Generation with Grammars enriched with Lexical Semantics Information

Pierre Bourreau ${ }^{1} \quad$ Sylvain Salvati ${ }^{1}$

${ }^{1}$ Equipe SIGNES
LaBRI-INRIA Sud-Ouest

Introduction

- Goal: extend parsing techniques on ACG by adding new operation (here: deletion)
- Parsing $\mathrm{ACG} \Rightarrow$ Natural Language Generation
- Deletion can be used to represent lexical semantics information in our grammar
- No intension of creating a new lexical semantics theory.

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information
Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars

Integrating some lexical semantics information
Parsing ACG
General Idea Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
- Montagovian semantics,
- Curry's distinction between phenogrammar and tectogrammar.

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
- Montagovian semantics, λ-calculus for semantics
- Curry's distinction between phenogrammar and tectogrammar. intermediate structure between syntax and semantics

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
- Montagovian semantics, λ-calculus for semantics
- Curry's distinction between phenogrammar and tectogrammar. intermediate structure between syntax and semantics
- Plus, uniformity of the formalism: use of the λ-calculus to describe every module/grammar

Second-order ACG and Lexical Semantics

-Abstract Categorial Grammars

Example

$\Lambda_{\text {tecto }}$

From tectogrammars to phenogrammars

The lexicons

- We use homomorphisms.
- Nothing new:
- [Mon73], [Lam58]
- If terms are typed, \mathscr{H} applies to both terms and types.

As an example (syntax)

- eat:np $\rightarrow \mathrm{np} \rightarrow \mathrm{s}$
- $\mathscr{H}_{\text {syn }}(\mathrm{np})=$ str
- $\mathscr{H}_{\text {syn }}(\mathrm{s})=$ str
- $\mathscr{H}_{\text {syn }}(\lambda x y$. eat $x y)=\lambda x_{1} x_{2} \cdot x_{2}+$ eat $+x_{1}$

From tectogrammars to phenogrammars

The lexicons

- We use homomorphisms.
- Nothing new:
- [Mon73], [Lam58].
- If terms are typed, \mathscr{H} applies to both terms and types.

As an example (semantics)

- eat:np $\rightarrow \mathrm{np} \rightarrow \mathrm{s}$
- $\mathscr{H}_{\text {sem }}(\mathrm{np})=(\mathrm{e} \rightarrow \mathrm{t}) \rightarrow \mathrm{t}$
- $\mathscr{H}_{\text {sem }}(\mathrm{s})=\mathrm{t}$
- $\mathscr{H}_{\text {sem }}(\lambda x y$. eat $x y)=\lambda P Q . P(\lambda x \cdot Q(\lambda y . E A T x y))$

Formally

Higher-Order Signature
A higher-order signature $\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$:

- \mathscr{A} a finite set of atomic types
- \mathscr{C} a finite set of constants
- τ the typing function $\mathscr{C} \rightarrow \mathscr{T}(\mathscr{A})$

Derivation system

$$
\begin{gathered}
\overline{X: \alpha \vdash_{\Sigma} X: \alpha} \overline{\vdash_{\Sigma} \boldsymbol{c}: \tau(\boldsymbol{c})} \\
\overline{\Gamma-\{x: \alpha\} \vdash_{\Sigma} \lambda x \cdot M: \alpha \rightarrow \beta} \\
\frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} M N: \beta}
\end{gathered}
$$

Overview (1)

- $\operatorname{An} \operatorname{ACG} \mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \wedge_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$
- $\mathscr{A}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{1}} \mid \vdash_{\Sigma_{1}} M: s\right\}$
- $\mathscr{O}(\mathscr{G})=\left\{M \in \Lambda_{\Sigma_{2}}\left|\exists N \in \mathscr{A}(\mathscr{G}),|\mathscr{H}(N)|_{\beta}=M\right\}\right.$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ-terms used to represent all this structures.

NL Generation \equiv NL Parsing

Overview(2)

Outline

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars
Integrating some lexical semantics information
Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Original ACG

Linearity
A term M is linear if every variable in M has one and only one occurrence in M (no deletion, no copy)

Example

$x, \lambda x$.fx but not $\lambda x . f x x$

Original ACG

Linearity
A term M is linear if every variable in M has one and only one occurrence in M (no deletion, no copy)

Example
$x, \lambda x . f x$ but not $\lambda x . f x x$
(Linear) ACG
$\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$. For every constant c of $\Sigma_{1}, \mathscr{H}(c)$ is linear.

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one occurrence in M (no deletion).
A variable which has more than one occurrence in M is assigned an atomic type in M's principal typing limited copy)

Example
$x, \lambda x . f x, \lambda x . f x x$ but not $\lambda x . f(f x)$

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one occurrence in M (no deletion).
A variable which has more than one occurrence in M is assigned an atomic type in M's principal typing limited copy)

Example
$x, \lambda x . f x, \lambda x . f x x$ but not $\lambda x . f(f x)$
Almost linear ACG
$\mathscr{G}=\left(\Sigma_{1}, \Sigma_{2}, \mathscr{H}, s\right)$. For every constant c of $\Sigma_{1}, \mathscr{H}(c)$ is almost linear.

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
- $\wedge(B \cup Y$ HAM JOHN) (READ HAM JOHN)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
- $\wedge(B U Y$ HAM JOHN) (READ HAM JOHN)
- Differenciation through terms and not types (Pustejovsky)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
- $\wedge(B U Y$ HAM JOHN) (READ HAM JOHN)
- Differenciation through terms and not types (Pustejovsky)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
- $\wedge(B U Y$ HAM JOHN) (READ HAM JOHN)
- Differenciation through terms and not types (Pustejovsky)
- ^(BUY HAM phys-obj JOHN) (READ HAM iffo-cont JOHN)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
- $\wedge(B U Y$ HAM JOHN) (READ HAM JOHN)
- Differenciation through terms and not types (Pustejovsky)
- $\wedge\left(B U Y H_{\text {phys-obj }} J O H N\right)\left(R E A D\right.$ HAM $\left._{\text {iffo-cont }} J O H N\right)$
-

$$
\wedge\left(B U Y H_{\text {phys-obj }} J O H N_{\text {char }}\right)\left(\text { READ HAM } M_{\text {info-cont }} J O H N_{\text {char }}\right)
$$

Choice as deletion

List of aspects on NP

- $\mathscr{H}_{\text {sem }}($ hamlet $)=\lambda P . P$ HAM

Verb (predicate) as selector

- $\mathscr{H}_{\text {sem }}($ read $)=\lambda P Q \cdot P(\lambda x \cdot Q(\lambda y \cdot R E A D x y))$

Choice as deletion

List of aspects on NP

- $\mathscr{H}_{\text {syn }}($ hamlet $)=$ $\lambda Q P . P\left(Q H_{\text {char }} H A M_{\text {phys-obj }} H_{\text {info-cont }}\right)$
- Q is the selector

Verb (predicate) as selector

- $\mathscr{H}_{\text {sem }}($ read $)=\lambda P Q \cdot P \pi_{3}\left(\lambda x \cdot Q \pi_{1}(\lambda y \cdot R E A D x y)\right)$
- $\pi_{i}=\lambda x_{1} x_{2} x_{3} \cdot x_{i}$

Almost affine terms

Almost affine terms

A term M is almost affine if every variable/constant which has more than one occurrence in M is assigned an atomic type in M's principal typing

Example
$\lambda x^{a} y^{b} . f^{a \rightarrow a \rightarrow c} x^{a} x^{a}$ but not $\lambda x^{a} y^{b} . f^{a \rightarrow a \rightarrow a}\left(f^{a \rightarrow a \rightarrow a} x^{a} x^{a}\right) x^{a}$
Almost affine ACG
An ACG $\left(\Sigma_{1}, \Sigma_{2}, \mathscr{L}, s\right)$ is almost affine if for every constant c in $\Sigma_{1}, \mathscr{L}(c)$ is almost affine.

Outline

Second-order ACG and Lexical Semantics
 Abstract Categorial Grammars
 Integrating some lexical semantics information

Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Parsing ACG

Sketch

1. A term $M_{\Sigma_{1}}: \alpha$ in Σ_{1}
2. Find the terms M_{Σ}, such that $\mathscr{H}_{1}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{1}}$
3. Get the terms $M_{\Sigma_{2}}$, such that $\mathscr{H}_{2}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{2}}$

Parsing ACG

Sketch

1. A term $M_{\Sigma_{1}}: \alpha$ in Σ_{1}
2. Find the terms M_{Σ}, such that $\mathscr{H}_{1}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{1}}$
3. Get the terms $M_{\Sigma_{2}}$, such that $\mathscr{H}_{2}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{2}}$

Parsing ACG

Sketch

1. A term $M_{\Sigma_{1}}: \alpha$ in Σ_{1}
2. Find the terms M_{Σ}, such that $\mathscr{H}_{1}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{1}}$
3. Get the terms $M_{\Sigma_{2}}$, such that $\mathscr{H}_{2}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{2}}$

Parsing ACG

Sketch

1. A term $M_{\Sigma_{1}}: \alpha$ in Σ_{1}
2. Find the terms M_{Σ}, such that $\mathscr{H}_{1}\left(M_{\Sigma}\right) \rightarrow{ }_{\beta} M_{\Sigma_{1}}$
3. Get the terms $M_{\Sigma_{2}}$, such that $\mathscr{H}_{2}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{2}}$

Parsing ACG

Sketch
2. Find the term M_{Σ}, such that $\mathscr{H}_{1}\left(M_{\Sigma}\right) \rightarrow_{\beta} M_{\Sigma_{1}}$

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics information

Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Idea: Use Types

If $M_{\Sigma_{1}}$ and $\mathscr{H}_{1}\left(M_{\Sigma}\right)$ share the same principal typing then

$$
M_{\Sigma_{1}}={ }_{\beta} \mathscr{H}_{1}\left(M_{\Sigma}\right)
$$

Idea: Use Types

Theorem
[Coherence] Let's consider a β-reduced term M and $\langle\Gamma ; \gamma\rangle$ its principal typing. If M is ??? it is the unique β-normal inhabitant of $\langle\Gamma ; \gamma\rangle$

Theorem
[Subject Expansion] Let's consider a ??? term M, a term M^{\prime} such that $M \rightarrow{ }_{\beta} M^{\prime}$ and $\Gamma \vdash M^{\prime}: \gamma$. Then $\Gamma \vdash M: \gamma$

Idea: Use Types

Theorem
[Coherence] Let's consider a β-reduced term M and $\langle\Gamma ; \gamma\rangle$ its principal typing. If M is linear it is the unique β-normal inhabitant of $\langle\Gamma ; \gamma\rangle$ [BS82]

Theorem
[Subject Expansion] Let's consider a linear term M, a term M^{\prime} such that $M \rightarrow{ }_{\beta} M^{\prime}$ and $\Gamma \vdash M^{\prime}: \gamma$. Then $\Gamma \vdash M: \gamma$

Idea: Use Types

Theorem
[Coherence] Let's consider a β-reduced term M and $\langle\Gamma ; \gamma\rangle$ its principal typing. If M is almost linear it is the unique β-normal inhabitant of $\langle\Gamma ; \gamma\rangle$ [Aot99]

Theorem
[Subject Expansion] Let's consider a almost linear term M, a term M^{\prime} such that $M \rightarrow_{\beta} M^{\prime}$ and $\Gamma \vdash M^{\prime}: \gamma$. Then $\Gamma \vdash M: \gamma$ [Kan07]

Results

- [Kan07] gave a Datalog recognizer for linear and almost linear terms.
- Complexity is LOGCFL $\subseteq \mathbf{P}$
- [Sal10] proved natural language generation is decidable in the Montagovian framework

Results

- [Kan07] gave a Datalog recognizer for linear and almost linear terms.
- Complexity is LOGCFL $\subseteq \mathbf{P}$
- [Sal10] proved natural language generation is decidable in the Montagovian framework

With deletion?

Outline

Second-order ACG and Lexical Semantics
 Abstract Categorial Grammars
 Integrating some lexical semantics information

Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

What we would like

Theorem
[Coherence] Let's consider a β-reduced term M and $\langle\Gamma ; \gamma\rangle$ its principal typing. If M is almost affine it is the unique β-normal inhabitant of $\langle\Gamma ; \gamma\rangle$

Theorem
[Subject Expansion] Let's consider a almost affine term M, a term M^{\prime} such that $M \rightarrow_{\beta} M^{\prime}$ and $\Gamma \vdash M^{\prime}: \gamma$. Then $\Gamma \vdash M: \gamma$
$__{\text {Typing issues }}$

What we would like

Theorem
[Subject Expansion] Let's consider a almost affine term M, a term M^{\prime} such that $M \rightarrow_{\beta} M^{\prime}$ and $\Gamma \vdash M^{\prime}: \gamma$. Then $\Gamma \vdash M: \gamma$

Typing issues with deletion

Example
$-(\lambda P . \mathbf{c})(\lambda x . f \mathbf{c c}) \rightarrow_{\beta} \mathbf{c}$
$-\lambda P . \mathbf{f}((\lambda y . \mathbf{c})(P \mathbf{c})) \rightarrow_{\beta} \lambda P . \mathbf{f c}$

Typing issues with deletion

Example
$-(\lambda P . \mathbf{c})(\lambda x . f \mathbf{c c}) \rightarrow_{\beta} \mathbf{c}$

- $\mathbf{c}: a, \mathbf{f}: b \rightarrow b \rightarrow c \vdash(\lambda P . \mathbf{c})(\lambda x . f x x): a$
- $\mathbf{c}: a \vdash \mathbf{c}: a$
$-\lambda P . \mathbf{f}((\lambda y . \mathbf{c})(P \mathbf{c})) \rightarrow_{\beta} \lambda P . f \mathbf{c}$
- $\mathbf{c}: \mathbf{a}, \mathbf{f}: a \rightarrow b \vdash \lambda P . \mathbf{f}((\lambda y . \mathbf{c})(P \mathbf{c})):(a \rightarrow c) \rightarrow b$
- c: $a, \mathbf{f}: a \rightarrow b \vdash \lambda P . f \mathbf{f}: o \rightarrow b$

Typing issues with deletion

Example

$-(\lambda P . \mathbf{c})(\lambda x . f \mathbf{c c}) \rightarrow_{\beta} \mathbf{c}$

- $\mathbf{c}: a, \mathbf{f}: b \rightarrow b \rightarrow c \vdash(\lambda P . \mathbf{c})(\lambda x . f x x): a$
- $\mathbf{c}: a \vdash \mathbf{c}: a$
$-\lambda P . \mathbf{f}((\lambda y . \mathbf{c})(P \mathbf{c})) \rightarrow_{\beta} \lambda P . \mathbf{f c}$
- $\mathbf{c}: a, \mathbf{f}: a \rightarrow b \vdash \lambda P . \mathbf{f}((\lambda y . \mathbf{c})(P \mathbf{c})):(a \rightarrow c) \rightarrow b$
- c: $a, \mathbf{f}: a \rightarrow b \vdash \lambda P . f \mathbf{f}: o \rightarrow b$

1. Need to include all possible free variables (i.e. constants in the case of HOS)
2. Need to know type structure (skeleton) for each variable.

Intersection Types

- $(\lambda$ P.c $)(\lambda x . f x x) \rightarrow_{\beta} \mathbf{c}$
- $\mathbf{c}: a, \mathbf{f}: b \rightarrow b \rightarrow c \vdash(\lambda P . \mathbf{c})(\lambda x . f x x): a$
- c:aトc:a
- We do not know the type of \mathbf{f}
- Idea: use intersection types to enumerate possible types in the signature: $\mathbf{f}:(b \rightarrow b \rightarrow c) \cap(a \rightarrow b \rightarrow c) \cap \ldots$

Intersection Types

- $(\lambda$ P.c $)(\lambda x . f x x) \rightarrow_{\beta} \mathbf{c}$
- $\mathbf{c}: a, \mathbf{f}: b \rightarrow b \rightarrow c \vdash(\lambda P . \mathbf{c})(\lambda x . f x x): a$
- c:aトc:a
- We do not know the type of f
- Idea: use intersection types to enumerate possible types in the signature: $\mathbf{f}:(b \rightarrow b \rightarrow c) \cap(a \rightarrow b \rightarrow c) \cap \ldots$
$-\lambda P . \mathbf{f}(\lambda y . \mathbf{c}(P \mathbf{c})) \rightarrow \beta \lambda P . \mathbf{f c}$

Intersection Types

- $(\lambda$ P.c $)(\lambda x . f x x) \rightarrow_{\beta} \mathbf{c}$
- $\mathbf{c}: a, \mathbf{f}: b \rightarrow b \rightarrow c \vdash(\lambda P . \mathbf{c})(\lambda x . f x x): a$
- c:aトc:a
- We do not know the type of \mathbf{f}
- Idea: use intersection types to enumerate possible types in the signature: $\mathbf{f}:(b \rightarrow b \rightarrow c) \cap(a \rightarrow b \rightarrow c) \cap \ldots$
$-\lambda P . \mathbf{f}(\lambda y . \mathbf{c}(P \mathbf{c})) \rightarrow \beta \lambda P . \mathbf{f c}$
- $\mathbf{c}: a, \mathbf{f}: a \rightarrow b \vdash \lambda P . \mathbf{f}(\lambda y . \mathbf{c}(P \mathbf{c})):(a \rightarrow c) \rightarrow b$
- $\mathbf{c}: a, \mathbf{f}: a \rightarrow b \vdash \lambda P . f \mathbf{f c}: o \rightarrow b$
- We do not know the type of P
- Idea: use intersection types to enumerate possible types in the signature: $P:(a \rightarrow c) \cap(a \rightarrow b) \cap \ldots$

Intersection Types

Moreover, intersection types are already present (but hidden) in Kanazawa's technique:

```
\exists(\lambdax.^(CAKE x) (^(BUY x MARY) (EAT x MARY)))
```

- The two occurrences of MARY come from the same lexical entry ($\mathscr{H}_{\text {sem }}($ Mary $)$)
- The two occurrences of \wedge come from two different lexical entries $\left(\mathscr{H}_{\text {sem }}(\right.$ and $)$ and $\left.\mathscr{H}_{\text {sem }}(a)\right)$
- "Pseudo-principal typing":

MARY : $a, \wedge:\left(b_{1} \rightarrow b_{2} \rightarrow c_{2}\right) \cap\left(c_{1} \rightarrow c_{2} \rightarrow d\right), \ldots$

Outline

Second-order ACG and Lexical Semantics
 Abstract Categorial Grammars
 Integrating some lexical semantics information

Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Restricted intersection types

Rigid variables
A rigid variable x^{s} is such that x is a variable and s a type skeleton

- Type skeletons: $0,(0 \rightarrow 0) \rightarrow 0$
- Any type: $\boldsymbol{s} \cdot[\alpha]$
- $(0 \rightarrow 0) \rightarrow 0 \cdot\left[a_{1}, a_{2}, a_{3}\right]=\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{3}$

Listed Types

- $\mathscr{T}(\mathscr{A})::=\mathscr{A} \mid \mathscr{A} \rightarrow \mathscr{T}(\mathscr{A})$
- $\mathscr{T}_{S}(\mathscr{A})$: simple types of skeletons s

Restricted intersection types

Rigid variables
A rigid variable x^{s} is such that x is a variable and s a type skeleton

- Type skeletons: $0,(0 \rightarrow 0) \rightarrow 0$
- Any type: $\boldsymbol{s} \cdot[\alpha]$
- $(0 \rightarrow 0) \rightarrow 0 \cdot\left[a_{1}, a_{2}, a_{3}\right]=\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{3}$

Listed Types

- $\mathscr{T}(\mathscr{A})::=\mathscr{A} \mid \mathscr{A} \rightarrow \mathscr{T}(\mathscr{A})$
- $\mathscr{T}_{s}(\mathscr{A})$: simple types of skeletons s

Restricted intersection types

Rigid variables
A rigid variable x^{s} is such that x is a variable and s a type skeleton

- Type skeletons: $0,(0 \rightarrow 0) \rightarrow 0$
- Any type: $\boldsymbol{s} \cdot[\alpha]$
- $(0 \rightarrow 0) \rightarrow 0 \cdot\left[a_{1}, a_{2}, a_{3}\right]=\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{3}$

Listed Types

- $\mathscr{T}(\mathscr{A})::=\mathscr{A} \mid \mathscr{A} \rightarrow \mathscr{T}(\mathscr{A})$
- $\mathscr{T}_{s}(\mathscr{A})$: simple types of skeletons s
- $\mathscr{L}_{s}(\mathscr{A})::=\mathscr{T}_{s}(\mathscr{A}) \mid \mathscr{L}_{s}(\mathscr{A}) \cap \mathscr{L}_{s}(\mathscr{A})$

Restricted intersection types

Rigid variables
A rigid variable x^{s} is such that x is a variable and s a type skeleton

- Type skeletons: $0,(0 \rightarrow 0) \rightarrow 0$
- Any type: $\boldsymbol{s} \cdot[\alpha]$
- $(0 \rightarrow 0) \rightarrow 0 \cdot\left[a_{1}, a_{2}, a_{3}\right]=\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{3}$

Listed Types

- $\mathscr{T}(\mathscr{A})::=\mathscr{A} \mid \mathscr{A} \rightarrow \mathscr{T}(\mathscr{A})$
- $\mathscr{T}_{s}(\mathscr{A})$: simple types of skeletons s
- $\mathscr{L}_{s}(\mathscr{A})::=\mathscr{T}_{s}(\mathscr{A}) \mid \mathscr{L}_{s}(\mathscr{A}) \cap \mathscr{L}_{s}(\mathscr{A})$
- $\mathscr{L}(\mathscr{A})=\bigcup_{s} \mathscr{L}_{s}(\mathscr{A})$

Restricted intersection types

Rigid variables
A rigid variable x^{s} is such that x is a variable and s a type skeleton

- Type skeletons: $0,(0 \rightarrow 0) \rightarrow 0$
- Any type: $\boldsymbol{s} \cdot[\alpha]$
- $(0 \rightarrow 0) \rightarrow 0 \cdot\left[a_{1}, a_{2}, a_{3}\right]=\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{3}$

Listed Types

- $\mathscr{T}(\mathscr{A})::=\mathscr{A} \mid \mathscr{A} \rightarrow \mathscr{T}(\mathscr{A})$
- $\mathscr{T}_{s}(\mathscr{A})$: simple types of skeletons s
- $\mathscr{L}_{s}(\mathscr{A})::=\mathscr{T}_{s}(\mathscr{A}) \mid \mathscr{L}_{s}(\mathscr{A}) \cap \mathscr{L}_{s}(\mathscr{A})$
- $\mathscr{L}(\mathscr{A})=\bigcup_{s} \mathscr{L}_{s}(\mathscr{A})$
- Listed types are noted $\bar{\alpha}, \ldots$ and we note $\alpha \in \bar{\alpha}$

Listed Higher-order Signature

Definition

$\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$

- \mathscr{A} a finite set of atomic types
- \mathscr{C} a finite set of constants
- τ the typing function $\mathscr{C} \rightarrow \mathscr{L}(\mathscr{A})$

Listed Higher-order Signature

Definition

$\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$

- \mathscr{A} a finite set of atomic types
- \mathscr{C} a finite set of constants
- τ the typing function $\mathscr{C} \rightarrow \mathscr{L}(\mathscr{A})$

Derivations

$$
\overline{x^{s}: s \cdot[\alpha] \vdash_{\Sigma} x^{s}: s \cdot[\alpha]} \frac{\alpha \in \tau(\boldsymbol{c})}{\vdash_{\Sigma} \boldsymbol{c}: \alpha}
$$

Listed Higher-order Signature

Definition

$\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$

- \mathscr{A} a finite set of atomic types
- \mathscr{C} a finite set of constants
- τ the typing function $\mathscr{C} \rightarrow \mathscr{L}(\mathscr{A})$

Derivations

$$
\begin{gathered}
\overline{x^{s}: s \cdot[\alpha] \vdash_{\Sigma} x^{s}: s \cdot[\alpha]} \frac{\alpha \in \tau(\boldsymbol{c})}{\vdash_{\Sigma}: \alpha} \\
\frac{\Gamma \vdash_{\Sigma} M: \beta}{\Gamma-\left\{x^{s}: \alpha\right\} \vdash_{\Sigma} \lambda x^{s} \cdot M: \alpha \rightarrow \beta} \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} M N: \beta}
\end{gathered}
$$

Listed Higher-order Signature

Definition

$\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$

- \mathscr{A} a finite set of atomic types
- \mathscr{C} a finite set of constants
- τ the typing function $\mathscr{C} \rightarrow \mathscr{L}(\mathscr{A})$

Derivations

$$
\begin{gathered}
\overline{x^{s}: s \cdot[\alpha] \vdash_{\Sigma} x^{s}: s \cdot[\alpha]} \frac{\alpha \in \tau(\boldsymbol{c})}{\vdash_{\Sigma \boldsymbol{c}: \alpha}} \\
\frac{\Gamma \vdash_{\Sigma} M: \beta}{\Gamma-\left\{x^{s}: \alpha\right\} \vdash_{\Sigma} \lambda x^{s} \cdot M: \alpha \rightarrow \beta} \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} M N: \beta} \\
\stackrel{\vdash M: \overline{\alpha_{1}}}{\vdash M: \overline{\alpha_{1}} \cap \overline{\alpha_{2}}}
\end{gathered}
$$

Characteristic typing

The most general signature for M

- Given $M \in \Lambda_{\Sigma}$ where $\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$ and $\vdash_{\Sigma} M: \alpha$ principal simple type

$$
\Sigma_{M}=\left(\mathscr{A} \cup\{\omega\}, \mathscr{C}, \tau_{M}\right) \text { such that: }
$$

- if $\mathbf{c} \in \mathscr{C}$ in $M \Rightarrow \tau_{M}(\mathbf{c})=\tau(\mathbf{c})$
- otherwise, for $\tau(\mathbf{c}) \in \mathscr{L}_{s}(\mathscr{A})$,

$$
\tau_{M}(\mathbf{c})=\bigcap_{\left(a_{1}, \ldots, a_{n-1}\right) \in(\mathscr{A} \cup\{\omega\})^{n-1}} \boldsymbol{s} \cdot\left[a_{1}, \ldots, a_{n-1}, \omega\right]
$$

Characteristic typing

The most general signature for M

- Given $M \in \Lambda_{\Sigma}$ where $\Sigma=(\mathscr{A}, \mathscr{C}, \tau)$ and $\vdash_{\Sigma} M: \alpha$ principal simple type

$$
\Sigma_{M}=\left(\mathscr{A} \cup\{\omega\}, \mathscr{C}, \tau_{M}\right) \text { such that: }
$$

- if $\mathbf{c} \in \mathscr{C}$ in $M \Rightarrow \tau_{M}(\mathbf{c})=\tau(\mathbf{c})$
- otherwise, for $\tau(\mathbf{c}) \in \mathscr{L}_{s}(\mathscr{A})$,

$$
\tau_{M}(\mathbf{c})=\bigcap_{\left(a_{1}, \ldots, a_{n-1}\right) \in(\mathscr{A} \cup\{\omega\})^{n-1}} s \cdot\left[a_{1}, \ldots, a_{n-1}, \omega\right]
$$

Characteristic typing
If $\vdash_{\Sigma} M: \alpha$ is M 's principal typing, we can build Σ_{M} minimal in $|\mathscr{A}|$ and obtain $\vdash_{\Sigma_{M}} M: \bar{\alpha}$, where $\bar{\alpha}=\alpha_{1} \cap \ldots \alpha_{n}$ and n maximal as follows:

Example $\mathscr{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$

- Principal on Simple Types:
- $\tau\left(c_{1}\right)=(a \rightarrow u \rightarrow b) \rightarrow d, \tau\left(c_{2}\right)=a \rightarrow a \rightarrow b \vdash_{\Sigma}$ $\lambda x . \boldsymbol{c}_{\mathbf{1}}\left(\lambda x_{1} x_{2} \cdot \boldsymbol{c}_{2} x_{1} x_{1}\right): u^{\prime} \rightarrow d$

Example $\mathscr{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$

- Principal on Simple Types:
- $\tau\left(c_{1}\right)=(a \rightarrow u \rightarrow b) \rightarrow d, \tau\left(c_{2}\right)=a \rightarrow a \rightarrow b \vdash_{\Sigma}$ $\lambda x \cdot \boldsymbol{c}_{1}\left(\lambda x_{1} x_{2} \cdot \boldsymbol{c}_{2} x_{1} x_{1}\right): u^{\prime} \rightarrow d$
- Principal with Rigid Variables:
- $\tau\left(c_{1}\right)=\left(a \rightarrow\left(u_{3} \rightarrow u_{4}\right) \rightarrow b\right) \rightarrow d, \tau\left(c_{2}\right)=a \rightarrow a \rightarrow b \vdash_{\Sigma}$ $\lambda x^{0 \rightarrow 0} \cdot \boldsymbol{c}_{1}\left(\lambda x_{1}^{o} x_{2}^{0 \rightarrow 0} . \boldsymbol{c}_{2} x_{1} x_{1}\right):\left(u_{1} \rightarrow u_{2}\right) \rightarrow d$

Example $\mathscr{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$

- Principal with Rigid Variables:
- $\tau\left(c_{1}\right)=\left(a \rightarrow\left(u_{3} \rightarrow u_{4}\right) \rightarrow b\right) \rightarrow d, \tau\left(c_{2}\right)=a \rightarrow a \rightarrow b \vdash_{\Sigma}$ $\lambda x^{0 \rightarrow 0} . \boldsymbol{c}_{1}\left(\lambda x_{1}^{o} x_{2}^{0 \rightarrow 0} . \boldsymbol{c}_{2} x_{1} x_{1}\right):\left(u_{1} \rightarrow u_{2}\right) \rightarrow d$
- Characteristic Typing:
- $\tau\left(c_{1}\right)=\overline{\alpha_{1}}, \tau\left(c_{2}\right)=\overline{\alpha_{2}}, \tau\left(c_{3}\right)=\overline{\alpha_{3}} \vdash_{\Sigma}$ $\lambda x^{O \rightarrow O} . \boldsymbol{c}_{\mathbf{1}}\left(\lambda x_{1}^{O} x_{2}^{O \rightarrow 0} . \boldsymbol{c}_{\mathbf{2}} x_{1} x_{1}\right): \bar{\alpha}$
- $\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}_{\omega}}(a \rightarrow(t \rightarrow \omega) \rightarrow b) \rightarrow d$
- $\overline{\alpha_{2}}=a \rightarrow a \rightarrow b$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}_{\omega}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}_{\omega}}(t \rightarrow \omega) \rightarrow d$

Example $\mathscr{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$

- Characteristic Typing:
- $\tau\left(c_{1}\right)=\overline{\alpha_{1}}, \tau\left(c_{2}\right)=\overline{\alpha_{2}}, \tau\left(c_{3}\right)=\overline{\alpha_{3}} \vdash_{\Sigma}$ $\lambda x^{O \rightarrow O} . \boldsymbol{c}_{1}\left(\lambda x_{1}^{O} x_{2}^{O \rightarrow O} . \boldsymbol{c}_{2} x_{1} x_{1}\right): \bar{\alpha}$
- $\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}_{\omega}}(a \rightarrow(t \rightarrow \omega) \rightarrow b) \rightarrow d$
- $\overline{\alpha_{2}}=a \rightarrow a \rightarrow b$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}_{\omega}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}_{\omega}}(t \rightarrow \omega) \rightarrow d$

Potentially negatively non-duplicating typing

- $\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}}(a \rightarrow(t \rightarrow \omega) \rightarrow b) \rightarrow d$
- $\overline{\alpha_{2}}=a \rightarrow a \rightarrow b$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}}(t \rightarrow \omega) \rightarrow d$

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
$-\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}}\left(a^{-} \rightarrow(t \rightarrow \omega) \rightarrow b^{+}\right) \rightarrow d^{-}$

- $\overline{\alpha_{2}}=a^{+} \rightarrow a^{+} \rightarrow b^{-}$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}}(t \rightarrow \omega) \rightarrow d^{+}$

Such a typing is called a PN-typing

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
$-\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}}\left(a^{-} \rightarrow(t \rightarrow \omega) \rightarrow b^{+}\right) \rightarrow d^{-}$

- $\overline{\alpha_{2}}=a^{+} \rightarrow a^{+} \rightarrow b^{-}$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}}(t \rightarrow \omega) \rightarrow d^{+}$

Such a typing is called a PN-typing
Theorem
If a term M is in long-normal form for a PN-typing $\langle\bar{\Gamma} ; \bar{\gamma}\rangle$ it is the unique long-normal inhabitant of this pair.

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
$-\overline{\alpha_{1}}=\bigcap_{t \in \mathscr{A}}\left(a^{-} \rightarrow(t \rightarrow \omega) \rightarrow b^{+}\right) \rightarrow d^{-}$

- $\overline{\alpha_{2}}=a^{+} \rightarrow a^{+} \rightarrow b^{-}$
- $\overline{\alpha_{3}}=\bigcap_{t \in \mathscr{A}} t \rightarrow \omega$
- $\bar{\alpha}=\bigcap_{t \in \mathscr{A}}(t \rightarrow \omega) \rightarrow d^{+}$

Such a typing is called a PN-typing
Theorem
If a term M is in long-normal form for a PN-typing $\langle\bar{\Gamma} ; \bar{\gamma}\rangle$ it is the unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.

Properties

The characteristic typing is the simplest typing of $\vdash_{\Sigma_{M}} M: \bar{\alpha}$ which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term $M^{\prime} \rightarrow_{\beta} M$, then $\vdash_{\Sigma_{M}} M: \bar{\alpha}$

Properties

The characteristic typing is the simplest typing of $\vdash_{\Sigma_{M}} M: \bar{\alpha}$ which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term $M^{\prime} \rightarrow{ }_{\beta} M$, then $\vdash_{\Sigma_{M}} M: \bar{\alpha}$

Moreover, we show almost affine terms M and M^{\prime} in $\Lambda_{\Sigma_{M}}$ verify $M={ }_{\beta} M^{\prime}$ iff they share the same characteristic typing.

Idea: Use Types

If $M_{\Sigma_{1}}$ and $\mathscr{H}_{1}\left(M_{\Sigma}\right)$ share the same characteristic typing then

$$
M_{\Sigma_{1}}={ }_{\beta} \mathscr{H}_{1}\left(M_{\Sigma}\right)
$$

$L_{\text {Example and Datalog }}$

Outline

Second-order ACG and Lexical Semantics
 Abstract Categorial Grammars
 Integrating some lexical semantics information

Parsing ACG
General Idea
Using types
Extended parsers
Typing issues
A new typing system
Example and Datalog

Example

READ JOHN char $H A M_{\text {info-cont }}$

IDB
$\mathcal{L}($ John $)=\lambda Q P . P\left(Q J^{\prime} H_{\text {char }}\right.$ undefined undefined $)$
$\mathcal{L}($ Hamlet $)=\lambda Q P . P\left(Q\right.$ HAM $_{\text {char }}$ HAM $_{\text {phys }- \text { obj }}$ HAM $_{\text {info }}$ cont $) ~$ $\mathcal{L}($ read $)=\lambda Q P \cdot P \pi_{1}\left(\lambda x \cdot Q \pi_{3}(\lambda y \cdot \boldsymbol{R E A D} \times y)\right)$

$$
\pi_{i} \equiv \lambda x_{1} x_{2} x_{3} \cdot x_{i}
$$

$\left\llcorner_{\text {Example and Datalog }}\right.$

Example

EDB

IDB

$S\left(x_{6}\right):-N P\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{4}, x_{5}, x_{6}\right), N P\left(y_{1}, y_{2}, y_{3}, y_{3}, y_{4}, y_{5}, x_{5}\right), \operatorname{READ}\left(x_{4}, y_{4}, y_{5}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right)$:- JOHN ${ }_{\text {char }}\left(x_{1}\right)$, undefined $\left(x_{2}\right)$, undefined $\left(x_{3}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right):-$ HAM $_{\text {char }}\left(x_{1}\right)$, HAM $_{\text {phys }- \text { obj }}\left(x_{2}\right)$, HAM $_{\text {info-cont }}\left(x_{3}\right)$.
$\operatorname{READ}(1,2,3)$.
JOHN ${ }_{\text {char }}$ (1).
HAM $_{\text {phys }- \text { cont }}(2)$.
-Example and Datalog

Example

EDB

IDB

$S\left(x_{6}\right):-N P\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{4}, x_{5}, x_{6}\right), N P\left(y_{1}, y_{2}, y_{3}, y_{3}, y_{4}, y_{5}, x_{5}\right), \operatorname{READ}\left(x_{4}, y_{4}, y_{5}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right)$:- JOHN ${ }_{\text {char }}\left(x_{1}\right)$, undefined $\left(x_{2}\right)$, undefined $\left(x_{3}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right):$ HAM $_{\text {char }}\left(x_{1}\right), \boldsymbol{H A M}_{\text {phys }}$ obj $\left(x_{2}\right), \boldsymbol{H A M}_{\text {info }}$ cont $\left(x_{3}\right)$.

IDB ${ }_{\omega}$
$\boldsymbol{\operatorname { R E A D }}\left(x_{1}, x_{2}, \omega\right)$:- type $\left(x_{1}\right)$, type $\left(x_{2}\right)$.
$\boldsymbol{E A T}\left(x_{1}, x_{2}, \omega\right):-\operatorname{type}\left(x_{1}\right)$, type $\left(x_{2}\right)$.
$\operatorname{READ}(1,2,3)$.
JOHN char (1).
HAM $_{\text {phys }- \text { cont }}(2)$.
$E D B_{\omega}$

```
JOHN char (\omega).
HAMM
undefined( }\omega\mathrm{ ).
MARY
type(1).
type(2).
type(3).
type(\omega).
```

—Example and Datalog

Example

EDB

IDB

$S\left(x_{6}\right):-N P\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{4}, x_{5}, x_{6}\right), N P\left(y_{1}, y_{2}, y_{3}, y_{3}, y_{4}, y_{5}, x_{5}\right), \operatorname{READ}\left(x_{4}, y_{4}, y_{5}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right)$:- JOHN ${ }_{\text {char }}\left(x_{1}\right)$, undefined $\left(x_{2}\right)$, undefined $\left(x_{3}\right)$. $N P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}\right):$ HAM $_{\text {char }}\left(x_{1}\right), \boldsymbol{H A M}_{\text {phys }}$ obj $\left(x_{2}\right), \boldsymbol{H A M}_{\text {info }}$ cont $\left(x_{3}\right)$.

IDB ${ }_{\omega}$
$\boldsymbol{\operatorname { R E A D }}\left(x_{1}, x_{2}, \omega\right)$:- type $\left(x_{1}\right)$, type $\left(x_{2}\right)$.
$\operatorname{EAT}\left(x_{1}, x_{2}, \omega\right):-\operatorname{type}\left(x_{1}\right)$, type $\left(x_{2}\right)$.
$\boldsymbol{\operatorname { R E A D }}(1,2,3)$.
JOHN char (1).
HAM phys - cont (2).
$E D B_{\omega}$

```
JOHN char (\omega).
HAMM
undefined( }\omega\mathrm{ ).
MARY
type(1).
type(2).
type(3).
type(\omega).
```


Conclusion

- Kanazawa: Datalog recognizer for (almost)-linear ACG: efficient parsing (LOGCFL)
- Result extended to almost affine ACG; at least polynomial time
- A more complex typing system is needed (intersection which are used in [Sal10])
- Principal Typings replaced with Charateristic Typing.
- Deletion can be used to enrich the grammar with:
- Aspects (lexical semantics)
- Agreement (syntax)
- ...

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
- Basic treatment.
- Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
- Basic treatment.

Future work

- Parsing:
- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
- Basic treatment.
- Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

For Further Reading I

T. Aoto.

Uniqueness of normal proofs in implicational intuitionistic logic. Journal of Logic, Language and Information, 8:217-242, 1999.
國 A. Babaev and S. Soloviev. A coherence theorem for canonical morphism in cartesian closed categories. Journal of Soviet Mathematics, 20:2263-2279, 1982.
P. de Groote.

Towards abstract categorial grammars.
In Association for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference, pages 148-155, 2001.
目
M. Kanazawa.

Parsing and generation as Datalog queries.
In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, pages 176-183, Prague, 2007. Association for Computational
Linguistics.

For Further Reading II

M. Kanazawa.

A prefix-correct earley recognizer form multiple context-free grammars.
In TAG+9, Proceedings of the ninth International Workshop on Tree Adjoining Grammars and Related Frameworks, Tubingen, Germany, June 2008.
J. Lambek.

The mathematics of sentence structure.
Amer. Math. Mon., 65:154-170, 1958.
R. Montague.

The proper treatment of quantification in ordinary english.
Approaches to Natural Language, pages 221-242, 1973.
R. Muskens.

Lambda Grammars and the Syntax-Semantics Interface.
In R. van Rooy and M. Stokhof, editors, Proceedings of the Thirteenth
Amsterdam Colloquium, pages 150-155, Amsterdam, 2001.
T
Sylvain Salvati.
On the membership problem for non-linear abstract categorial grammars.
Journal of Logic, Language and Information, 19(2):163-183, 2010.

