Advantages of CS

Perspectives

(B)

3

SDRT and Continuation Semantics (CAuLD project)

Nicholas Asher¹ Sylvain Pogodalla²

¹nicholas.asher@irit.fr IRIT CNRS, Toulouse, France ²sylvain.pogodalla@loria.fr LORIA/INRIA Nancy-Grand Est, France

> CAULD – Nancy December 13–14, 2010

	SDRT

Advantages of CS

Perspectives

(B)

3

Outline

Discourse Structure and SDRT

- Discourse Relations
- SDRT

2 Discourse Dynamics

- Dynamic Logic
- Continuation Semantics

3 Advantages of CS

Perspectives

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Linguistic Phenomena

Example

- John walked in. ▲ He poured himself a cup of coffee.
- ② John fell. ▲ Mary pushed him.
- Solution We bought the apartment, ▲ but we've rented it.
- Il commence à dessiner et peindre en 1943, ▲ fréquente les ateliers de sculpture ▲ puis de peinture de l' école des Beaux-Arts d' Oran, ▲ où il rencontre Guermaz. (ANNODIS corpus)
- Julie had an excellent meal, ▲ beginning with an elegant and inventive truffes du Périgord en première cuisson comme un petit déjeuner,▲ followed by some wonderful scallops, ▲ then sweetbreads, ▲ a sumptuous cheese plate, ▲ and ending with a scrumptious dessert.

Discourse Dynamics

Advantages of C

Perspectives

Discourse Structure and SDRT [Asher and Lascarides(2003)]

Example (Hierarchical structure of the discourse)

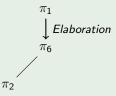
 π_1

▲□ → ▲ 三 → ▲ 三 →

3

• (π_1) John had a great evening last night.

Discourse Dynamics


Advantages of C

Perspectives

Discourse Structure and SDRT [Asher and Lascarides(2003)]

Example (Hierarchical structure of the discourse)

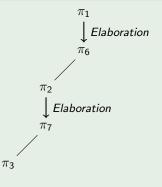
- (π_1) John had a great evening last night.
- (π_2) He had a great meal.

★ 문 ► ★ 문 ►

3

A ►

Discourse Dynamics


Advantages of CS

Perspectives

Discourse Structure and SDRT [Asher and Lascarides(2003)]

Example (Hierarchical structure of the discourse)

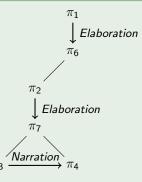
- (π_1) John had a great evening last night.
- (π_2) He had a great meal.
- (π_3) He ate salmon.

★ E ► < E ►</p>

____ ▶

э

Discourse Dynamics


Advantages of CS

Perspectives

Discourse Structure and SDRT [Asher and Lascarides(2003)]

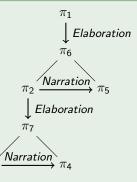
Example (Hierarchical structure of the discourse)

- (π_1) John had a great evening last night.
- (π_2) He had a great meal.
- (π_3) He ate salmon.
- (π_4) He devoured lots of cheese.

< 注 → < 注→

A ►

Discourse Dynamics


Advantages of CS

Perspectives

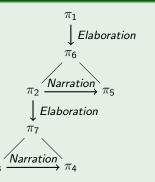
Discourse Structure and SDRT [Asher and Lascarides(2003)]

Example (Hierarchical structure of the discourse)

- (π_1) John had a great evening last night.
- (π_2) He had a great meal.
- (π_3) He ate salmon.
- (π_4) He devoured lots of cheese.
- (π_5) He then won a dancing competition.

< 注 → < 注→

Discourse Dynamics


Advantages of CS

Perspectives

Discourse Structure and SDRT [Asher and Lascarides(2003)]

Example (Hierarchical structure of the discourse)

- (π_1) John had a great evening last night.
- (π_2) He had a great meal.
- (π_3) He ate salmon.
- (π_4) He devoured lots of cheese.
- (π_5) He then won a dancing competition.

(B)

 $Elaboration(\pi_1, \pi_6, \pi_0) \land Elaboration(\pi_2, \pi_7, \pi_6) \land Narration(\pi_3, \pi_4, \pi_7) \land Narration(\pi_2, \pi_5, \pi_6)$

(七日) (七日)

э

Building SDRS's

- Segment a text into EDUs
- Compute attachment points
- Compute discourse relations between an EDU and its attachment point

Advantages of CS

高 と く ヨ と く ヨ と

3

Dynamic Logics in Discourse

Technical and Conceptual Issues

- Non-standard interpretation of formulas using assignment functions (cf. Sylvain's talk)
- interactions between syntax, compositional semantics and discourse very separated in [Asher and Lascarides(2003)]

伺 と く ヨ と く ヨ と …

3

Dynamic Logics in Discourse

Technical and Conceptual Issues

- Non-standard interpretation of formulas using assignment functions (cf. Sylvain's talk)
- interactions between syntax, compositional semantics and discourse very separated in [Asher and Lascarides(2003)]

Formal Semanticist or Logician?

- What are the useful data to feed the context with?
- How do discourse and sentences combine?
- What are the semantic recipes of the lexical items
- Should I design a new logic?

回 と く ヨ と く ヨ と

Dynamic Logics in Discourse

Technical and Conceptual Issues

- Non-standard interpretation of formulas using assignment functions (cf. Sylvain's talk)
- interactions between syntax, compositional semantics and discourse very separated in [Asher and Lascarides(2003)]

Formal Semanticist or Logician?

- What are the useful data to feed the context with?
- How do discourse and sentences combine?
- What are the semantic recipes of the lexical items
- Should I design a new logic? Continuation semantics

000		

Advantages of C

Perspectives

2

🗇 🕨 🖉 🖢 🖌 🖉 🕨

Continuation Semantics

Principles [de Groote(2006)]

[[*s*]]

Nicholas Asher, Sylvain Pogodalla SDRT and Continuation Semantics

Advantages of C

回 と く ヨ と く ヨ と

2

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\llbracket s \rrbracket \\ \llbracket np \rrbracket = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket$$

Advantages of C

回 と く ヨ と く ヨ と

2

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \end{bmatrix} \\ \begin{bmatrix} n \end{bmatrix} = e \to \llbracket s \rrbracket$$

Advantages of C

白 ト イヨト イヨト

2

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \triangleq \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \end{bmatrix}$$

	SDRT

Advantages of C

2

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \triangleq \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \rrbracket = e \to \llbracket s \rrbracket$$

Example

A man is sleeping.

	SDRT

Advantages of C

向下 イヨト イヨト

3

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \stackrel{\triangle}{=} \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \rrbracket = e \to \llbracket s \rrbracket$$

Example

A man is sleeping. $\lambda i.\lambda k.\exists x. (man x) \land (sleeping x) \land (k (x :: i))$

	SDRT

Advantages of C

向 ト イヨ ト イヨ ト

3

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \stackrel{\triangle}{=} \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \rrbracket = e \to \llbracket s \rrbracket$$

Example

A man is sleeping. He is snoring. $\lambda i.\lambda k.\exists x. (man x) \land (sleeping x) \land (k (x :: i))$

	SDRT

Advantages of C

高 と く ヨ と く ヨ と

3

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \stackrel{\triangle}{=} \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \rrbracket = e \to \llbracket s \rrbracket$$

Example

A man is sleeping.He is snoring. $\lambda i.\lambda k. \exists x.$ (man x) \land (sleeping x) \land (k (x :: i)) $\lambda i.\lambda k.$ (snoring (sel i)) \land (k i)

	SDRT

Advantages of C

高 と く ヨ と く ヨ と

3

Perspectives

Continuation Semantics

Principles [de Groote(2006)]

$$\begin{bmatrix} s \end{bmatrix} = \gamma \to (\gamma \to t) \to t \stackrel{\Delta}{=} \Omega \\ \begin{bmatrix} np \end{bmatrix} = (e \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \\ \llbracket n \rrbracket = e \to \llbracket s \rrbracket$$

$$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i \ (\lambda i'.\llbracket S \rrbracket i' \ k)$$

Example

A man is sleeping.He is snoring. $\lambda i.\lambda k. \exists x. (man x) \land (sleeping x) \land (k (x :: i))$ $\lambda i.\lambda k. (snoring (sel i)) \land (k i)$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i $	λi'.[[S]] i' k)	
Example			

A man is sleeping. $\lambda i.\lambda k.\exists x. (man x) \land (sleeping x) \land (k (x :: i))$ He is snoring. $\lambda i.\lambda k.(snoring (sel i)) \land (k i)$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i (\lambda i'$	$.\llbracket S \rrbracket i' k)$	
Example			
Example			
A man is sleeping.		He is snoring.	
$\lambda i.\lambda k.\exists x. (man x) \land ($	sleeping x) \land (k (x :: i))	$\lambda i.\lambda k.$ (snoring ($\texttt{sel}(i)) \land (k(i))$

 $\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land k \ (x :: i)] i \\ (\lambda i'.(\lambda i \ k.(\texttt{snoring } (\texttt{sel } i)) \land (k \ i)) \ i' \ k) \end{array}$

(B)

Discourse Structure and SDRT 000	Discourse Dynamics ○O●OOOOOOOO	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i (\lambda$	i'.[[S]] i' k)	
Example			
A man is sleeping. $\lambda i.\lambda k. \exists x. (man x) \land ($	sleeping $x) \land (k \ (x :: i))$	He is snoring. λi.λk.(snoring ($(\texttt{sel }i)) \land (k \ i)$

 $\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land k \ (x :: i)] \ i \\ (\lambda i'.(\lambda i \ k.(\texttt{snoring } (\texttt{sel } i)) \land (k \ i)) \ i' \ k) \end{array}$

(B)

Discourse Structure and SDRT	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i (\lambda i'$	\mathbb{S} $i' k$	
Example			
Lxample			
A man is sleeping.		He is snoring.	
$\lambda i.\lambda k.\exists x. (\mathbf{man} \ x) \land (\mathbf{man} \ x)$	(sleeping x) \land (k (x :: i))	$\lambda i.\lambda k.$ (snoring ($(\texttt{sel }i)) \land (k i)$

$$\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\max \ x) \land (\text{sleeping } x) \land k \ (x :: i)] \ i \\ (\lambda i'.(\lambda i \ k.(\text{snoring } (\text{sel } i)) \land (k \ i)) \ i' \ k) \\ \rightarrow_{\beta} \quad \lambda i \ k.[\lambda k.\exists x.(\max \ x) \land (\text{sleeping } x) \land (k \ (x :: i))] \\ (\lambda i'.(\text{snoring } (\text{sel } i')) \land (k \ i')) \end{array}$$

Discourse Structure and SDRT	Discourse Dynamics ○O●OOOOOOOO	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i (\lambda i'$	".[[S]] i' k)	
Example			
A man is sleeping. $\lambda i.\lambda k. \exists x. (man x) \land (x)$	sleeping $x) \land (k \ (x :: i))$	He is snoring. $\lambda i.\lambda k.$ (snoring (sel	i))∧(k i)

$$\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land k \ (x :: i)] \ i \\ (\lambda i'.(\lambda i \ k.(\texttt{snoring } (\texttt{sel } i)) \land (k \ i)) \ i' \ k) \\ \rightarrow_{\beta} \quad \lambda i \ k.[\lambda k.\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land (k \ (x :: i))] \\ (\lambda i'.(\texttt{snoring } (\texttt{sel } i')) \land (k \ i')) \end{array}$$

Discourse Structure and SDRT	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i \; (\lambda i'$.[[S]] i' k)	
Example			
A man is sleeping. $\lambda i.\lambda k. \exists x. (man x) \land (s$	leeping x) \land (k (x :: i))	He is snoring. $\lambda i.\lambda k.($ snoring (sel i))∧(k i)

$$\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land k \ (x :: i)] \ i \\ & (\lambda i'.(\lambda i \ k.(\textbf{snoring } (\texttt{sel } i)) \land (k \ i)) \ i' \ k) \\ \rightarrow_{\beta} \quad \lambda i \ k.[\lambda k.\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land (k \ (x :: i))] \\ & (\lambda i'.(\textbf{snoring } (\texttt{sel } i')) \land (k \ i')) \\ \rightarrow_{\beta} \quad \lambda i \ k.[\exists x.(\textbf{man } x) \land (\texttt{sleeping } x) \land ((\lambda i'.(\texttt{snoring } (\texttt{sel } i')) \land (k \ i')) \ (x :: i))] \end{array}$$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i (\lambda i'$.[[S]] i' k)	
Example			
A man is sleeping. $\lambda i. \lambda k. \exists x. (man x) \land i$	(sleeping $x) \land (k \ (x :: i))$	He is snoring. $\lambda i. \lambda k. ($ snoring (sel	i))∧(k i)

$$\begin{array}{l} \lambda i \ k.[\lambda i \ k.\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land k \ (x :: i)] i \\ (\lambda i'.(\lambda i \ k.(\textbf{snoring } (\textbf{sel } i)) \land (k \ i)) \ i' \ k) \\ \rightarrow_{\beta} \ \lambda i \ k.[\lambda k.\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land (k \ (x :: i))] \\ (\lambda i'.(\textbf{snoring } (\textbf{sel } i')) \land (k \ i')) \\ \rightarrow_{\beta} \ \lambda i \ k.[\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land ((\lambda i'.(\textbf{snoring } (\textbf{sel } i')) \land (k \ i')) \ (x :: i))] \end{array}$$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i \; (\lambda i'$.[[S]] i' k)	
Example			
A man is sleeping.	$leeping \ x) \land (k \ (x :: i))$	He is snoring. $\lambda i.\lambda k.$ (snoring (sel	i))∧(k i)
$\lambda i \ k.[\lambda i \ k.\exists x.(man \ x) \land$	$($ sleeping $x) \land k (x :: i)]$	i	
	$(\lambda i'.(\lambda i \ k.(snorii$	$ng\;(\texttt{sel}\;i)) \land (k\;i))\;i'$	k)
	(a a = b = b = b = b = b = b = b = b = b =	('))]	

 $\rightarrow_{\beta} \quad \lambda i \ k.[\lambda k.\exists x.(\text{man } x) \land (\text{sleeping } x) \land (k \ (x :: i))]$

 $(\lambda i'.($ snoring (sel $i')) \land (k i'))$

□ > < E > < E > E - のへで

 $\rightarrow_{\beta} \quad \lambda i \ k.[\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land ((\lambda i'.(\texttt{snoring } (\texttt{sel } i')) \land (k \ i')) \ (x :: i))]$

 $\rightarrow_{\beta} \quad \lambda i \ k.[\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land ((\texttt{snoring } (\texttt{sel } (x :: i)) \land (k \ (x :: i))))]$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS	Perspectives
CS: an Example			
	$\llbracket T.S \rrbracket = \lambda i.\lambda k.\llbracket T \rrbracket i \ (\lambda i'$.[[S]] i' k)	
Example			
A man is sleeping. $\lambda i.\lambda k.\exists x. (man x) \land (sl)$	eeping x) \land (k (x :: i))	He is snoring. λi.λk.(snoring (se	∍1 i))∧(k i)
$\lambda i \ k.[\lambda i \ k.\exists x.(man \ x) \land$		<i>i</i> ng (sel i))∧(k i))	i' k)

 $\rightarrow_{\beta} \quad \lambda i \ k.[\lambda k. \exists x. (man \ x) \land (sleeping \ x) \land (k \ (x :: i))]$

 $(\lambda i'.($ snoring (sel $i')) \land (k i'))$

 $\rightarrow_{\beta} \quad \lambda i \ k.[\exists x.(\textbf{man } x) \land (\textbf{sleeping } x) \land ((\lambda i'.(\textbf{snoring } (\texttt{sel } i')) \land (k \ i')) \ (x :: i))]$

 $\rightarrow_{\beta} \quad \lambda i \ k.[\exists x.(\texttt{man } x) \land (\texttt{sleeping } x) \land ((\texttt{snoring } (\texttt{sel } (x :: i)) \land (k \ (x :: i))))]$

Advantages of CS

Perspectives

SDRT in Continuation Semantics

- A set of labels $\pi, \pi_1, \pi_2, \ldots : \ell$, representing discourse constituents
- R(π₁, π₂, π) : t, a set of relation symbols that represent discourse relations over constituents, where R is a relation symbol for a discourse relation. This formula says that the discourse relation R holds between π₁ and π₂ in constituent π.

•
$$\Omega \stackrel{\Delta}{=} \gamma
ightarrow (\gamma
ightarrow \ell
ightarrow t)
ightarrow \ell
ightarrow t$$

Discourse Structure and SDRT 000	Discourse Dynamics	Advantages of CS
Option 1: more	complicated sente	ntial semantics

- Left contexts are records
- Binder rule is as before.
- Sentence semantics is more complicated

≡ nar

A B > A B >

Sentential semantics

• $?_R(\pi_S,?,?) \land \pi_S : ||S||$

That is, a sentence requires the resolution of an attachment point in some environment with some discourse relation. In CS, this means:

$$\llbracket S \rrbracket = \lambda io. \exists \pi_s. P_S \land \operatorname{sel}_{\rho}(\operatorname{sel}_L(i), \pi_s, \operatorname{sel}_L(i)) \land (o v(i, \pi_2))$$
(1)

向 ト イヨ ト イヨ ト

3

Exceptions in SDRT

The sentential semantics rule presupposes that there are at least two labels in the left context. When this is not met, we have the exception handling clause:

$$\llbracket S \rrbracket = \lambda io. \exists \pi. \exists \pi_s. P_S \land \mathtt{sel}_{\rho}(\mathtt{sel}_L(i), \pi_s, \pi) \land (o \ v(i, \pi_S))$$

$$(2)$$

Need another exception when there is no label at all in the context (discourse initial segment).

Discourse Dynamics

Advantages of CS

向下 イヨト イヨト

3

Perspectives

Option 2: Complicate the Binder rule

$$\llbracket D.S \rrbracket = \lambda io. \exists \pi_1. \llbracket D \rrbracket (\pi_1 :: i) (\lambda i'. \exists \pi_2. \llbracket S \rrbracket (i') (0) \\ \land \mathtt{sel}_{\rho} (\mathtt{sel}_L(i'), \pi_s, \mathtt{sel}_L(i')) \land (o v(i', \pi_2))$$

Avoids the need for the exception when we have a discourse initial segment.

Glueing functions

- $\mathtt{sel}_L:\gamma\to\ell$ extracts a label from the left context that is SDRT accessible
- sel_E : γ → ℓ → e extracts a discourse referent from the set of accessible discourse referents associated with a label.
- $sel_{\rho}: \gamma \to \ell \to \ell \to \ell \to t$. (*i.e.* a ternary relation) linking a label chosen from *i* the current context and returns a proposition.
- $v \colon \gamma \to \ell \to \gamma$.

v changes the left context record in virtue of $\| {\it S} \|$ and its link to the context.

Discourse Dynamics

Advantages of CS

回 と く ヨ と く ヨ と

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

 (π_1) A man walked in.

Discourse Dynamics

Advantages of CS

回 と く ヨ と く ヨ と

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

 (π_1) A man walked in.

$$\begin{bmatrix} man \end{bmatrix} = \lambda x.\lambda i o \pi. (\mathbf{M} \times \pi) \land (o \ i \ \pi) \\ \begin{bmatrix} a \end{bmatrix} = \lambda P.\lambda Q.\lambda i o \pi. \exists x. (P \times (x :: i) (\lambda i' \pi'. Q \times o \ i' \ \pi')) \pi \\ \begin{bmatrix} walked in \end{bmatrix} = \lambda s.s(\lambda x.\lambda i o \pi. (\mathbf{W} \times \pi) \land (o \ i \ \pi))$$

Discourse Dynamics

Advantages of CS

向下 イヨト イヨト

Ξ.

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

(π_1) A man walked in. $\lambda i o \pi. \exists x. \mathbf{M}(x, \pi) \land \mathbf{W}(x, \pi) \land (o(x :: i) \pi)$

[[man]]	$=\lambda x.\lambda io\pi.(\mathbf{M}x\pi)\wedge(oi\pi)$
[[<i>a</i>]]	$= \lambda P.\lambda Q.\lambda io\pi. \exists x. (P \times (x :: i) (\lambda i' \pi'. Q \times o i' \pi')) \pi$
[walked in]	$= \lambda s.s(\lambda x.\lambda io\pi.(\mathbf{W}x\pi) \wedge (oi\pi))$

Discourse Dynamics

Advantages of C

向下 イヨト イヨト

3

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

(π_1) A man walked in. $\lambda io\pi.\exists x.\mathbf{M}(x,\pi) \wedge \mathbf{W}(x,\pi) \wedge (o(x::i)\pi)$ (π_2) Then he coughed.

Discourse Dynamics

Advantages of CS

向下 イヨト イヨト

3

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

 (π_1) A man walked in. $\lambda i o \pi. \exists x. \mathbf{M}(x, \pi) \land \mathbf{W}(x, \pi) \land (o(x :: i) \pi)$ (7)

 (π_2) Then he coughed.

[coughed]	$= \lambda s.s(\lambda x.\lambda io\pi.(\mathbf{C} \times \pi) \land (o \ i \ \pi))$
[[he]]	$=\lambda P.\lambda io\pi.P(sel_E i) i o \pi$
[[then]]	$=\lambda s.\lambda i o \pi_2. \exists \pi. s i (\lambda i' \pi'. Nar(\mathtt{sel}_L(i), \pi_2, \pi) \wedge (o (\pi :: i') \pi')) \pi_2$

Discourse Dynamics

Advantages of C

Perspectives

2

高 と く ヨ と く ヨ と

SDRT in CS: Lexicalized Discourse Relations

Example

(π_1) A man walked in.	(π_2) Then he coughed.
$\lambda io\pi. \exists x. \mathbf{M}(x, \pi) \land \mathbf{W}(x, \pi) \land (o(x :: i) \pi)$	$\lambda io\pi_2 \exists \pi. \mathbf{C}(\mathtt{sel}_E(i), \pi_2)$
	$\wedge \mathit{Nar}(\mathtt{sel}_{\mathit{L}}(i), \pi_2, \pi) \wedge o\left(\pi + i ight) \pi_2)$

[coughed]	$= \lambda s.s(\lambda x.\lambda io\pi.(\mathbf{C} \times \pi) \land (o \ i \ \pi))$
[[he]]	$= \lambda P.\lambda io \pi. P(sel_E i) i o \pi$
[[then]]	$=\lambda s.\lambda io\pi_2.\exists \pi.si(\lambda i'\pi'.Nar(\mathtt{sel}_L(i),\pi_2,\pi)\wedge(o(\pi::i')\pi'))\pi_2$

Discourse Dynamics

Advantages of C

3

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

 $\begin{array}{ll} (\pi_1) \mbox{ A man walked in.} & (\pi_2) \mbox{ Then he coughed.} \\ \lambda i o \pi. \exists x. \mathbf{M}(x, \pi) \wedge \mathbf{W}(x, \pi) \wedge (o \, (x :: i) \, \pi) & \lambda i o \pi_2. \exists \pi. \mathbf{C}(\texttt{sel}_E(i), \pi_2) \\ & \wedge \textit{Nar}(\texttt{sel}_L(i), \pi_2, \pi) \wedge o \, (\pi + i) \, \pi_2) \end{array}$

 $[\![S_1.S_2]\!] = \lambda i o \pi'' . \exists \pi_1 . [\![S_1]\!] (\pi_1 :: i) (\lambda i' \pi' . \exists \pi_2 . [\![S_2]\!] (\pi_2 :: i') o \pi_2) \pi_1$

Discourse Dynamics

Advantages of C

通 と く ヨ と く ヨ と …

3

Perspectives

SDRT in CS: Lexicalized Discourse Relations

Example

 $\begin{array}{ll} (\pi_1) \mbox{ A man walked in.} & (\pi_2) \mbox{ Then he coughed.} \\ \lambda i \sigma \pi. \exists x. \mathbf{M}(x, \pi) \land \mathbf{W}(x, \pi) \land (o(x :: i) \pi) & \lambda i \sigma \pi_2. \exists \pi. \mathbf{C}(\texttt{sel}_E(i), \pi_2) \\ & \land \textit{Nar}(\texttt{sel}_L(i), \pi_2, \pi) \land o(\pi + i) \pi_2) \end{array}$

$$\begin{split} \llbracket S_1.S_2 \rrbracket &= \lambda i \sigma \pi''. \exists \pi_1. \llbracket S_1 \rrbracket (\pi_1 :: i) (\lambda i' \pi'. \exists \pi_2. \llbracket S_2 \rrbracket (\pi_2 :: i') \circ \pi_2) \pi_1 \\ &\to_\beta \lambda i \sigma \pi''. \exists \pi_1. \exists x. \mathbf{M}(x, \pi_1) \land \mathbf{W}(x, \pi_1) \\ &\land (\exists \pi_2. \exists \pi. \mathbf{C} (\mathsf{sel}_E(\pi_2 :: (x :: (\pi_1 :: i))), \pi_2) \\ &\land Nar (\mathsf{sel}_L((\pi_2 :: (x :: (\pi_1 :: i))), \pi_2, \pi)) \\ &\land \circ (\pi + (\pi_2 :: (x :: (\pi_1 :: i)))) \pi_2) \end{split}$$

Discourse Structure and SDRT 000	Discourse Dynamics ○000000000	Advantages of CS	Perspectives
Structuring γ			

Example

 (π_1) A man walked in. (π_2) He sported a hat. (π_3) Then a woman walked in. (π_4) She wore a coat.

Labels = Available Labels = Discourse entities =

О

Content =

() <) <)
 () <)
 () <)
</p>

э

Discourse Structure and SDRT 000	Discourse Dynamics ○○○○○○○○	Advantages of CS	Perspectives
Structuring γ			

Example

 (π_1) A man walked in. (π_2) He sported a hat. (π_3) Then a woman walked in. (π_4) She wore a coat.

$$\begin{bmatrix} \text{Labels} = & \pi_1, \pi_2, \pi, \pi_3, \pi', \pi_4 \\ \text{Available Labels} = & \pi', \pi_3, \pi_4 \\ \text{Discourse entities} = & (\pi_1, x), (\pi_2, x), (\pi_2, w), (\pi_4, y), (\pi_4, z), (\pi_3, y) \\ \exists \pi_1. \exists x. \mathbf{M}(x, \pi_1) \land \mathbf{W}(x, \pi_1) \land \\ \exists \pi_1. \exists x_2. \exists h. \mathbf{S}(\texttt{sel}_E(x :: \texttt{nil}, \pi_1), h, \pi_2) \land H(h) \\ \land Background(\pi_1, \pi_2, \pi) \land \\ \exists \pi_3. \exists y(\mathbf{Wo}(y, \pi_3) \land \mathbf{W}(y, \pi_3)) \\ \land Narration(\pi, \pi_3, \pi') \land \\ \exists \pi'. \exists \pi_4. \exists c. \mathbf{Wear}(\texttt{sel}_E(y :: x :: \texttt{nil}, \pi_3), c, \pi_4) \\ \land \mathbf{Coat}(c, \pi_4) \land Background(\pi_3, \pi_4, \pi') \end{bmatrix}$$

* E > * E >

3

高 と く ヨ と く ヨ と

3

Advantages of CS

- straightforward computation of complexity and confluence—depends crucially on sel_E, sel_L, sel_ρ. Everything else is just β reduction.
- typing of labels as part of the lexicon: PROP EVTY or FACT EVTY makes clear clashes of veridicality that drives attachment.

Example

Bob likes sports but Sam doesn't. Or Fred doesn't.

	SDRT

Discourse Dynamics

Advantages of CS

★@> ★ E> ★ E> = E

Perspectives

Advantages of CS continued

• Interactions between compositional semantics and discourse made more explicit.

Example

Bob came to the party only because he had nothing better to do.

If John goes to the mountains, he normally brings his dog. He normally brings a walking stick too.

• the syntax of appositions, left dislocated adverbials E.g., treatment frame adverbials without underspecification sel_L must select a label from the continuation.

Example

In the thirties, [liquor could not be sold in most areas. Speakeasies developed throughout the US.]

() <) <)
 () <)
 () <)
</p>

-

Perspectives

- Interaction with lexical semantics
- Interaction with syntax (ACG)
- Computations within the sel operators
- Interaction between sel_L , sel_E and sel_ρ
- What about the duplication of the content?
- What (technical) solution to prefer? Why?
- Feedback on SDRT

() <) <)
 () <)
 () <)
</p>

3

N. Asher and A. Lascarides. Logics of Conversation. Cambridge University Press, 2003.

P. de Groote.

Towards a montegovian account of dynamics.

In SALT 16, pages 148–155. CLC Publications, 2006.