value of v in (0, 1], the risk of any function h in the class H of functions
computed by a Q-class large margin classifier is bounded from above by:

R(h) < Ry, (B)+ ¢ % (m(zf\/oo,oc(y/z;, A H,2m)) +1n (;)) +1

m

The practical interest of such a bound utterly rests on the possibility to derive
a tight bound on the covering number appearing in the “confidence interval”.
To that end, a preliminary simplification is useful.

Proposition 1. V(v,e) : 0 < e <y <1, Ny oole, AyH,m) < Noo.oo(€, H, m).

Theorem 1 and Proposition 1 imply that deriving a guaranteed risk for H
can boil down to deriving a bound on N (€, H,m). In [Guermeur, 2004],
to bound the covering number appearing in (5), we investigated a standard
pathway, consisting in relating this capacity measure to a generalized VC di-
mension [Vapnik, 1998] through an extension of Sauer’s lemma [Sauer, 1972].
It appeared then that in the multivariate case, establishing the connection be-
tween the separation of functions (with respect to the selected pseudo-metric)
and their shattering capacity is no longer trivial. Taking our inspiration from
[Carl and Stephani, 1990, Williamson et al., 2000], we assess here a more di-
rect approach: relating the covering numbers of H to the entropy numbers
of a linear operator.

3 Bound on the covering numbers of M-SVMs

SVMs [Cortes and Vapnik, 1995] are learning systems introduced by Vapnik
and co-workers as a nonlinear extension of the maximal margin hyperplane
[Vapnik, 1982]. Originally, they were designed to compute dichotomies. In
this context, the principle on which they are based can be outlined very sim-
ply. First, the examples are mapped into a high-dimensional Hilbert space
thanks to a nonlinear transform. Second, the maximal margin hyperplane is
computed in that space, to separate the two categories. Initially, the exten-
sion to perform multi-class discriminant analysis utterly rested on decompo-
sition schemes. The M-SVMs are globally more recent (see [Guermeur, 2004]
for references). The family H of functions h = (hk), << computed by these
machines can be defined by:

Vk € {1,...,@}, hk(:C) = <wk,43(x)>+bk, (6)
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where @ is some mapping from X into a Reproducing Kernel Hilbert Space
(RKHS) [Aronszajn, 1950] (E¢(X), (. )), derived from a symmetric positive
kernel k. The vectors wy belong to Eg(x), whereas the by are real numbers.
As in the case of all kernel machines, & does not appear explicitly in the
computations. Thanks to the “kernel trick”, which rests on the equation:

Y(z,2") € X2, k(z,2') = (®(x),d(2)), (7)

all what is needed to perform training or testing are the values taken by the
kernel k. To ensure the finiteness of the capacity measures, we make the ad-
ditional assumption that @(X) is included in the closed ball of radius Ag )
in Eg(xy, that is: Vo € &, ||@(z)]| = /k(z,2) < Apx). To upperbound
NOO,OO(G,H,m) when H is a M-SVM, we use a result regarding linear oper-
ators on Banach spaces. This implies that the covering numbers of H could
be bounded in terms of the covering numbers of its linear counterpart.

Proposition 2. Let H be the class of functions implemented by a Q-category
SVM under the constraint that b = (b) € [, 8]%. Let H be the subset of
H made up of the functions for which b= 0. Then, for all € > 0,

B

Noo.oo(€, H,m) < (2 Lw + 1)QNoo,w(e/2,7%,m). (8)

A function h in H is characterized by the vector w = (Wk )<< In Eq?(x)‘

This space is endowed with a Hilbertian structure. Its dot product is given
2

by: V(w,w’) € (Eg(x)) , (w,w') = Zgzl (wg, wy.). Its norm is the one

derived from (., .). Since the additional hypothesis ||w| < 1 will also be used,
we introduce another proposition.

Proposition 3. Let H be defined as above, under the additional constraint
that |w|| < Ay. Let U be its restriction to the functions satisfying ||w|| < 1.

Ve >0, Noo.oo(Awe, H,m) < Noo.ool(€,U,m). (9)

Definition 7 (entropy numbers). Let (E,p) be a pseudo-metric space.
Let E' be a subset of E. The nth entropy number of E', e,(E"), is defined
as the smallest real € such that there exists an e-cover of E’ of cardinality at
most n. Let E and F be two Banach spaces. £ (E, F) denotes the Banach
space of all (bounded linear) operators from E into F' equipped with the
usual norm. Let Ug be the closed unit ball of E. The nth entropy number
of S € £(E,F) is defined as

6n<S) = €n (S(UE)) (1())

By ¢ we denote the vector space of n-tuples equipped with the norm ||.|| .y
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Definition 8 (Evaluation operator). Let s, be any element of X"™. We
define S;,, as the linear operator given by:

. @
tEgix
woo— S, (w) = (<wk7¢(zi)>)1gkgcg, 1<i<m

S

Sm — [C;Qom

The connection between N o (€,U, m) and the entropy numbers of S is
given by the following proposition.

Proposition 4. If for all s, € X™, €,(Ss,,) <€, then N oo (€,U,m) < n.
To bound €,(Ss,,), we use a result due to Maurey and Carl.

Lemma 1 (Lemma 6.4.1 in [Carl and Stephani, 1990]). Let H be a
Hilbert space, m a positive integer and S € £ (H,¢7). Then, for 1 <n <m,

1 m 1/2
ean-1(S) < /S]] (nlog (1 + n)) : (11)

where ¢ is a universal constant and by log we denote the logarithm to base 2.

Lemma 1 still holds without the hypothesis n < m. Gathering the results
from Propositions 1 to 4 together with this lemma (applied on S;, ) produces
a handy bound on the covering number of interest.

Theorem 2. Let ‘H be the class of functions computed by a Q-category M-
SVM under the hypothesis that ®(X) is included in the closed ball of radius
Apxy in Egxy and the constraints that |w|| < Ay and b € [0, ﬁ]Q. For
every value of v in (0, 1],

Q  ScAwApxy [30m
Noo7oo(7/4, A’YH’ 2m) < (2 ’74ﬂ—‘ + 1) -2 Bl \V 1132) *1, (12)
Y

4 Tuning the soft margin parameter

To tune C' thanks to the guaranteed risk derived above, we propose a simple
line search. Although it is compatible with any of the training algorithms
published, for the sake of simplicity, we focus here on the case of the most
common machine, introduced in [Weston and Watkins, 1998]. Training it
amounts to solving the following quadratic programming (QP) problem:

Problem 1 (Primal).
1 Q m  Q
miil {22 [|wp]? +C’ZZ£¢;€}
wb) | 23 i=1 k=1

s.t {hc(-Ti)(xi) - hk(xl) >1 _fikv (1 <i< m)’ (1 <k 7é C(xl) < Q)
&k 20, 1<i<m), 1<k#C(x;)<Q) "
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In the objective function, the sum of slack variables is used in place of the
empirical margin risk, whereas the penalty term %Z,?Zl |wg||? is added to
perform capacity control. To the best of our knowledge, Theorem 2 offers
the first justification for this choice. By setting the soft margin parameter
C, one specifies a compromise between training accuracy and complexity. If
the objective function itself cannot be used in that purpose, since it is only
distantly related to a guaranteed risk, performing n-fold cross-validation is
a sensible possibility. However, it implies training the machine n times for
each value of C considered, which can be prohibitive in terms of cpu time re-
quirements. Furthermore, this no longer corresponds to the implementation
of the SRM principle. In that respect, our solution should prove more satis-
factory. To detail it, we first introduce the formulation in which Problem 1
is solved, its Wolfe dual. Let ;i be the Lagrange multiplier associated with
the constraint (we(y,) — Wi, P(2:)) + bo(z,) — bk — 1+ & > 0. Let

m m Q
ZZZO‘“@O‘JW T, ;) 2222& kOGO () R(T3, T )

i~j k=11=1 =1 j=1 k=1

m m Q m Q
+Zzzazkaﬂc"{ ‘Tw‘/'rj Zzaiku

i=1j=1k=1 i=1 k=1
with ¢ ~ j meaning that z; and x; belong to the same category.

Problem 2 (Dual).

min J(«)

[e3

i Theo, Ditiaa - X an =0(1<k<Q-1) .
0<an<C (1<i<m), (1<k#Cl)<Q)

Based on this dual formulation, our algorithm can be expressed as follows:

/* Initialization */
Co:=CO o® .= 0Qm;
/* Main loop */
For i :=1 to nb_iter do
train_SVM(C;_1, Sm, a1y — a(i);
Ci:=Ci_1+¢
done
/* Termination */
i := Argmin, ., cnp_iter { compute_bound(Ci_1, sm, aly
C = Ciy;

In words, this algorithm consists in training the M-SVM a given number
of times (calls of the function train_SVM) for increasing values of C, and
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checking each time the value of the guaranteed risk (calls of the function
compute_bound). Eventually, the value retained is the one corresponding to
the “argmin”, C;,. The benefit in terms of cpu time springs from the fact that
the initial feasible solution used for the i+1-th training is the optimal solution
of the i-th training, a(?). Note that this is possible since we are working with
increasing values of C. As a consequence, each training procedure converges
more quickly than if the starting feasible solution was simply the null vector.
Obviously, this exploration of the regularization path could also benefit from
the implementation of a multi-class extension of the algorithm proposed in
[Hastie et al., 2004].

5 Experimental results

The bound provided by the conjunction of Theorem 1 and Theorem 2 can be
applied to any M-SVM, whatever the kernel is. This is not a trivial property
indeed, since it means that the feature space can be infinite dimensional, as
in the case of a Gaussian kernel. In this section, for the sake of simplicity,
we restrict to the case of a linear machine, i.e. a machine where the kernel is
the Euclidean dot product. In that case, we can make use of a simpler result
than Lemma 1 to bound from above the covering numbers of interest.

Proposition 5 (Proposition 1.3.1 in [Carl and Stephani, 1990]). Let
E and F be Banach spaces and S € £(FE,F). If S is of rank r, then for
n>1,

€n(S) < 4| S|n= Y. (13)

The bound resulting from this proposition is the following.

Theorem 3. Let ‘H be the class of functions computed by a Q-category M-
SVM under the hypothesis that ®(X) is included in the closed ball of radius
Ag(xy i Eg(xy and the constraints that ||w| < Ay, and b € -4, B°. Sup-
pose further that the dimensionality of Egxy is finite and equal to d. For
every value of v in (0,1],

4p

Q Qd
Noo,oo(1/4, Ay H, 2m) < <2 LW + 1) : (32/1“)/1@%?‘)) .

5 (14)

The derivation of this bound rests on the fact that under the hypothesis
dim (Egx)) = d, the rank of S, (or S,,,,) is bounded from above by the
dimensionality of its domain, @Qd. Otherwise, the sole bound on the rank
available would be Qm (resp. 2Qm), which would not meet our purpose (the
guaranteed risk would not tend to the margin risk as m tends to infinity).

The algorithm of Section 4 is evaluated on a toy problem: the discrimination
between three categories corresponding to isotropic Gaussian distributions in
the plane with respective means and variances ((2.5 - v/3,—2.5),1), ((0,5), 4)
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and ((—2.5- V/3,-2.5),16). The priors on the categories are equal. The
training set is made up of 3000 points, 1000 for each category. This problem
is illustrated on Figure 1. The optimal separating surfaces, implementing

Fig. 1. Separating 3 Gaussian-distributed categories in R?. Left: training set.
Right: Bayes’ classifier (circles), optimal linear classifier and boundaries computed
by the linear M-SVM for the (estimated) optimal value of C' (thick lines).

Bayes’ classifier, are two circles. The smaller one, at the bottom right of the
right subfigure, corresponds to the boundary of the first category, the other
one corresponding to the boundary of the second category. For this classifier,
a Monte-Carlo method provides us with an estimate of the expected risk equal
to 5.27%. With the same method, the estimates of the risks of the optimal
linear separator and the M-SVM specified by the algorithm of Section 4 are
respectively 5.85% and 6.30%. Thus, the estimation error is slightly inferior
to the approximation error. Obviously, the significance of these initial results
is limited, since they were obtained with a linear model, for which overfitting
seldom happens. Additional experiments are currently being performed with
a polynomial kernel in place of the Euclidean dot product.

6 Conclusions and future work

In this paper, a bound on the covering numbers of M-SVMs in terms of con-
straints on the parameters of their hyperplanes has been established. When
plugged into the guaranteed risk derived in [Guermeur, 2004], it provides us
with an objective function which can be used to implement the SRM induc-
tive principle, and especially to tune the hyperparameters. An experimental
validation on real-world data is underway, in protein secondary structure pre-
diction, with the aim to improve the accuracy of the classifier introduced in
[Guermeur et al., 2004].
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