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1 Introduction

The article deals with multi-class discrimination with support vector machines
(SVMs). The authors present multi-class SVMs (MSVMs) which they have introduced
in recent years: multiobjective MSVMs (MMSVMs). Those machines are based on the
same functional class as that of the standard MSVMs (Guermeur 2012). They differ in
the nature of the learning problem, which is no longer a standard optimization problem
(convex quadratic programming problem), but a multiobjective optimization problem
(taking the form of a second-order cone programming problem). The aim is to maxi-
mize exactly all geometric margins, so as to improve generalization performance. This
performance is assessed empirically, through experiments performed on data sets from
the UCI benchmark repository. In our comments, we make use of the latest results of
the statistical theory of large margin multi-category classifiers to study the connection
between the (width of the) geometric margins and the generalization performance.

The organization of these comments is as follows. Section 2 discusses the charac-
teristics of the all-together (AT) MSVMs. Section 3 is devoted to the theoretical study
of the generalization performance of these machines and the MMSVMs. At last, we
discuss in Sect. 4 the options available to bridge the gap between theory and practice.

2 On the standard MSVMs

In the introduction of the article, the authors provide us with four references for the
MSVM implementing the AT method (Bredensteiner and Bennett 1999; Guermeur

This comment refers to the invited paper available at doi:10.1007/s11750-014-0338-8.

Y. Guermeur (B)
LORIA-CNRS, Campus Scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
e-mail: Yann.Guermeur@loria.fr

123

http://dx.doi.org/10.1007/s11750-014-0338-8


SVMs maximizing geometric margins for multi-class classification 845

2002; Vapnik 1998; Weston and Watkins 1998). At least three models can be added
to this list: that of Crammer and Singer (2001), Lee et al. (2004) and its quadratic
loss extension, the M-SVM2 (Guermeur and Monfrini 2011). It is noteworthy that
the first two papers can be found in the bibliography. The model of Lee and her
co-authors appears especially interesting in the framework of this study focusing on
generalization performance since it is historically the first one to be Fisher consistent
(Lee et al. 2004; Zhang 2004; Tewari and Bartlett 2007). As for the M-SVM2, its model
selection can be performed by minimizing over the regularization path a radius-margin
bound (Bonidal 2013). On the other hand, it is well known that the models of Weston
and Watkins, Vapnik, and Bredensteiner and Bennett are identical. The point is that
for all the standard MSVMs, we have:

∑

p∈M

w p = 0 (1)

and consequently

∑

p<q

||w p − wq ||2 = 1

2

∑

p∈M

∑

q∈M

||w p − wq ||2

= 1

2

∑

p∈M

∑

q∈M

{
||w p||2 + ||wq ||2 − 2〈w p, wq〉

}

= m
∑

p∈M

||w p||2 −
∑

p∈M

〈
w p,

∑

q∈M

wq

〉

= m
∑

p∈M

||w p||2.

Thus, it springs from (1) that the penalizer of all the standard MSVMs can take the
form

∑
p∈M ‖w p‖2. For these machines, we do not need to make the hypothesis that

the description space X is a subset of R
n . The hypotheses regarding this space and

the set M = [[1,m]] of the categories are those which are at the basis of the statistical
theory of pattern recognition, more precisely agnostic learning (Kearns et al. 1992).
We assume that (X ,A) and (M,B) are measurable spaces and the link between
descriptions and categories can be characterized by an unknown probability measure
P on the measurable space (X × M,A ⊗ B). Obviously, the statistical properties of
the MMSVMs should be studied in the same framework.

3 Dependence of the guaranteed risks on the geometric margins

In the framework of pattern recognition, irrespective of the class of functions involved,
all the guaranteed risks can be written as a sum of two terms: a sample-based estimate
of performance and a control term which is an increasing function of the capacity of
the class (see for instance, Vapnik 1998). In the case of large margin multi-category
classifiers, the central capacity measure is a covering number. The nature of this number
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varies as a function of the pathway followed to derive the bound. We now discuss the
characteristics of the bounds available, focusing on their dependence on the sample
size l and the number of categories m. In the specific case when the classifier is an
MSVM or an MMSVM, we establish the way the covering numbers of interest can be
upper bounded as a function of restrictions imposed on the corresponding functional
class, restrictions precisely related to the width of the geometric margins. This calls
for the introduction of standard definitions, starting with margin operators.

Definition 1 (�operator, Definition 6 in Guermeur 2007) Let F be a class of functions
from T into R

m . Define � as an operator on F such that:

� : F −→ �F
f �→ � f = (

(� f )p
)

p∈M

∀t ∈ T , � f (t) = 1

2

(
f p(t)− max

q∈M\{p} fq(t)

)

p∈M
.

Definition 2 (�∗ operator, Definition 7 in Guermeur 2007) Let F be a class of func-
tions from T into R

m . Define �∗ as an operator on F such that:

�∗ : F −→ �∗F
f �→ �∗ f = (

(�∗ f )p
)

p∈M

∀t ∈ T , �∗ f (t) =
((

21I{p∈argmaxq∈M fq (t)} − 1
)

max
q∈M

(� f )q (t)

)

p∈M
.

Definition 3 (Classes of functions FG , F∗
G , and F#

G) Let G be a class of functions
from X into [−MG,MG]m . For all g in G, the functions fg and f ∗

g from X × M into
[−MG,MG] are defined by:

∀ (x, p) ∈ X × M,

{
fg (x, p) = (�g)p (x)

f ∗
g (x, p) = (�∗g)p (x)

.

Then, the classes FG and F∗
G are defined as follows:

FG = {
fg : g ∈ G

}
, F∗

G =
{

f ∗
g : g ∈ G

}
.

In the sequel, �# is used in place of � or �∗ in the formulas that hold true for both

margin operators. We define accordingly F#
G =

{
f #
g : g ∈ G

}
.
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Definition 4 [ε-cover, ε-net and covering numbers (Kolmogorov and Tihomirov
1961)] Let (E, ρ) be a metric or pseudo-metric space, E ′ ⊂ E and ε ∈ R

∗+. An
ε-cover of E ′ is a coverage of E ′ with open balls of radius ε the centers of which
belong to E . These centers form an ε -net of E ′. A proper ε -net of E ′ is an ε-net of
E ′ included in E ′. If E ′ has an ε-net of finite cardinality, then its covering number
N

(
ε, E ′, ρ

)
is the smallest cardinality of its ε-nets:

N
(
ε, E ′, ρ

) = min
{∣∣E ′′∣∣ : (

E ′′ ⊂ E
) ∧ (∀e ∈ E ′, ρ

(
e, E ′′) < ε

)}
.

If there is no such finite net, then the covering number is defined to be infinite.
N (p)

(
ε, E ′, ρ

)
will designate a covering number of E ′ obtained by considering proper

ε-nets only. In the finite case, we have thus:

N (p) (ε, E ′, ρ
) = min

{∣∣E ′′∣∣ : (
E ′′ ⊂ E ′) ∧ (∀e ∈ E ′, ρ

(
e, E ′′) < ε

)}
.

The definition of a covering number thus involves the specification of a (pseudo-)
metric. We will make use of two of them.

Definition 5 (Pseudo-distance dF ,tn ,∞) Let F be a class of functions from T into
R

m . For n ∈ N
∗, let tn = (ti )1�i�n ∈ T n . Then, the empirical pseudo-metric dF ,tn ,∞

on F is defined as follows:

∀ (
f, f ′) ∈ F2, dF ,tn ,∞

(
f, f ′) = max

1�i�n

∥∥ f (ti )− f ′ (ti )
∥∥∞ .

Definition 6 (Pseudo-distance dF ,tn ,2) Let F be a class of real-valued functions on
T . For n ∈ N

∗, let tn = (ti )1�i�n ∈ T n . Then, the empirical pseudo-metric dF ,tn ,2
on F is defined as follows:

∀ (
f, f ′) ∈ F2, dF ,tn ,2

(
f, f ′) = ∥∥ f − f ′∥∥

L2(μtn )
=

(
1

n

n∑

i=1

(
f (ti )− f ′ (ti )

)2

) 1
2

where μtn denotes the uniform probability measure on {ti : 1 � i � n}.
The standard way to derive an upper bound on a covering number consists in estab-
lishing a generalized Sauer–Shelah lemma (Alon et al. 1997; Mendelson and Ver-
shynin 2003) involving an extension of the Vapnik–Chervonenkis (VC) dimension
(Vapnik and Chervonenkis 1971). In Guermeur (2007), it was proved that the exten-
sions characterizing the learnability of large margin multi-category classifiers are the
γ –�-dimensions.

Definition 7 (γ –�-dimensions, Definition 28 in Guermeur 2007) Let F be a class of
functions from T into R

m and �# a margin operator. Let � be a family of mappings
ψ from M into {−1, 1, ∗}. For γ ∈ R

∗+, a subset sT n = {ti : 1 � i � n} of T is said
to be γ –� -shattered (� -shattered with margin γ ) by

(
F ,�#

)
if there is a mapping
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ψn = (
ψ(i)

)
1�i�n in�n and a vector bn = (bi )1�i�n in R

n such that, for each vector
kn = (ki )1�i�n in {−1, 1}n , there is a function fkn in F satisfying

∀i ∈ [[1, n]] ,

{
if ki = 1, ∃p1 : ψ(i) (p1) = 1 ∧ (

�# fkn

)
p1
(ti )− bi � γ

if ki = −1, ∃p2 : ψ(i) (p2) = −1 ∧ (
�# fkn

)
p2
(ti )+ bi � γ

.

The γ –� -dimension, or � -dimension with margin γ , of
(
F ,�#

)
, denoted by γ –�-

dim
(
F ,�#

)
, is the maximal cardinality of a subset of X γ –�-shattered by

(
F ,�#

)
,

if this cardinality is finite. If no such maximum exists,
(
F ,�#

)
is said to have infinite

γ –�-dimension.

These dimensions can be seen either as scale-sensitive extensions of the�-dimensions
(Ben-David et al. 1995), or multivariate extensions of the fat-shattering dimension
(Kearns and Schapire 1994). One of them appears easier to handle due to its connec-
tion with the one-against-one decomposition scheme, the extension of the Natarajan
dimension (Natarajan 1989) (margin Natarajan dimension, denoted γ -N-dim).

For a m-category classifier computing a class of functions G from X into R
m ,

Theorem 22 in Guermeur (2007), an extension of Corollary 9 in Bartlett (1998) and
Theorem 4.1 in Vapnik (1998), provides us with a guaranteed risk whose control term
grows as the square root of the logarithm of N (p)

(
ε,�#G, 2l

)
, the supremum over

X 2l of N (p)
(
ε,�#G, d�#G,x2l ,∞

)
. This covering number (with�∗ as margin operator)

can be bounded from above by means of a generalized Sauer–Shelah lemma involving
the margin Natarajan dimension of (G,�) (Lemma 39 in Guermeur 2007). Thus,
characterizing the connection between the generalization performance of a MSVM
(or a MMSVM) and its geometric margins can boil down to deriving an upper bound
on its margin Natarajan dimension in terms of those margins. This is precisely what we
get with the following theorem, a straightforward multi-class extension of Theorem 4.6
in Bartlett and Shawe-Taylor (1999):

Theorem 1 (Margin Natarajan dimension of the MSVMs, Theorem 48 in Guermeur
2007) Let κ be a real-valued positive type function (kernel) (Berlinet and Thomas-
Agnan 2004) and let Hκ be the corresponding reproducing kernel Hilbert space
(RKHS) (Berlinet and Thomas-Agnan 2004). Let Hκ,m be the RKHS of R

m-valued
functions (Wahba 1992) at the basis of a m-category MSVM (MMSVM) with kernel κ
(Guermeur 2012). Let us assume that the image of X by the reproducing kernel map
is included in the closed ball of radius 	X about the origin in Hκ . Let H̄κ,m be the
restriction of Hκ,m characterized by:

sup
w=(w p)p∈M ∈H̄κ,m

1

2
max

(p,q)∈M2

∥∥w p − wq
∥∥

Hκ
� 	Hκ,m .

Then, for any positive real value γ , the following bound holds true:

γ -N-dim
(
H̄κ,m,�

)
�

(
m

2

) (
	Hκ,m	X

γ

)2

.
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The bound sketched above is not utterly satisfactory due to its suboptimal dependence

on the sample size l. Indeed, its control term decreases with l as a O
(

ln(l)√
l

)
. The opti-

mal convergence rate, 1√
l
, can be obtained by following a more direct path involving a

different capacity measure: the Rademacher average (Bartlett et al. 2005). To the best
of our knowledge, the first result of this kind is Corollary 8.1 in Mohri et al. (2012).
This bound is not utterly satisfactory either since its control term grows quadratically
with m. The reason for this drawback basically rests in the fact that even in the case
of kernel machines, the Rademacher averages associated with multivariate models
cannot be bounded as straightforwardly as those associated with univariate models.
The property used by Mohri and his co-authors to adapt the bi-class line of reasoning
to the multi-class case, i.e., cope with this difficulty, appears in the proof of Theo-
rem 8.1 in Mohri et al. (2012). It is the sub-additivity of the supremum. The quadratic
dependence can be seen as an artifact of this choice. To make the best of both worlds,
so as to optimize both dependences (on l and m), we propose a hybrid approach. In
short, it consists in following the proof of Theorem 8.1 in Mohri et al. (2012) up to
the point where the Rademacher average appears, and then apply Dudley’s integral
inequality (see for instance Theorem 11.17 in Ledoux and Talagrand 1991), to switch
back to a covering number. The corresponding covering number is N (ε,F#

G, l), the

supremum over (X × M)l of N (ε,F#
G, dF#

G ,zl ,2
), with zl = ((xi , yi ))i∈I ∈ (X × M)l .

Bounding from above this covering number as a function of the margin Natarajan
dimension of (G,�) remains an open problem. The only solution available so far to
make use of a generalized Sauer–Shelah lemma consists in treating separately the
classes of functions to which the component functions of the model of interest belong.
To that end, one can apply the following lemma, whose proof raises no difficulty.

Lemma 1 Let G = ∏m
p=1 Gp be a class of functions from X into

[−MG,MG
]m

. Then,

N
(

m√
2
ε,FG, l

)
�

m∏

p=1

N
(
ε,Gp, l

)
.

To bound from above the covering numbers of the classes Gp in terms of a general-
ized VC dimension, one can use a variant of Theorem 1 in Mendelson and Vershynin
(2003). Then, one can easily verify that the convergence rate obtained is (at worst)√

ln(l)
l (“halfway” between that of the two previous bounds), while the control term

only grows as the square root of m. To finish the derivation of the guaranteed risk,
it remains to bound m fat-shattering dimensions. Turning back to the case of the
MSVMs and MMSVMs, this can be done by means of a result already mentioned:
Theorem 4.6 in Bartlett and Shawe-Taylor (1999). The problem is that the result-
ing bound cannot be used to provide a theoretical justification to the MMSVMs.
Indeed, by handling independently the component functions of the classifier, we have
lost most of the connection between the control term of the guaranteed risk and
the geometric margins (whose definition involves the difference of two component
functions).
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850 Y. Guermeur

4 Discussion

Tatsumi and Tanino have introduced multi-class support vector machines which are
based on a principle in full accordance with the intuition borrowed from the bi-class
case: a direct maximization of the geometric margins. The experimental evidence they
provide is very promising. However, strange as it may seem, the statistical theory of
large margin multi-category classifiers still fails to fully justify their choices. This
justification could come as the byproduct of the derivation of sharper bounds on the
risk. We conjecture that a bound exhibiting the optimal convergence rate with a control
term growing only as the square root of the number of categories could be obtained
from an appropriate implementation of the generic chaining method (Talagrand 2005).
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