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1 INTRODUCTION

By their very simplicity, cellular automata are mathematical objects that oc-
cupy a privileged situation in the study of complex systems. They are formed
of a regular arrangement of simple automata, the cells, which can hold a
finite number of states. Cellular automata are as mosaics with tiles that au-
tonomously change their colour: the cells are updated at discrete time steps
and their new state is calculated according to only a local information, usually
limited to the states of the neighbouring cells. These local laws of interaction
may generate amazing behaviours at the global scale, even when they are
simply expressed.

Cellular automata were initially studied by von Neumann and Ulam to
study the properties of self-reproduction of living organisms with a simple
“mechanical” tool [133]. Since then, they have been employed in various sci-
entific domains. Their study can be divided into three main axes: (1) They are
dynamical systems where time, space and states are discrete. Their regular
structure simplifies the mathematical definitions of the system but the exact
or partial prediction of the trajectories of the system is often a highly chal-
lenging task. (2) They represent a model of spatially-extended, distributed
and homogeneous computing systems. As such, they represent an alternative
to the classical computing frameworks that use sequential algorithms, vari-
ables, functions, etc. (3) They are employed to model the numerous complex
systems seen in Nature. Researchers have been particularly interested in the
properties of self-organisation or robustness they can display.

An important feature in the definition of cellular automata regards their up-
dating: in their original definition, they are updated synchronously, that is, all
the cells change their state at the same (discrete) time step. This global update
implies a strong simultaneity: cells need to gather simultaneously the state of
their neighbours, they need to process this information simultaneously, the
transitions have to occur in a single time step.

Making this hypothesis of perfect synchrony has many advantages, first of
all to simplify the description of the system. With a synchronous update, it is
for instance easy to build a Turing-universal system, to “program” the system
to obtain a given behaviour, to show that a given property is undecidable or
to study under which restrictions this property becomes decidable, etc. (see
the survey by Kari [60] for more details). Synchronous updates are also a
convenient tool for modelling natural or artificial phenomena: there is no
need to take into account complex updating procedures as all the cells share
the same time.
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In spite of these manifest advantages, there are reasons why the hypothesis
of perfect synchrony needs to be questioned:

(a) In the context of dynamical systems, the problem is to study how cellu-
lar automata “react” to perturbations of their updating. How can we interpret
the potential sensitivity of a system to changes of its definition? On the con-
trary, what can be said if the system “resists” to a change of its updating
scheme?

(b) In the context of parallel computing, we ask how to design a comput-
ing device that does not require a central clock. Various advantages can be
expected from the removal of a pace maker: increase of the speed of compu-
tations, economy of energy, simplicity of design, etc. Beyond these potential
gains, developing asynchronous massively parallel algorithms represents a
research challenge by itself.

(c) When cellular automata represent a model of a natural phenomenon,
the question is to know what triggers the transitions of the cells’ state. How
do we represent this source of activity in the model? Answering is far from
being simple and the argument that “there is no global clock in Nature to syn-
chronise the transitions” is somewhat incomplete. Indeed, it can be objected
that a model is a simplified representation of a phenomenon and does not need
to faithfully account for all the details of “reality”.

All these questions raise rich problems and they are discussed in the works
that we present in this survey. The field of asynchronous cellular automata has
attracted the interest of numerous authors and has evolved from a “marginal”
to a “respected” topic during the last decade. The scientific production has
now reached a level which makes it difficult to follow all the contributions
that appear. The purpose of this survey is thus to introduce the readers to
this quite diversified “landscape”, trying as much as possible to cover the
various “sites” that it contains. As a “guided tour”, it does not claim to be
an objective description of the field: a guided tour is by definition a circuit
that takes visitors from place to place according to the arbitrary choices of
the guide. It is therefore important to bear in mind that the descriptions that
will follow will be as brief as possible and should by no means prevent us
from reading the texts mentioned themselves. Our hope is that readers that
are unfamiliar with cellular automata will find landmarks for their orientation
and those which are interested in a particular topic will find useful references.
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Figure 1
Mapping from a continuous to a discrete time scale.

2 DEFINING ASYNCHRONISM

Our visit begins by considering the definitions of asynchronism. The etymol-
ogy is clear: α-συν-χρόνος (a-sun-chronos) means not-same-time in Greek.
The word thus merely indicates that there are parts of the system that do not
share the same time. As an illustration, we may figure out a choreography
where each dancer has its own pace and its own sequence of movements: the
choreography may be chaotic but the dancers may also succeed in forming a
coherent performance if some coordination is maintained between them.

The privative nature of the definition of a-synchronism suggests that there
are many interpretations of the word. In fact, we are allowed to speak of
asynchronism as soon as we break the framework of perfect updating. To
date, there is no agreement on how this word should be defined. Moreover, it
is frequent that different terms are used for naming the same updating scheme.
The definitions that we present below are thus by no means “official”: we
simply make the choice to use in priority the terms that we have employed in
our own research.

2.1 Full vs. partial asynchronism
In general, asynchronism is seen as an external and uncontrolled phenomenon,
it is thus most often modelled as a stochastic process. The two main stochastic
updating schemes that have been employed are:

• fully asynchronous updating: At each time step, the local rule is applied
to only one cell, chosen uniformly at random among the set of cells.

• α-asynchronous updating: At each time step, each cell has a given
probability α to apply the rule and a probability 1 − α to stay in the
same state. The parameter α is called the synchrony rate? .

? Note that the terms α-asynchronism and α-synchronism have been used and are both rel-
evant: α can denote the name of the scheme and the synchrony rate. We use here the term
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Many authors consider that the fully asynchronous updating is the most
“natural” updating method. The argument that justifies this choice is a syl-
logism that can be decomposed as follows: (a) “real” time is continuous, (b)
transitions occur at random moments on this continuous timeline, (c) since
there is no chance of a simultaneous updating, or only a negligible chance,
the only thing that matters is the order in which cells are updated, (d) this
order can be obtained by a sequential stochastic sampling on the set of cells
(see Fig. 1 and e.g. Ref. [113] for a similar presentation).

It can be remarked that this argument is physically relevant if the transi-
tions of the cellular automaton are “infinitely” short, that is, if the time to go
from one state to another can be neglected. This is surely a valid hypothesis
for some particular contexts (e.g. a radioactive disintegration) but this cannot
be considered as the asynchronous updating model.

In many cases, especially in biological systems, some synchrony between
cells needs to be assumed. As this degree of synchrony is difficult to mea-
sure, the problem is not so much about choosing the “right” model of updat-
ing but rather to estimate the robustness of model, that is, if it will totally or
partially resist the perturbation of its updating scheme. In this context, the
α-asynchronous method defines a system with a continuous variation from
a perfect synchronism (α = 1) to the limiting case of full asynchronism
(α → 0). Note however that when looking at the asymptotic behaviour of
a system, a discontinuity may exist between the case α → 0 and the fully
asynchronous case. Indeed, the possibility that two neighbouring cells simul-
taneously update their state, be it as small as wanted, may radically change the
trajectory of a system. As an example, consider the minority rule in 2D with
a von Neumann neighbourhood: with a fully asynchronous updating, the two
uniform fixed points are not reachable from a non-uniform configuration [40]
but this is not longer true if we allow a small degree of synchrony.

It should also be noted that fully asynchronous updating is defined with a
finite set of cells. The passage to the limit for an infinite set of cells needs
to be done with a model that has a continuous time and the mathematical
model that accurately describes a (stochastic) fully asynchronous updating is
called an interacting particle system. (See e.g. Ref. [20] for examples where
such systems are used for solving the density classification problem in two
dimensions.)

α-asynchronism, as it is the form that was first proposed and which has been adopted by various
authors such as Regnault, Correia, Worsch, Fukś, etc.
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2.2 How to describe asynchronism?
The other question that is generally asked when defining asynchronism is to
know if the timing of the transitions should be defined with the use of a global
clock or with a clock that is proper to each cell. Schönfisch and de Roos call
the former step-driven methods and the latter time-driven methods [113]. It
may be thought at first that “time-driven” methods are more adequate for
making “realistic” simulations than “step-driven” methods. Indeed, it seems
better to give to the cells an explicit representation of time and to avoid to
artificially share a transition signal between all the cells. However, this idea
needs to be examined more closely. As remarked by various authors, this
distinction is somewhat artificial as it is in general possible to build a “step-
driven” method that emulates a “time-driven” method, and vice versa. For
example, as discussed before, the random updates of a fully asynchronous
scheme and the updates obtained by independent clocks that use a continuous
time are quasi-equivalent, up to a rescaling. The α-asynchronous updating
can also be defined from the point of view of the cells by separating two
updates by a random time which obeys a geometric law. (In other words,
the probability that k time steps separate two updates of a cell is equal to:
α(1− α)k−1.)

There are of course many other types of updating schemes where random-
ness is involved. For instance, one may consider random sweeps where cells
are updated sequentially by following random permutations of the updating
orders (this scheme is also called random order) or fixed sweeps where the
permutation order is drawn at the beginning and kept fixed during the whole
evolution of the system [113]. We will also present below how to define an
asynchronism which results from an imperfect transmission of the state from
the neighbours (see Sec. 3.4).

Non-random updating schemes can also be considered: for instance, in the
sequential ordered scheme, cells are updated sequentially following an order
that results from their spatial arrangement (for example from left to right and
from top to bottom); cells can also be updated depending on their parity at
even or odd time steps (see e.g. [96]). We refer to the work of Schönfisch and
de Roos [113], Cornforth et al. [26], Bandini et al. [9] for the presentation of
a collection of various deterministic or stochastic updating schemes.

It is also necessary to distinguish the non-deterministic schemes from the
stochastic ones. As in classical automata theory, non-determinism means that
a given subset of cells may be updated and all the possibilities are consid-
ered, regardless of their “likeliness to appear”. The evolution of the system is
thus represented by a set of configurations; this set evolves according to the
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outcomes of each transition that can be applied.
The problem of the definition of asynchronism is thus completely open

and we end this section with the following questions:

Questions 1 What taxonomy of the updating schemes can be issued? What
are the guidelines that can drive modellers for choosing a particular updating
scheme? Under which restrictions (states, neighbourhoods, class of rules,
etc.) can we establish equivalences between updating schemes?

3 EXPERIMENTAL APPROACHES

Classifying “classical” cellular automata has been a central theme of research
and is far from being a closed question (for recent references, see e.g. the
work by Schüle [115, 114] and the survey by Martínez [77]). It can then be
thought at first that classifying asynchronous rules is a daunting task because
of the additional complexity that is induced by the asynchronous updating. In
fact, this is only partially true as in many cases the asynchrony may “break”
the complexity of a rule and render it more simple to study. In this section,
we discuss the contributions that qualitatively or quantitatively estimate the
effects of asynchronism with numerical simulations.

3.1 General classifications
In 1984, Ingerson and Buvel carried out a pioneering work where they could
show that the behaviour of simple rules could be totally disrupted by sim-
ple modifications of the updating [19]. Most importantly, they questioned to
which extent was the behaviour of a rule the consequence of the local rule
and to which extent it was due to the updating scheme.

This question was re-examined by Bersini and Detours, who explored the
difference between the Game of Life and closely related asynchronous vari-
ants [14]. Their main observation was the existence of a “stabilising effect” of
asynchronous updating. The experiments were made on small-size grids, no
larger than 20 by 20 cells. With such lattice sizes, they were able to observe
that the fully asynchronous Game of Life may “freeze” on some fixed-point
patterns with a labyrinth-like aspect. However, more recent work has demon-
strated that it was not possible to infer the large-size behaviour from these
experiments and that the stabilising effect was intimately linked to finite-size
effects of the numerical experiments [15, 36].

Schönfisch and de Roos gave a decisive impulse to the research on asyn-
chronism by comparing various updating schemes and by exhibiting clear
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examples where the schemes alter significantly the behaviour of a rule [113].
They gave a detailed analysis of the statistical properties of the schemes but
their experiments were limited to some specific rules. The question thus re-
mained open to know how these observations could be generalised to a larger
class of rules.

On this basis, Fatès and Morvan examined how the 256 Elementary cellu-
lar automata (ECA) reacted to α-asynchronism [41]. To estimate the changes
of behaviour of the system quantitatively, the authors used an approxima-
tion of the asymptotic density, that is, the value of the density that would be
reached by an infinite-size system with an infinite simulation time. This pa-
rameter was considered as a first means to detect changes in the behaviour:
a strong variation of the asymptotic density indicates that the system has un-
dergone a transformation while an absence of variation does not necessarily
imply that the system remained stable.

The 256 rules were then classified into four qualitative sets according to
their responses to the variation of the synchrony rate α: (a) continuous vari-
ation of the behaviour (e.g. ECA 232), (b) discontinuity around α = 1 (e.g.
ECA 2 or 110), (c) phase transition for a critical value αc < 1 (e.g. ECA 50),
and (d) non-regular behaviour (e.g. ECA 184). One of the surprising results
of this study was that no direct correspondence could be drawn between these
new classes of robustness and the previously known classes of synchronous
behaviour (e.g., the informal Wolfram classes).

Similar observations were made by Bandini et al., who tested the effects
of numerous asynchronous schemes on one-dimensional binary rules where
the local function depends only on two neighbours (also called “radius-1/2”
rules) [9].

3.2 Phase transitions
Blok and Bergersen were the first authors to identify the change that occurs in
the Game of Life when cells are updated with a given probability [15]. They
used α-asynchronism to show the existence of a qualitative transition from a
“static” behaviour, where the system would settle on fixed points, to a “living”
behaviour, where the system evolves by forming labyrinth-like patterns that
do not fixate. The change of behaviour is a second-order phase transition, that
is, there exist two qualitatively different phases which obey some well-known
laws from statistical physics. In this case, the phase transition was shown
to belong to the directed percolation universality class, which means that at
the critical point, the evolution of the order parameters (e.g. the density)
obeys the same power laws as an oriented percolation process that serves as a
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reference.
Fatès identified that similar phenomena occurred in Elementary Cellular

Automata and that no less than nine rules also displayed phase transitions.
It was shown that the density follows a power-law decay for the critical syn-
chrony rate, in good agreement with the behaviour expected from the directed
percolation universality class [34]. A unique rule, namely ECA 178, was
shown to belong to another universality class, a fact that is explained by the
symmetric role that is played by 0s and 1s in the transition rule.

The phase transition occurring in the Game of life was also re-examined
by studying how this phenomenon was affected by perturbations of the topol-
ogy [35, 36]. The main finding was that the critical value of the phase tran-
sition strongly depends on the regularity of the grid and that the qualitative
change of behaviour becomes more difficult to observe as links between cells
are removed.

Concerning other two-dimensional rules, Regnault et al. carried out a pi-
oneering work by explaining in detail how the asynchronous minority rule
displayed various types of behaviour depending on the topology on which it
is applied [97, 99, 105]. A simple puzzling observation is that the minority
rule will settle out on a checkerboard or on a stripe-like pattern depending
on whether the rule is defined with the von Neumann or the Moore neigh-
bourhood. To our knowledge, there is no mathematical explanation of this
empirical observation.

Remark that two different complementary views exist on phase transitions:
the most common way of describing a phase transition is to establish that for
an infinite system, a qualitative difference of behaviour occurs for an infinites-
imal variation of the control parameter. An alternative approach was adopted
by Regnault who could prove that for a particular rule and a finite system, the
transition corresponds to a variation of the convergence time from a linear to
a polynomial function of the system’s size [98].

3.3 Coalescence
A curious phenomenon was remarked when comparing the evolutions of two
different initial conditions that were updated with the same local rule and the
same sequence of updates: a rapid “coalescence” may occur, that is, the two
systems take the same state and then evolve with the same trajectory (as the
same sites are updated).

This phenomenon is in some cases easy to understand, as when the co-
alescence occurs on an attractive fixed point, but it was also observed for a
non-fixed-point region of the state space (as for ECA 46 [41]). From a more
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pragmatic point of view, the following interpretation can be given: there are
asynchronous systems whose evolution rapidly becomes governed by the ran-
dom number generator that dictates the updates, regardless of the initial con-
dition.

Rouquier and Morvan studied systematically the coalescence phenomenon
for the 256 ECA [102, 104]. Their study revealed that it was possible to
observe that some ECA would always coalesce, while others would never
coalesce, and that there existed some rules which displayed a phase transition
between a coalescing and non-coalescing behaviour. It is an open problem
to explain analytically the non-trivial cases of rapid coalescence. It is also
interesting to compare these results with those obtained by other methods of
coupling (see e.g. [109, 103]).

3.4 Asynchronous information transmission
While the approaches of asynchronism studied so far are based on the di-
chotomy updated versus not updated, Bouré et al. defined a model of asyn-
chrony which considers imperfect communications between neighbours [17,
16]. This approach is declined in two versions, called β- and γ-asynchronism,
which respectively consider stochastic failures of the communication of a
state to the whole neighbourhood or to each neighbour independently.

Among the various observations made with these two types of asynchro-
nism, the most intriguing phenomenon is the disappearance of some, but not
all, of the phase transitions that were obtained with the α-asynchronism.
More precisely, ECA 6, 38 and 134 do not show any transition for β- and
γ-synchronism. ECA 58 gives an even more puzzling case as it does show
a phase transition for α- and β-asynchronism but not for γ-asynchronism. It
is an open problem to understand the origin of such radical differences of
responses to the rate of transmission failures.

Experiments also displayed that in some cases, quantities can be conserved
when using only a particular model of asynchronism (e.g., ECA 50 has some
parity conservation with β-asynchronism but not with α-asynchronism). This
underlines the necessity to continue to “invent” various perturbations of the
classical updating in order to gain insight on how cellular automata are de-
pendent on their updating schemes.

3.5 Other variants
An interesting development on the work of asynchronism concerns how it
mixes with traditional noise, that is, on randomness imposed on the state of
the cells that compose the automaton. An early reference that addresses this
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question is given by Gharavi and Anantharam, who revisited a well-known
result of Toom and who considered delays in the cells’ communications [49].
We refer to the work of Kanada [59] on the 256 ECA rules, and to the work
of Mamei et al. [75] for additional insights into this problem of mixing noise
and asynchronism.

More recently, Silva and Correia gave a detailed account on how some
ECA can react to asynchronism combined with noise [118]. Interestingly,
they propose to evaluate the robustness according to the difference patterns.
This brings them to introduce a sampling compensation in order to cope with
less frequent updates.

The case of asynchronous models simulated on a non-regular topology
was tackled by Baetens et al., who examined an asynchronous updating with
a non-regular topology generated with a Voronoi tessellation [8].

To conclude this section, it seems that only a small part of the universe of
asynchronous cellular automata has been explored so far. This brings us to
put an emphasis on the following questions:

Questions 2 What is a good protocol to numerically estimate the changes of
behaviour induced by asynchrony? What are the relevant order parameters
to quantify these changes? How common is it to observe discontinuities of
behaviour induced by a continuous change of the updating scheme?

4 ANALYTICAL APPROACHES

We now turn our attention to the mathematical analysis of asynchronous cel-
lular automata. It is important to remark that although this part is presented
separated from the previous one, there is a joint movement of going from sim-
ulations to analysis and back. (This co-development is not necessarily done
by the same authors of course.)

4.1 Markov chain analysis and classifications
Agapie et al. conducted one of the first analytical studies of asynchronous
rules using Markov chain theory [5]. They focused on several models of
finite cellular automata with fully asynchronous updating. However, as far as
we could understand, their analysis was limited to a specific case where the
local rule was stochastic, totalistic, symmetric with respect to an exchange of
0s and 1s, and with positive rates (the probability to reach each state is strictly
positive). It is worth noting that the number of borders of a configuration is
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a central parameter in their analysis and that this parameter is also found in
various other approaches.

One of the first analytical results of classification were given by Fatès et
al. who analysed the doubly-quiescent ECA [42]. In this study, the 64 rules
considered are classified according to their worst expected convergence time
to a fixed point. This time falls in the following classes: logarithmic time,
linear time, quadratic time, exponential time and non-converging rules † . The
visual inspection of the space-time diagrams of the rules of each class shows
a good correspondence between the visual “behaviour” and the class. In other
words, the time of convergence to a fixed point is not an ad hoc parameter but
does capture a part of the “behaviour” of the stochastic rules.

These results were later partially extended to the more difficult case of α-
asynchronous updating by Regnault et al. [43], while Chassaing and Gerin
examined the continuous limit of the processes when the grid was made infi-
nite [23].

Fatès and Gerin also examined how to classify the two-dimensional totalis-
tic rules with fully asynchronous updating [40]. They proposed a partial clas-
sification of 64 rules and an analysis of the convergence of some well-known
rules. Among the interesting phenomena remarked, they exhibited a list of
rules which showed an “erratic” behaviour: the question was to determine if
these rules were exhibiting a non-converging behaviour or a “metastable” be-
haviour, that is, if a (long) random sequence of updates could drive the system
to a fixed point. By adapting techniques from automatic planning, Hoffmann
et al. could solve this problem for a specific rule and showed that it converged
to a fixed point in (at most) exponential time [55].

Readers interested in the classification of rules with regard to their conver-
gence time can refer to a recent synthesis note [38] and a recent work on the
fast convergence of the ECA rules [39].

4.2 Detailed analysis of the asymptotic densities
As mentioned above, for theα-asynchronous systems, the study of the asymp-
totic density was mainly made with numerical simulations. By focusing their
efforts on eight simple ECA rules, Fukś and Skelton succeeded to give an
exact calculation of this density [47]. They considered infinite systems where
the initial condition was generated by a Bernoulli measure and determined
how the asymptotic density varies as a function of the initial density (that
is, the parameter of the Bernoulli measure). Such exact results are generally

† The classes are here given with a “rescaled time scale” where one step corresponds to as
many random updates as there are cells in the finite ring.
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rather difficult to obtain and it is an open problem to extend them to a wider
class of rules.

Following this direction of research, Fukś and Fatès considered a devel-
opment of Gutowitz’s “local structure theory”: contrary to a classical mean-
field approach where the state between neighbouring cells is assumed to be
uncorrelated, correlations of order 2 or larger are taken into account to try
to predict the asymptotic density of the system [46]. It was shown that this
approach does detect the occurrence of phase transitions. The limit is that the
position of the critical synchrony rate remains difficult to find: for some rules,
even approximations with nine cells cannot predict precisely the position of
the critical threshold that separates the active and inactive phases.

4.3 Reversibility
As mentioned above, the asynchronous updating of a system does not per-
turb its fixed points. However, when the updating is stochastic cycles no
longer exist and one needs to re-examine the meaning of reversibility. One
such interpretation was proposed by Das et al., who define reversibility as a
possibility to return to the initial condition in the case where the updating se-
quence (or “update pattern”) could be set freely. They studied which are the
Elementary Cellular Automata with null or periodic boundary conditions that
generate such a form of “cycles” [110, 27].

Another point of view considered the case of fully asynchronous updating:
as the evolution of the system is adequately described by a Markov chain, re-
versibility is identified with the property of recurrence of this chain [116]. A
classification of the ECA rules into three classes was then proposed based on
this tool: (a) The recurrent rules are those which make the system always re-
turn to its initial condition. (b) The irreversible rules are those which contain
initial conditions which are never returned to after a (random) time. Among
this class, (c) the strongly irreversible rules are those which contain a state
that is never returned to as soon as it is updated. It is an open problem to de-
termine how to extend these results to a wider class of systems, in particular
to deal with the case of infinite-size systems.

Wacker and Worsch also examined the question of reversibility of asyn-
chronous cellular automata [134]. In their work, a rule is said to be reversible
if there is another rule whose state-transition graph is the “inverse” of the
original. The novelty with respect to the synchronous case is that the out-
degree of the nodes is no longer equal to one as a single configuration can
lead to many others. Interestingly, the results presented on ECA are not far
from those found in Ref. [116] and it is an open question to determine which

13



are the conditions that make the two points of view equivalent.

4.4 m-asynchronous models and their topological properties
The study of the dynamical properties of cellular automata, such as injec-
tivity, surjectivity, permutivity, etc., has been a central topic in the theoreti-
cal considerations of the field (see e.g. [60]). Manzoni examined how these
properties could be re-defined and studied in the asynchronous updating con-
text [76].

This work was taken a step further by Dennunzio et al., who developed the
notion of m-asynchronous cellular automata in order to generalise the various
updating methods used so far [30]. They provided a formal framework to
describe the updating probabilities on each cell, even in the case where the
size of the system is infinite, and produced various theorems that allow one
to deal with the non-deterministic nature of the updating.

For more details on this line of research, we refer to the recent survey by
Formenti where more details and examples can be found [45].

To synthesise, the contributions met in this section show the necessity to
adapt the tools to the stochastic process theory for the specific case of cellular
automata. This brings us to ask:

Questions 3 What is the position of asynchronous cellular automata with
respect to stochastic cellular automata? (a mere subset?) What are the an-
alytical tools that can ease the analysis of the Markovian systems obtained
with random updates?

5 COMPUTING WITH ASYNCHRONOUS CELLULAR AUTOMATA

We now consider the contributions related to the computing abilities of asyn-
chronous models and briefly describe the techniques that have been proposed
to construct such (virtual or real) computing objects.

5.1 Simulation of (a)synchronous models by (a)synchronous models
Nakamura was among the first authors to investigate how to compute with an
asynchronous cellular automaton [81, 82]. He described several techniques to
construct a universal rule and showed how to simulate a given q-state deter-
ministic rule with an asynchronous rule that has the same neighbourhood and
whose state space is extended to 3q2 states (see also Lipton et al. [70], Tof-
foli [126] and Nehaniv [84] for similar constructions). The construction relies
on the idea that when a cell is updated, it then waits the neighbouring cells to
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“catch up” and makes the next transition only when all its neighbours are up
to date. Additionally, it keeps its old state available for the neighbouring cells
in order for them to perform the “right” transitions. This construction was
later improved by the use of only q2 + 2q states by Lee, Peper et al. [67, 89].

Peper et al. also proposed to consider the case where a cell can “activate”
their neighbouring cells and showed that the cost in the number of states for
the simulation of q-state rule could be reduced to O(q√q) states [90].

Other discussions on the universality of asynchronous rules are found in
the study by Takada et al., in which many important arguments and useful ref-
erences can be found [124]. In particular, the authors present a result showing
the existence of an asynchronous, rotation-symmetric rule with 15 states and
von Neumann neighbourhood that has the property of universal construction
and computation.

An alternative point of view was given by Golze who simulates an n-
dimensional synchronous rule with an asynchronous rule defined on a space
with n + 1 dimensions [50]. This solution simplifies the problem as there
is no longer the need to save the previous and the current state in order to
achieve correct computations. Another advantage of having an additional di-
mension is to read one state of the synchronous simulated system (guest) on
the asynchronous simulating system (host): it simply corresponds to reading
a line (or a hyperplane) of the host. This technique, called “global synchroni-
sation”, is presented as a means to solve various problems, such as the Firing
Squad Synchronisation Problem, which would not be solvable without this
requirement. However, it can be noted that this technique can be interpreted
as the “deployment” of Nakamura’s technique on an additional dimension.
Reciprocally, one can also see Nakamura’s technique as the “compressed”
version of Golze’s solution, where only the necessary information is retained.

The case where asynchronous computations have to be made with stochas-
tic and asynchronous components was tackled by Wang [135]. Unfortunately,
this author does not position his work with regard to the previous contribu-
tions (Nakamura, Golze) and it is difficult to see if this proposition signifi-
cantly differs from the previous achievements.

An original way to simulate a universal Turing machine with a fully asyn-
chronous updating has also been proposed by Dennunzio et al. [29]. The
authors introduce the notion of “scattered strict simulation” in which they
tolerate that only a subset of cells is used to perform the simulation. They
find that asynchrony induces a quadratic slowdown compared to the speed of
the simulated Turing machine.
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5.2 Computations and order-independence

A key observation in the theory of asynchronous systems relies in the property
of what we could call “non-overlapping influences”: if two cells c and c′ are
such that the neighbourhood of c and c′ do not overlap (that is, have no cell
in common), it does not matter whether c is updated before c′, or c′ before c,
or both of them are updated at the same time. The study of this property has
given birth to various works that we now examine.

Gács was one of the first authors to determine if the evolution of an asyn-
chronous system could be independent of the order of updating [48]. He
showed that although this property was undecidable, there exists a sufficient
condition to verify this independence.

This question was later re-examined by Mortveit, Macauley et al., who
studied in which cases repetitions of sequential updates on Elementary Cel-
lular Automata (ECA) could produce a set of periodic points that would be
independent of the updating order [73, 74, 72]. This conducted the authors to
present a list of 104 ECA which display such an update independence. Their
work also uses an original representation of ECA that differs from the clas-
sical Wolfram code and that could prove useful for future analysis of asyn-
chronous systems. (Another notation is presented in Ref. [33, 42]).

Order-independence was also a key point considered by Worsch, who ex-
amined how to simulate an arbitrary rule by a universal asynchronous sim-
ulator [136]. He extended Golze’s results by tackling a large scope of up-
dating policies: purely asynchronous (no restriction on the set of cells to
update), α-asynchronous, N-independent (where two neighbouring cells are
never updated at the same time), and non-deterministic fully asynchronous.
He showed that for each such policy, there is a universal rule (the host) that
can “simulate”, in a particular sense, any other guest. Worsch’s work raises
many questions, in particular as to how to properly define the notion of sim-
ulation of an asynchronous rule by another. (See Ref. [7] for some reflexions
made in the context of stochastic cellular automata.)

We also point out that Vielhaber has designed a formal framework in which
the computations of functions on finite binary rings (Z/nZ) are made not by
changing the local rule but by a proper use of the order of updating on a fixed
rule [132]. In particular, he showed that ECA 57 with periodic boundary
conditions was a rule especially adapted for such a purpose. Interestingly, this
technique could be generalised to make this particular rule Turing-universal in
the sense that the computation of an algorithm could be done only by setting
up the proper sequence of updates.
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5.3 Models of concurrency
Among the early references that can be found on asynchronous cellular au-
tomata, Priese wrote a note where he considers (two-dimensional) cellular
automata as a particular case of asynchronous rewriting systems (called Thue-
systems) and widens the scope by considering also the case where more than
one cell may be re-written at a time (the overlapping problem) [93]. He uses
his construction to show how to build asynchronous circuits which are equiv-
alent to asynchronous concurrent Petri nets.

Following this path, Zielonka examined how asynchronous rules could be
used to describe the situations of concurrency that arise in distributed sys-
tems [25]. Pighizzini clarified the computing abilities of Zielonska’s mod-
els [92] and the problem of how to turn non-deterministic Büchi asynchronous
cellular automata into deterministic models was solved by Muscholl [80].
Droste generalised to partially ordered multisets (pomsets) the original no-
tion of Zielonska’s asynchronous mappings [31]; these questions were later
re-investigated by Kuske [32, 61, 62].

With similar preoccupations, Hagiya et al. used formal methods from logic
to verify the properties of some rewriting systems, showing the links between
their approach and (a)synchronous systems [53].

5.4 Asynchronous circuits
Another major field of research on asynchronous cellular automata was de-
veloped by Peper, Lee and their collaborators. In their constructions, asyn-
chronous computations are realised with particles that follow Brownian move-
ments and which interact through special “gates” [4, 3, 66, 91]. These con-
structions result in delay-insensitive circuits that are Turing-universal (see
e.g. [64, 69] and references therein).

Recently, Schneider and Worsch presented a 3-state rule that uses Moore
neighbourhood which can simulate any delay-insensitive circuit [112] and
Lee et al. presented a generalisation of their work in the context of number-
conserving cellular automata [68].

To end this section, we propose to put an emphasis on the following ques-
tions:

Questions 4 What is a good definition of the simulation of an (a)synchronous
system by another (a)synchronous system? What are the techniques to sim-
ulate various asynchronous systems by other asynchronous systems? (e.g.:
When can an α-asynchronous system with a given synchrony rate simulate
another system with a different synchrony rate?)
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6 MODELLING WITH ASYNCHRONOUS CELLULAR AUTOMATA

Asynchronous rules have been designed for specific goals such as finding new
algorithms, developing new types of computing devices, modelling various
natural or artificial complex systems, etc. In fact, giving a representative
view of these contributions would necessitate a whole independent survey.
The task is all the more difficult as often authors use asynchronous updating
without even mentioning it. For the sake of brevity, we will thus only give
a few entry points, concentrating on the papers where the question of the
updating is explicitly discussed.

6.1 Game theory and Ecology
As mentioned earlier, the hypothesis of perfect synchrony poses the problem
of the realism of a model: How to interpret the behaviours that are only due to
the updating and not to the rule that governs the cells? Huberman and Glance
gave evidence of the existence of such “artifacts” and challenged the validity
of the simulations of spatially-extended models of the Prisoner’s dilemma:
a change in the updating models brings out new conclusions, drastically op-
posed to what was known with the classical models [58]. This question was
re-examined by Newth and Cornforth who showed that asynchronism could
also lead to the observation of new cooperative phenomena not seen in the
synchronous setting [86]. (See also Ref. [85] for a non-spatially-extended
version of the problem.)

Grilo and Correia also considered this problem but instead of restricting
their study to the fully asynchronous scheme, they employed α-asynchronous
updating to explore a wide range of degrees of synchrony [51]. Their study
revealed that the changes induced by smooth variations of the synchrony rate
may brutally affect the level of cooperation in the system, a behaviour that is
strongly reminiscent of the second-order phase transition seen in binary sys-
tems (see Sec. 3.2). Saif and Gade also investigated this issue and found that
there was a first order transition between a regime with an all-defector state
to a mixed state [107]. All these works share in common the conclusion that
some previously observed equilibrium states are artifacts of a synchronous
updating on a regular lattice.

Ruxton and Saravia have discussed the importance of the ordering in the
context of ecological modelling, studying a stochastic model of colonisation
of an environment by a species [106]. They argue in favour of adapting the
updating scheme to the physical reality of the system that is modelled. The
authors also emphasise the need to describe precisely the updating scheme
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that is used to facilitate the reproducibility of the experiments. These ar-
guments come to strengthen the need for studying in detail the “emergence
phenomena” that are seen in Ecology and question whether the predictions of
the models can be observed in “real-life” systems [100, 22].

6.2 Synchronisation in physical and biological systems
In an approach close to the work of Turing on morphogenesis [130], Gunji
used asynchronous cellular automata to analyse the pattern formation mech-
anisms that occur in molluscs [52]. Another interesting biological example
is given by Messinger et al., who investigated the link between emergence
of synchrony and the simultaneous opening and closing stomatal arrays in
plants [78].

In Physics, we mention the work of Le Caër [63] and Radicchi et al. [94],
who studied how numerical simulations of cellular systems would be depen-
dent on the updating. In the latter work, the local rule is itself stochastic; the
authors emphasise the fact that neither totally synchronous nor totally asyn-
chronous updating is fully relevant for modelling natural systems.

6.3 Problem solving
Tomassini and Venzi [127], Capcarrere [21] and Nehaniv [83] have stud-
ied how asynchronous rules solve the density classification problem and the
global synchronisation problem. Readers interested in this issue are referred
to a study by Vanneschi and Mauri, in which an enlightening discussion on
these various contributions is found and where the authors present findings of
robust and generic rules [131].

Suzudo examined the use of genetic algorithms to find mass-conservative
(also called number-conserving) asynchronous models that would generate
non-trivial patterns [122, 123]. He classified these patterns into three cate-
gories: checkerboards, stripes and sand-like. In this work asynchronism is
mainly used to ensure that number of particles remain constant, but it is also
a useful technique for generating regular patterns out of randomness: this task
is known to be difficult in the synchronous setting (see e.g. [37]).

Beigy and Meybodi investigated how asynchronous systems perform learn-
ing tasks and presented applications of their work for pattern generation and
control of cellular mobile networks [12].

It is also worth mentioning that Lee et al. [65] and Huang et al. [57] de-
signed models of self-reproduction that use asynchronous models (also called
self-timed cellular automata).
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6.4 Other problems
On the simulation side, Overeinder and Sloot were among the first to exam-
ine how to deal with the simulation of asynchronous automata on distributed
systems [88]. Bandman and other authors studied how to simulate chemical
systems with asynchronous cellular automata [11, 117]. Hoseini et al. made
an implementation of asynchronous rules with FPGAs [56]. They propose a
particular design of the FPGA in order to construct a “conformal computer”,
that is, a computer made of physical cells “arrayed on large thin flexible sub-
strates or sheets. Sheets may be cut, joined, bent, and stacked to conform to
the physical and computational needs of an application”.

Original applications were considered by Bandini et al., who used asyn-
chronous rules with memory for the design of an illumination facility [10]
and by Minoofam et al., where asynchronism produce calligraphic patterns in
the Arabic Kufic style [79]. (Unfortunately, this paper lacks precision on the
model that is used).

As we have seen in this section, there is a broad range of domains where
asynchronous models have been employed and those which we cited above
are only a small part.

Questions 5 How can we develop a unified simulation environment to facil-
itate the comparison of various updating schemes? Is there a method for
identifying the artifacts that are due to a perfect synchronous updating? Are
such effects avoidable?

7 ASYNCHRONISM IN OTHER DISCRETE MODELS OF COM-
PLEX SYSTEMS

We end this guided tour on an opening on the use of asynchrony in the systems
whose structure is close to cellular automata. Again, this is such a wide topic
that we will indicate only a few entry points to the literature.

7.1 Links with multi-agent systems
One first proposition to link the updating in multi-agent systems and cellular
automata was made by Cornforth et al., but the models they studied are in fact
standard asynchronous cellular automata [26]. Spicher et al. considered the
question of how to “translate” a multi-agent system with sequential updating
into a synchronous cellular automaton [119]. So-called transactional cellular
automata were defined to model the movements of particles between neigh-
bouring cells. One positive effect of using a synchronous cellular automaton
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is to remove the spurious effects that could be linked to a particular updating
order. (The authors give the example of diffusion-limited aggregation.)

The link between large-scale multi-agent systems and asynchronous cel-
lular automata was also examined by Tošić [129]. This author argues that the
structure of cellular automata needs to be modified in several aspects, among
which it should be made asynchronous, in order to serve as a basis for mod-
elling large groups of interacting agents.

An alternative approach to model (discrete) multi-agent systems was pro-
posed by Chevrier and Fatès, who studied the dynamics of a simple multi-
turmite systems, also known as multiple Langton’s ants. Their formalism,
inspired by cellular automata, captures the possibility to have synchronous
interacting agents [24]. The difficulty relies in describing how to solve con-
flicts that occur when two or more agents simultaneously want to modify
the environment. The solution relies on a framework invented by Ferber and
Müller called influence-reaction [44]. Belgacem and Fatès later extended
this work by considering a wider range of updating procedures and discov-
ered some phenomena (e.g., gliders) that resisted variations in the updating
choices [13].

Interesting observations were also made by Şamiloğlu et al. who analysed
the clustering effects in a group of self-propelled particles [108]. They model
asynchronism with the introduction of delays in the updating and observe
that the coherence of the groups are strongly diminished as the bounds on the
delays are increased.

7.2 Lattice-gas cellular automata
Lattice-Gas Cellular Automata (LGCA) can be seen as a “bridge” between
cell-based updating and agent-based updating. Applying asynchrony in this
context is not a straightforward operation and a first proposition of an asyn-
chronous LGCA was made by Bouré et al. [18]. In their model, movements
of particles are defined explicitly, like in multi-agents, but the updating is
made cell by cell, like in classical cellular automata. Various responses to
asynchrony are observed depending on the patterns on which the system sta-
bilises. In particular, strange patterns such as checkerboards are shown to
disappear where randomness in the updating is added. It is an open problem
to know if an infinitesimal amount of asynchrony is sufficient to destroy this
pattern.

These first results show the need to explore various possibilities to define
an asynchronous LGCA. In particular, it is interesting to look at a way to
update particles independently.
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7.3 Automata networks, neural networks and other models
The effect of asynchronous updating in genetic regulatory networks has also
been investigated by many authors. Aracena et al. introduce a labelled di-
rected graph that allows one to determine to which extent deterministic update
schedules are equivalent [6]. Demongeot et al. [28], and Noual [87] exam-
ine the robustness of the system under the variation of updating schemes and
this perturbation is coupled with various topological modifications of the net-
work such as adding or removing links in the graph or changing boundary
conditions.

The question of the effect of the updating in neural networks has been
discussed by Scherrer [111], Taouali et al. [125]. In particular, the latter au-
thors introduce an interesting distinction between the use of (a)synchronous
updating at the modelling level and at the implementation level.

In the context of “amorphous computing”, Stark discussed the computing
abilities of a computing medium formed out of non-regularly placed cells
which obey asynchronous updating [121, 120]. This author suggests that
asynchrony plays an enhancing role for the computing abilities of such sys-
tems.

We mention that the differences between synchronous and asynchronous
updating were also investigated in coupled map lattices [71, 101, 1]. Simi-
larly, the effects of the updating in the Asymmetric Exclusion Process (ASEP)
have been studied by Rajewsky et al. [95]. Tomita et al. studied asynchronous
graph-rewriting systems and showed how to make such systems simulate their
synchronous counterparts [128].

To end this section, we wish to highlight the following questions:

Questions 6 What light can be shed by asynchronous cellular automata on
other closely related models and vice versa? Can we transfer the techniques
used to analyse the simple asynchronous cellular systems to more complex
models? What is the interplay between the regular topology of cellular au-
tomata and the regularity of their updating?

8 CLOSING WORDS

This guided tour allowed us to consider the various contributions that deal
with the question of asynchronism in cellular automata and closely related
models. As we have seen, asynchrony is a privative property that does not in
itself specify a system: there are plenty of ways to construct an asynchronous
system and all of them are a priori valid.
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One of the main current challenges is to continue to explore this question
with a joint work of mathematical analysis and numerical simulations. As we
have seen, analytical results have been more difficult to obtain than numeri-
cal ones, but the situation is progressively changing as more techniques from
the probability theory are being developed for the specific case of cellular au-
tomata. We find it rather amazing that it is still an open question to determine
the convergence time of some simple binary rules [38, 39].

It is also important to clarify the position of asynchronous cellular au-
tomata into the wider field of stochastic cellular automata. Indeed, asyn-
chrony is not a mere type of noise: recall for example that the addition of
asynchrony to a deterministic model does not change its fixed points. How-
ever, many phenomena such as the existence of singularities or phase transi-
tions can certainly find their explanations using the stochastic process theory
and statistical physics.

As far as modelling is concerned, the main challenge would be to carry
out an experimental work to validate some models of asynchronism or to
dismiss some others for specific situations. As we mentioned earlier, the no-
global-clock argument — “Nature does not possess a clock to synchronise
the transitions.” — cannot be received directly and be taken alone as a valid
objection to the use of synchronous models. Instead, we consider that study-
ing a single updating scheme is not sufficient and one should instead compare
various possibilities to model a “natural computing” system.

The principal observation from this guided tour is the existence of a great
variety of approaches to asynchronism. This raises the question of what time
is in the context of computer science and numerical simulations. The positive
sciences define time as an object – identified with R, with Z, a collection of
coordinates, etc. – but it may well be that time is not some “thing” that can
be studied “objectively”.

Does this mean that time is subjective and that our models should reflect
this subjectivity? Such considerations would lead us out of the scientific
method and would therefore be dismissed as non rational. Can we then escape
the dilemma of “objective versus subjective time”? No simple answer can be
given and for sure, time is one of the central problems of philosophy. It is cer-
tainly not a coincidence if one the most important philosophical contributions
of the past century bears as title: Sein und Zeit (Being and Time).
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ceedings of ISCIS 2006, volume 4263 of Lecture Notes in Computer Science, pages 665–
676. Springer Berlin Heidelberg.

[109] J. R. Sánchez and R. López-Ruiz. (2006). Self-synchronization of cellular automata: An
attempt to control patterns. In Vassil N. Alexandrov, G. Dick van Albada, Peter M. A.
Sloot, and Jack Dongarra, editors, Proceedings of the 6th International Conference on
Computational Science - Part III, volume 3993 of Lecture Notes in Computer Science,
pages 353–359. Springer.

[110] Anindita Sarkar, Anindita Mukherjee, and Sukanta Das. (2012). Reversibility in asyn-
chronous cellular automata. Complex Systems, 21(1):71.

[111] Bruno Scherrer. (2005). Asynchronous neurocomputing for optimal control and rein-
forcement learning with large state spaces. Neurocomputing, 63:229 – 251.

[112] Oliver Schneider and Thomas Worsch. (2012). A 3-state asynchronous CA for the
simulation of delay-insensitive circuits. In Georgios Ch. Sirakoulis and Stefania Bandini,
editors, Proceedings of ACRI’12, volume 7495 of Lecture Notes in Computer Science,
pages 565–574. Springer.

[113] Birgitt Schönfisch and André de Roos. (1999). Synchronous and asynchronous updating
in cellular automata. BioSystems, 51:123–143.

[114] Martin Schüle. (2012). Natural computation. PhD thesis, Eidgenössische Technische
Hochschule (ETH) Zürich.

[115] Martin Schüle and Ruedi Stoop. (2012). A full computation-relevant topological dynam-
ics classification of elementary cellular automata. Chaos, 22(4):043143.

30



[116] Biswanath Sethi, Nazim Fatès, and Sukanta Das. (2014). Reversibility of elementary
cellular automata under fully asynchronous update. In T.V. Gopal, Manindra Agrawal,
Angsheng Li, and S.Barry Cooper, editors, Proceedings of TAMC’14, volume 8402 of
Lecture Notes in Computer Science, pages 39–49. Springer.

[117] Anastasia Sharifulina and Vladimir Elokhin. (2011). Simulation of heterogeneous cat-
alytic reaction by asynchronous cellular automata on multicomputer. In Proceedings of
the 11th international conference on Parallel computing technologies, PaCT’11, pages
204–209, Berlin, Heidelberg. Springer-Verlag.

[118] Fernando Silva and Luís Correia. (2013). An experimental study of noise and asyn-
chrony in elementary cellular automata with sampling compensation. Natural Computing,
12(4):573–588.

[119] Antoine Spicher, Nazim Fatès, and Olivier Simonin. (2010). Translating discrete multi-
agents systems into cellular automata: Application to diffusion-limited aggregation. In
Joaquim Filipe, Ana Fred, and Bernadette Sharp, editors, Agents and Artificial Intelli-
gence, volume 67 of Communications in Computer and Information Science, pages 270–
282. Springer Berlin Heidelberg.

[120] W. Richard Stark. (2013). Amorphous computing: examples, mathematics and theory.
Natural Computing, 12(3):377–392.

[121] W. Richard Stark and William H. Hughes. (2000). Asynchronous, irregular automata
nets: the path not taken. BioSystems, 55:107–117.

[122] Tomoaki Suzudo. (2004). Searching for pattern-forming asynchronous cellular au-
tomata - an evolutionary approach. In Peter M. A. Sloot, Bastien Chopard, and Alfons G.
Hoekstra, editors, Proceedings of ACRI’04, volume 3305 of Lecture Notes in Computer
Science, pages 151–160. Springer.

[123] Tomoaki Suzudo. (2004). Spatial pattern formation in asynchronous cellular automata
with mass conservation. Physica A: Statistical Mechanics and its Applications, 343:185
– 200.

[124] Yousuke Takada, Teijiro Isokawa, Ferdinand Peper, and Nobuyuki Matsui. (2006). Con-
struction universality in purely asynchronous cellular automata. Journal of Computer and
System Sciences, 72(8):1368–1385.

[125] Wahiba Taouali, Thierry Viéville, Nicolas P. Rougier, and Frédéric Alexandre. (2011).
No clock to rule them all. Journal of Physiology - Paris, 105(1–3):83–90.

[126] Tommaso Toffoli. (1978). Integration of the phase-difference relations in asynchronous
sequential networks. In Giorgio Ausiello and Corrado Böhm, editors, Proceedings of
the Fifth Colloquium on Automata, Languages and Programming, volume 62 of Lecture
Notes in Computer Science, pages 457–463. Springer Berlin Heidelberg.

[127] Marco Tomassini and Mattias Venzi. (2002). Artificially evolved asynchronous cel-
lular automata for the density task. In Stefania Bandini, Bastien Chopard, and Marco
Tomassini, editors, Proceedings of ACRI 2002, volume 2493 of Lecture Notes in Com-
puter Science, pages 44–55. Springer.

[128] Kohji Tomita, Satoshi Murata, and Haruhisa Kurokawa. (2007). Asynchronous graph-
rewriting automata and simulation of synchronous execution. In Fernando Almeida e
Costa, Luis Mateus Rocha, Ernesto Costa, Inman Harvey, and António Coutinho, editors,
Advances in Artificial Life, volume 4648 of Lecture Notes in Computer Science, pages
865–875. Springer Berlin Heidelberg.
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