
Enriching Contexts for Type-Theoretic Dynamics
CAuLD Workshop on Logical Methods for Discourse

Scott Martin and Carl Pollard

Ohio State University

December 14, 2009

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Categorial Grammar

An interdisciplinary research project/seminar at Ohio State
University

Initiated in Spring 2009 by Scott Martin, Carl Pollard, Craige
Roberts, and Elizabeth Smith

Seeks to develop a syntax/semantics/pragmatics interface
which is

formally explicit
computationally implemented
pedagogically sound (comprehensible to linguists)
equipped to handle projective meaning

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



DyCG Integrates Two Research Traditions

the ‘Curryesque’ tradition within categorial grammar

Curry 1961, Oehrle 1994, ACG, λG, GF, HOG, etc.
λ-calculi for concrete syntax (phenogrammar) and semantics,
mediated by abstract syntax (tectogrammar)
Montague’s ‘quantifying in’ implemented as β-reduction at the
pheno level (Oehrle 1994)

the dynamic semantics tradition

pioneered by Kamp, Heim, Barwise, Rooth, etc.
utterance meaning as context change
formulated type-theoretically by Muskens, de Groote, Barker
and Shan
our approach builds on Roberts’ modeling of information
structure of discourse

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



This Talk

builds on de Groote’s type-theoretic dynamics

elaborates the notion of (left) context, drawing inspiration
from Heim, Roberts, and Muskens

application: resolution of definiteness presuppositions

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Names

(1) A: I saw John.
B: John who?
A: #Just some guy. His girlfriend called him John.

(2) A: I saw Mary.
B: Mary who?
A: #Susan Smith.

(3) A: In our department, it just so happens every committee
has a different guy named Kim on it.

B: And so?
A: So every committee meeting, #Kim falls asleep!

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Definite Descriptions

(4) A: In our department, it just so happens every committee
has a different guy named Kim on it.

B: And so?
A: So every committee meeting, the guy named Kim falls

asleep!

(5) A: I saw the donkey.
B: What donkey?
A: #Oh, just some donkey out in a field on the way to

Upper Sandusky.

(6) A: I saw the donkey.
B: What donkey?
A: #That llama we always see on the way to Findlay.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Pronouns

(7) #It brayed. [out of the blue]

(8) Every donkey denies that it brays.

(9) a. A donkey had a red blanket.
b. A mule had a blue blanket.
c. The donkey/#it snorted.

(10) a. A donkey had a red blanket.
b. Another donkey had a blue blanket.
c. The donkey with the blue blanket/#the donkey/#it

snorted.

(11) 1. A donkey walked in.
2. A cat walked in too.
3. The donkey was sad.
4. It meowed. [it = the donkey!]

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Type-ography

x, y variables
e, t static types
α, κ dynamic types
suc non-linguistic constants
donkey static (hyper-)intensional predicates
donkey dynamic predicates

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Basic Types

Type Variables Description

e x, y entities
t (not used) truth values
p p, q static (hyper-)intensional propositions
ω n,m natural numbers (qua discourse referents)

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Type Constructors

→ exponential
×,+ product, coproduct
{x ∈ A | ϕ[x]} separation-style subtyping
qnAn dependent coproduct

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Some Defined Types

First n natural numbers: ωn =def {i ∈ ω | i < n}
n-ary assignments: αn =def ωn → e
Assignments: α =def q nαn

n-ary resolutions: ρn =def {r ∈ ωn → ωn → t | r is a preorder}
n-ary (information) structures: σn =def (αn × ρn × p)
Structures: σ =def q nσn

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



About Structures I

Structures are a simplified version of Roberts’ (1996, 2004)
information structures (aka discourse contexts).

Here much is omitted (moves, domain goals, QUD)

The type σ plays a role analogous to that of γ (left contexts)
in de Groote’s type-theoretic dynamics.

Discourse referents (dr’s) are modelled as natural numbers.

Domains of assignments are natural number types ωn .

To handle propositional anaphora, we could allow dr’s for
propositions too. Two possibilities:

define αn to be ωn → (e + p) rather than ωn → e; or
a separate set of dr’s expressly for propositions (cf. Portner’s
(2007) common propositional space)

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



About Structures II

The resolution of a structure is a preorder on the domain of
the structure’s assignment.

‘Higher’ dr’s are ‘better’ antecedents for definites.

The common ground of a structure is the conjunction of the
‘established’ (static) propositions.

Both the resolution and the common ground are used to
resolve definiteness presuppositions.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Some Helpful Functions

suc : ω → ω: successor of a natural number

l : α→ ω: length of an assignment (and the ‘next’ dr)

a : σ → α, r : σ → ρ, c : σ → p: the projections from a structure
to its three components.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



More Helpful Functions

•n : αn → e→ αsuc(n): extends an assignment with a new entity
(cf. de Groote’s ::)
∗n : ρn → ρsuc(n): ‘noncommittally’ adds the next dr n to a
resolution (i.e. n v n but is incomparable to all m < n)

intro =def λxs .〈as • x, ∗(rs), cs〉 : e→ σ → σ: adds an entity to
a structure’s assignment and adds the new dr to its resolution

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Continuations

A continuation (type κ) is a function from a structure to a
(static) proposition:

κ =def σ → p

Modulo replacement of de Groote’s γ (left contexts) and o
(truth values) by σ and p respectively, these are direct analogs
of his right contexts (γ → o).

The null continuation is λs .true, where true is a greatest
proposition relative to entailment (a necessary truth).

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Propositions

A dynamic proposition (type π) maps a structure and a
continuation to a (static) proposition:

π =def σ → κ→ p

This is a direct analog of de Groote’s type Ω.

Example (weather predicate): rain =def λsk .rain∧∧∧ ks

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



More Type-ography

Variables for dynamic types:
α a, b
ρ r, u
σ s
κ k
π P,Q
δ D,E

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Relations

Extending Muskens (1994), for each n ∈ ω, we define the type of
n-ary dynamic relations as follows:

δ0 =def π
δsuc(n) =def ω → δn(n ∈ ω)

We abbreviate δ1 to δ (dynamic properties).

Examples:

donkey =def λnsk .donkey (asn)∧∧∧ ks : δ
bray =def λnsk .bray (asn)∧∧∧ ks : δ

own =def λmnsk .own (asm)(asn)∧∧∧ ks : δ2

Unlike de Groote’s, the arguments of our dynamic relations do
not have raised types.

Instead, dynamic GQs will be quantified into them.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Relations

Extending Muskens (1994), for each n ∈ ω, we define the type of
n-ary dynamic relations as follows:

δ0 =def π
δsuc(n) =def ω → δn(n ∈ ω)

We abbreviate δ1 to δ (dynamic properties).

Examples:

donkey =def λnsk .donkey (asn)∧∧∧ ks : δ
bray =def λnsk .bray (asn)∧∧∧ ks : δ

own =def λmnsk .own (asm)(asn)∧∧∧ ks : δ2

Unlike de Groote’s, the arguments of our dynamic relations do
not have raised types.

Instead, dynamic GQs will be quantified into them.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



(Static) Propositional Connectives

∧∧∧ and
∨∨∨ or
¬¬¬ not
→→→ implies
∃∃∃ exists
∀∀∀ for all

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Negation

not =def λPsk .¬¬¬(Ps(λs .true))∧∧∧ ks : π → π

This is a direct analog of de Groote’s dynamic negation.

So the null continuation freezes the scope of negation.

But here, the occurrence of s in the scope of the static
negation makes not a hole for projecting definiteness
presuppositions, since they depend on the resolution preorder
and the common ground.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Conjunction

Direct analog of de Groote’s dynamic conjunction would be

and =def λPQsk .Ps(λs .Qsk)

Instead we use

λPQsk .P 〈as, rs, cs∧∧∧ Ps(λs .true)〉(λs .Qsk) : π → π → π

for dynamic and.

This makes the ‘staticization’ of the left conjunct become the
input common ground to the right conjunct.

Example:

and(rain) = λQsk .rain∧∧∧Q〈as, rs, cs∧∧∧ rain〉k : π → π

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



Dynamic Existential Quantification

Our replacement for de Groote’s Σ is
exists =def λDsk .∃∃∃(λx .D(l(as))(introxs)k)
This updates both assignments and resolutions.

Whereas dynamic conjunction updates the common ground.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



The Dynamic Indefinite Article

a =def λDE .exists(λn .Dn and En) : δ → δ → π

Note the division of the updating labor between the exists
(assignment and resolution) and the and (common ground).

As a result, a definiteness presupposition of the scope can be
satisfied in the restriction.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



A Dynamic Indefinite GQ

a donkey = λE .exists(λn .and (λsk .donkey(asn)∧∧∧ ks)(En)) =

λEsk .∃∃∃(λx .donkey x∧∧∧ E(l(as))〈as • x, ∗(rs), cs∧∧∧ donkey x〉k) :
δ → π

Note that the sortal restriction imposed by the noun on the new dr
is part of the common ground passed to the scope.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



A Dynamic Pronoun Meaning

The direct analog of de Groote’s meaning for it would be

it =def λDs .D(sel(λi .i < l(as))s

which magically selects the “right” dr. Instead we use:

it =def λDs .D(def s nonhuman)s : δ → π

where def : σ → (e→ p)→ ω is a definiteness operator.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



The Definiteness Operator

defn =def λsS .
⊔

rs(λi :ωn .cs→ S(asi)) : σn → (e→ p)→ ωn

takes a structure and a static property and returns the highest dr
in the structure’s resolution whose value can be inferred from the
structure’s common ground to have that property.

It is also used in the dynamic meaning of the definite article:

the =def λDEs .E(def s Ds(λs .true))s : δ → δ → π

the donkey = λDs .D(def s donkey)s : δ → π

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics



To Do Next

A pronoun or definite description must also update the resolution
by boosting its dr to a higher position in the preorder.

Scott Martin and Carl Pollard Enriching Contexts for Type-Theoretic Dynamics


