Generation with Grammars enriched with Lexical Semantics Information

Pierre Bourreau¹ Sylvain Salvati¹

¹Equipe SIGNES LaBRI - INRIA Sud-Ouest

Introduction

- Goal: extend parsing techniques on ACG by adding new operation (here: deletion)
 - ► Parsing ACG ⇒ Natural Language Generation
- Deletion can be used to represent lexical semantics information in our grammar
 - No intension of creating a new lexical semantics theory.

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics information

Parsing ACG

General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars

Integrating some lexical semantics information

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Parsing ACG

General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
 - Montagovian semantics,
 - Curry's distinction between phenogrammar and tectogrammar.

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
 - Montagovian semantics, λ-calculus for semantics
 - Curry's distinction between phenogrammar and tectogrammar. intermediate structure between syntax and semantics

ACG

- [dG01, Mus01]
- Computational linguistics.
- Focus on syntax, semantics and their relation.
- Based on two main ideas:
 - Montagovian semantics, λ-calculus for semantics
 - Curry's distinction between phenogrammar and tectogrammar. intermediate structure between syntax and semantics
- Plus, uniformity of the formalism: use of the λ-calculus to describe every module/grammar

-Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons

- We use homomorphisms.
- Nothing new:
 - [Mon73], [Lam58]
- If terms are typed, \mathscr{H} applies to both terms and types.

As an example (syntax)

- ▶ *eat*:np → np → s
 - ▶ *ℋ_{syn}*(np)=str
 - ▶ *ℋ_{syn}*(s)=str
 - $\mathcal{H}_{syn}(\lambda xy.eatxy) = \lambda x_1 x_2 \cdot x_2 + eat + x_1$

From tectogrammars to phenogrammars

The lexicons

- We use homomorphisms.
- Nothing new:
 - [Mon73], [Lam58].
- If terms are typed, \mathscr{H} applies to both terms and types.

As an example (semantics)

- ▶ *eat*:np → np → s
 - $\mathscr{H}_{sem}(np)=(e \rightarrow t) \rightarrow t$
 - ▶ *Hsem*(s)=t
 - $\blacktriangleright \mathscr{H}_{sem}(\lambda xy.eatxy) = \lambda PQ.P(\lambda x.Q(\lambda y.EATxy))$

Formally

Higher-Order Signature

A higher-order signature $\Sigma = (\mathscr{A}, \mathscr{C}, \tau)$:

- A a finite set of atomic types
- au the typing function $\mathscr{C} \to \mathscr{T}(\mathscr{A})$

Derivation system

$$\frac{\overline{\mathbf{x}:\alpha\vdash_{\Sigma}\mathbf{x}:\alpha}}{\Gamma-\{\mathbf{x}:\alpha\}\vdash_{\Sigma}\lambda\mathbf{x}.\mathbf{M}:\alpha\rightarrow\beta} \quad \frac{\overline{\mathbf{\vdash}_{\Sigma}\mathbf{c}:\tau(\mathbf{c})}}{\Gamma\cup\Delta\vdash_{\Sigma}\mathbf{M}.\mathbf{c}\rightarrow\beta}$$

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\blacktriangleright \mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathcal{O}(\mathcal{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathcal{G}), |\mathcal{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathcal{O}(\mathcal{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathcal{G}), |\mathcal{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- > λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.

- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

Overview (1)

- An ACG $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$
 - $\mathscr{A}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_1} | \vdash_{\Sigma_1} M : s \}$
 - $\blacktriangleright \ \mathscr{O}(\mathscr{G}) = \{ M \in \Lambda_{\Sigma_2} | \exists N \in \mathscr{A}(\mathscr{G}), |\mathscr{H}(N)|_{\beta} = M \}$
- Terms of the tectogrammar represent the deep structure of a sentence.
- Syntax is a realization of this structure...
- Just like semantics!
- λ -terms used to represent all this structures.

NL Generation = NL Parsing

-Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview(2)

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics information

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Parsing ACG

General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog -Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Original ACG

Linearity

A term M is linear if every variable in M has one and only one occurrence in M (no deletion, no copy)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Example

x, $\lambda x.fx$ but not $\lambda x.fxx$

Original ACG

Linearity

A term M is linear if every variable in M has one and only one occurrence in M (no deletion, no copy)

Example

x, $\lambda x.fx$ but not $\lambda x.fxx$

(Linear) ACG

 $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$. For every constant *c* of $\Sigma_1, \mathscr{H}(c)$ is linear.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one occurrence in M (no deletion).

A variable which has more than one occurrence in M is assigned an atomic type in M's principal typing limited copy)

Example

x, $\lambda x.fx$, $\lambda x.fxx$ but not $\lambda x.f(fx)$

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one occurrence in M (no deletion).

A variable which has more than one occurrence in M is assigned an atomic type in M's principal typing limited copy)

Example

x, $\lambda x.fx$, $\lambda x.fxx$ but not $\lambda x.f(fx)$

Almost linear ACG

 $\mathscr{G} = (\Sigma_1, \Sigma_2, \mathscr{H}, s)$. For every constant *c* of Σ_1 , $\mathscr{H}(c)$ is almost linear.

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ▶ ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- ► Semantics:
 - ▶ ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ▶ ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)
 - ► ∧(BUY HAM_{phys-obj} JOHN) (READ HAM_{info-cont} JOHN)
 - ∧(BUY HAM_{phys-obj} JOHN_{char}) (READ HAM_{info-cont} JOHN_{char})

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ► ∧(BUY HAM JOHN) (READ HAM JOHN)

∧(BUY HAM_{phys-obj} JOHN_{char}) (READ HAM_{info-cont} JOHN_{char})

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ► ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)
 - ► ∧(BUY HAM_{phys-obj} JOHN) (READ HAM_{info-cont} JOHN)

∧(BUY HAM_{phys-obj} JOHN_{char}) (READ HAM_{info-cont} JOHN_{char})

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ► ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)
 - ► ∧(BUY HAM_{phys-obj} JOHN) (READ HAM_{info-cont} JOHN)

∧(BUY HAM_{phys-obj} JOHN_{char}) (READ HAM_{info-cont} JOHN_{char})

Lexical Semantics: what kind of information?

Aspects

- "John bought and read Hamlet".
- Hamlet: the character? A book as an object? A book as an information container?
- Semantics:
 - ► ∧(BUY HAM JOHN) (READ HAM JOHN)
 - Differenciation through terms and not types (Pustejovsky)
 - ► ∧(BUY HAM_{phys-obj} JOHN) (READ HAM_{info-cont} JOHN)
 - ►

∧(BUY HAM_{phys-obj} JOHN_{char}) (READ HAM_{info-cont} JOHN_{char})

-Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Choice as deletion

List of aspects on NP

• $\mathscr{H}_{sem}(hamlet) = \lambda P.P HAM$

Verb (predicate) as selector

• $\mathcal{H}_{sem}(read) = \lambda PQ.P(\lambda x.Q(\lambda y.READxy))$

-Second-order ACG and Lexical Semantics

L Integrating some lexical semantics information

Choice as deletion

List of aspects on NP

- *ℋ*_{syn}(hamlet) =
 λQP.P(Q HAM_{char} HAM_{phys-obj} HAM_{info-cont})
- Q is the selector

Verb (predicate) as selector

• $\mathscr{H}_{sem}(read) = \lambda PQ.P\pi_3(\lambda x.Q\pi_1(\lambda y.READxy))$

 $= \lambda x_1 x_2 x_3 x_i$

Almost affine terms

Almost affine terms

A term M is almost affine if every variable/constant which has more than one occurrence in M is assigned an atomic type in M's principal typing

Example

 $\lambda x^a y^b f^{a \to a \to c} x^a x^a$ but not $\lambda x^a y^b f^{a \to a \to a} (f^{a \to a \to a} x^a x^a) x^a$

Almost affine ACG

An ACG $(\Sigma_1, \Sigma_2, \mathscr{L}, s)$ is almost affine if for every constant *c* in $\Sigma_1, \mathscr{L}(c)$ is almost affine.

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics informatior

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Parsing ACG General Idea

Using types

Extended parsers

Typing issues A new typing system Example and Datalog

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Sketch

- **1.** A term M_{Σ_1} : α in Σ_1
- 2. Find the terms M_{Σ} , such that $\mathscr{H}_1(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma}$
- 3. Get the terms M_{Σ_2} , such that $\mathscr{H}_2(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_2}$

Sketch

1. A term $M_{\Sigma_1} : \alpha$ in Σ_1

2. Find the terms M_{Σ} , such that $\mathscr{H}_1(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma}$

3. Get the terms M_{Σ_2} , such that $\mathscr{H}_2(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_2}$

Sketch

- 1. A term $M_{\Sigma_1} : \alpha$ in Σ_1
- 2. Find the terms M_{Σ} , such that $\mathscr{H}_1(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_1}$
- 3. Get the terms M_{Σ_2} , such that $\mathscr{H}_2(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sketch

- 1. A term $M_{\Sigma_1} : \alpha$ in Σ_1
- 2. Find the terms M_{Σ} , such that $\mathscr{H}_1(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_1}$
- 3. Get the terms M_{Σ_2} , such that $\mathscr{H}_2(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_2}$

Sketch

2. Find the term M_{Σ} , such that $\mathscr{H}_1(M_{\Sigma}) \twoheadrightarrow_{\beta} M_{\Sigma_1}$

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics informatior

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Parsing ACG General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog

If M_{Σ_1} and $\mathscr{H}_1(M_{\Sigma})$ share the **same principal typing** then $M_{\Sigma_1} =_{\beta} \mathscr{H}_1(M_{\Sigma})$

Theorem [Coherence] Let's consider a β -reduced term M and $\langle \Gamma; \gamma \rangle$ its principal typing. If M is ??? it is the unique β -normal inhabitant of $\langle \Gamma; \gamma \rangle$

Theorem [Subject Expansion] Let's consider a ??? term M, a term M'such that $M \twoheadrightarrow_{\beta} M'$ and $\Gamma \vdash M' : \gamma$. Then $\Gamma \vdash M : \gamma$

Theorem [Coherence] Let's consider a β -reduced term M and $\langle \Gamma; \gamma \rangle$ its principal typing. If M is linear it is the unique β -normal inhabitant of $\langle \Gamma; \gamma \rangle$ [BS82]

Theorem [Subject Expansion] Let's consider a linear term M, a term M'such that $M \twoheadrightarrow_{\beta} M'$ and $\Gamma \vdash M' : \gamma$. Then $\Gamma \vdash M : \gamma$

Theorem

[Coherence] Let's consider a β -reduced term M and $\langle \Gamma; \gamma \rangle$ its principal typing. If M is almost linear it is the unique β -normal inhabitant of $\langle \Gamma; \gamma \rangle$ [Aot99]

Theorem [Subject Expansion] Let's consider a almost linear term M, a term M' such that $M \rightarrow_{\beta} M'$ and $\Gamma \vdash M' : \gamma$. Then $\Gamma \vdash M : \gamma$ [Kan07]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results

- [Kan07] gave a Datalog recognizer for linear and almost linear terms.
 - Complexity is LOGCFL ⊆ P
- [Sal10] proved natural language generation is decidable in the Montagovian framework

Results

- [Kan07] gave a Datalog recognizer for linear and almost linear terms.
 - Complexity is LOGCFL ⊆ P
- [Sal10] proved natural language generation is decidable in the Montagovian framework

With deletion?

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics informatio

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Parsing ACG

General Idea Using types

Extended parsers

Typing issues

A new typing system Example and Datalog

What we would like

Theorem [Coherence] Let's consider a β -reduced term M and $\langle \Gamma; \gamma \rangle$ its principal typing. If M is almost affine it is the unique β -normal inhabitant of $\langle \Gamma; \gamma \rangle$

Theorem [Subject Expansion] Let's consider a almost affine term M, a term M' such that $M \twoheadrightarrow_{\beta} M'$ and $\Gamma \vdash M' : \gamma$. Then $\Gamma \vdash M : \gamma$

What we would like

Theorem [Subject Expansion] Let's consider a almost affine term M, a term M' such that $M \twoheadrightarrow_{\beta} M'$ and $\Gamma \vdash M' : \gamma$. Then $\Gamma \vdash M : \gamma$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Typing issues with deletion

Example

►
$$(\lambda P.c)(\lambda x.fcc) \twoheadrightarrow_{\beta} c$$

•
$$\lambda P.f((\lambda y.c)(Pc)) \twoheadrightarrow_{\beta} \lambda P.fc$$

Typing issues with deletion

Example

► $(\lambda P.c)(\lambda x.fcc) \twoheadrightarrow_{\beta} c$ ► $c: a, f: b \rightarrow b \rightarrow c \vdash (\lambda P.c)(\lambda x.fxx): a$ ► $c: a \vdash c: a$ ► $\lambda P.f((\lambda y.c)(Pc)) \twoheadrightarrow_{\beta} \lambda P.fc$ ► $c: a, f: a \rightarrow b \vdash \lambda P.f((\lambda y.c)(Pc)): (a \rightarrow c) \rightarrow b$ ► $c: a, f: a \rightarrow b \vdash \lambda P.fc: o \rightarrow b$

Typing issues with deletion

Example

- 1. Need to include all possible free variables (*i.e.* constants in the case of HOS)
- 2. Need to know type structure (skeleton) for each variable.

•
$$(\lambda P.\mathbf{c})(\lambda x.\mathbf{f} x x) \twoheadrightarrow_{\beta} \mathbf{c}$$

- $\mathbf{c} : \mathbf{a}, \mathbf{f} : \mathbf{b} \to \mathbf{b} \to \mathbf{c} \vdash (\lambda P.\mathbf{c})(\lambda x.\mathbf{f} x x) : \mathbf{a}$
- ▶ **c** : a ⊢ **c** : a
- We do not know the type of f
- Idea: use intersection types to enumerate possible types in the signature: f : (b → b → c) ∩ (a → b → c) ∩ ...

$$(\lambda P.\mathbf{c})(\lambda x.\mathbf{f} xx) \twoheadrightarrow_{\beta} \mathbf{c}$$

- $\mathbf{c} : \mathbf{a}, \mathbf{f} : \mathbf{b} \to \mathbf{b} \to \mathbf{c} \vdash (\lambda P.\mathbf{c})(\lambda x.\mathbf{f} x x) : \mathbf{a}$
- ▶ **c** : a ⊢ **c** : a
- We do not know the type of f
- Idea: use intersection types to enumerate possible types in the signature: f : (b → b → c) ∩ (a → b → c) ∩ ...

• $\lambda P.f(\lambda y.c(Pc)) \rightarrow_{\beta} \lambda P.fc$

$$(\lambda P.\mathbf{c})(\lambda x.\mathbf{f} x x) \twoheadrightarrow_{\beta} \mathbf{c}$$

- $\mathbf{c} : \mathbf{a}, \mathbf{f} : \mathbf{b} \to \mathbf{b} \to \mathbf{c} \vdash (\lambda P.\mathbf{c})(\lambda x.\mathbf{f} x x) : \mathbf{a}$
- ▶ **c** : a ⊢ **c** : a
- We do not know the type of f
- ▶ Idea: use intersection types to enumerate possible types in the signature: $\mathbf{f} : (b \rightarrow b \rightarrow c) \cap (a \rightarrow b \rightarrow c) \cap ...$
- $\blacktriangleright \lambda P.f(\lambda y.c(Pc)) \twoheadrightarrow_{\beta} \lambda P.fc$
 - $\mathbf{c} : \mathbf{a}, \mathbf{f} : \mathbf{a} \to \mathbf{b} \vdash \lambda P.\mathbf{f}(\lambda y.\mathbf{c}(P\mathbf{c})) : (\mathbf{a} \to \mathbf{c}) \to \mathbf{b}$
 - $\mathbf{c} : \mathbf{a}, \mathbf{f} : \mathbf{a} \rightarrow \mathbf{b} \vdash \lambda \mathbf{P}.\mathbf{fc} : \mathbf{o} \rightarrow \mathbf{b}$
 - We do not know the type of P
 - Idea: use intersection types to enumerate possible types in the signature: P : (a → c) ∩ (a → b) ∩ ...

Moreover, intersection types are already present (but hidden) in Kanazawa's technique:

 $\exists (\lambda x. \land (CAKE x) (\land (BUY x MARY) (EAT x MARY)))$

- The two occurrences of MARY come from the same lexical entry (*H_{sem}(Mary*))
- ► The two occurrences of ∧ come from two different lexical entries (ℋ_{sem}(and) and ℋ_{sem}(a))
- ▶ "Pseudo-principal typing": *MARY* : $a, \land : (b_1 \rightarrow b_2 \rightarrow c_2) \cap (c_1 \rightarrow c_2 \rightarrow d), \dots$

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics informatio

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Parsing ACG

General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog

Restricted intersection types

Rigid variables

A rigid variable x^s is such that x is a variable and s a type skeleton

• Type skeletons:
$$o, (o \rightarrow o) \rightarrow o$$

$$\blacktriangleright (0 \rightarrow 0) \rightarrow 0 \cdot [a_1, a_2, a_3] = (a_1 \rightarrow a_2) \rightarrow a_3$$

Listed Types

$$\blacktriangleright \ \mathscr{T}(\mathscr{A}) ::= \mathscr{A} \mid \mathscr{A} \to \mathscr{T}(\mathscr{A})$$

- $\blacktriangleright \ \mathscr{L}_{\mathcal{S}}(\mathscr{A}) ::= \mathscr{T}_{\mathcal{S}}(\mathscr{A}) \mid \mathscr{L}_{\mathcal{S}}(\mathscr{A}) \cap \mathscr{L}_{\mathcal{S}}(\mathscr{A})$
- $\blacktriangleright \mathcal{L}(\mathscr{A}) = \bigcup_{s} \mathcal{L}_{s}(\mathscr{A})$
 - Eisted types are noted a,... and we note a f a start start start start and we note a f a start sta

Restricted intersection types

Rigid variables

A rigid variable x^s is such that x is a variable and s a type skeleton

- Type skeletons: $o, (o \rightarrow o) \rightarrow o$
- Any type: *s* · [α]
 - $\blacktriangleright (0 \rightarrow 0) \rightarrow 0 \cdot [a_1, a_2, a_3] = (a_1 \rightarrow a_2) \rightarrow a_3$

Listed Types

- $\blacktriangleright \ \mathscr{T}(\mathscr{A}) ::= \mathscr{A} \mid \mathscr{A} \to \mathscr{T}(\mathscr{A})$
- $\blacktriangleright \ \mathscr{L}_{\mathcal{S}}(\mathscr{A}) ::= \mathscr{T}_{\mathcal{S}}(\mathscr{A}) \mid \mathscr{L}_{\mathcal{S}}(\mathscr{A}) \cap \mathscr{L}_{\mathcal{S}}(\mathscr{A})$
- $\blacktriangleright \mathcal{L}(\mathscr{A}) = \bigcup_{s} \mathcal{L}_{s}(\mathscr{A})$

Restricted intersection types

Rigid variables

A rigid variable x^s is such that x is a variable and s a type skeleton

• Type skeletons:
$$o, (o \rightarrow o) \rightarrow o$$

$$\blacktriangleright (0 \rightarrow 0) \rightarrow 0 \cdot [a_1, a_2, a_3] = (a_1 \rightarrow a_2) \rightarrow a_3$$

Listed Types

$$\blacktriangleright \ \mathscr{T}(\mathscr{A}) ::= \mathscr{A} \mid \mathscr{A} \to \mathscr{T}(\mathscr{A})$$

$$\blacktriangleright \ \mathscr{L}_{\mathcal{S}}(\mathscr{A}) ::= \mathscr{T}_{\mathcal{S}}(\mathscr{A}) \mid \mathscr{L}_{\mathcal{S}}(\mathscr{A}) \cap \mathscr{L}_{\mathcal{S}}(\mathscr{A})$$

- $\blacktriangleright \mathcal{L}(\mathscr{A}) = \bigcup_{s} \mathcal{L}_{s}(\mathscr{A})$
 - Listed types are noted a.... and we note a f a solution of a solution of a solution.

Restricted intersection types

Rigid variables

A rigid variable x^s is such that x is a variable and s a type skeleton

• Type skeletons:
$$o, (o \rightarrow o) \rightarrow o$$

$$\blacktriangleright (0 \rightarrow 0) \rightarrow 0 \cdot [a_1, a_2, a_3] = (a_1 \rightarrow a_2) \rightarrow a_3$$

Listed Types

$$\blacktriangleright \ \mathscr{T}(\mathscr{A}) ::= \mathscr{A} \mid \mathscr{A} \to \mathscr{T}(\mathscr{A})$$

- $\blacktriangleright \ \mathscr{L}_{\mathcal{S}}(\mathscr{A}) ::= \mathscr{T}_{\mathcal{S}}(\mathscr{A}) \mid \mathscr{L}_{\mathcal{S}}(\mathscr{A}) \cap \mathscr{L}_{\mathcal{S}}(\mathscr{A})$

$$\blacktriangleright \mathscr{L}(\mathscr{A}) = \bigcup_{s} \mathscr{L}_{s}(\mathscr{A})$$

► Listed types are noted $\overline{\alpha}, \ldots$ and we note $\alpha \in \overline{\alpha}$

Restricted intersection types

Rigid variables

A rigid variable x^s is such that x is a variable and s a type skeleton

• Type skeletons:
$$o, (o \rightarrow o) \rightarrow o$$

$$\blacktriangleright (0 \rightarrow 0) \rightarrow 0 \cdot [a_1, a_2, a_3] = (a_1 \rightarrow a_2) \rightarrow a_3$$

Listed Types

$$\blacktriangleright \ \mathscr{T}(\mathscr{A}) ::= \mathscr{A} \mid \mathscr{A} \to \mathscr{T}(\mathscr{A})$$

$$\blacktriangleright \ \mathscr{L}_{\mathcal{S}}(\mathscr{A}) ::= \mathscr{T}_{\mathcal{S}}(\mathscr{A}) \mid \mathscr{L}_{\mathcal{S}}(\mathscr{A}) \cap \mathscr{L}_{\mathcal{S}}(\mathscr{A})$$

$$\blacktriangleright \mathscr{L}(\mathscr{A}) = \bigcup_{\mathsf{S}} \mathscr{L}_{\mathsf{S}}(\mathscr{A})$$

• Listed types are noted $\overline{\alpha}, \ldots$ and we note $\alpha \in \overline{\alpha}$

Definition

 $\boldsymbol{\Sigma} = \big(\mathscr{A}, \mathscr{C}, \tau \big)$

- A a finite set of atomic types

• au the typing function $\mathscr{C} \to \mathscr{L}(\mathscr{A})$

Definition

 $\boldsymbol{\Sigma} = \big(\mathscr{A}, \mathscr{C}, \tau \big)$

- A a finite set of atomic types

• τ the typing function $\mathscr{C} \to \mathscr{L}(\mathscr{A})$

Derivations

$$\frac{\alpha \in \tau(\mathbf{c})}{x^{\mathbf{s}}: \mathbf{s} \cdot [\alpha] \vdash_{\Sigma} x^{\mathbf{s}}: \mathbf{s} \cdot [\alpha]} \quad \frac{\alpha \in \tau(\mathbf{c})}{\vdash_{\Sigma} \mathbf{c}: \alpha}$$

Definition

 $\boldsymbol{\Sigma} = \big(\mathscr{A}, \mathscr{C}, \tau \big)$

- A a finite set of atomic types
- τ the typing function $\mathscr{C} \to \mathscr{L}(\mathscr{A})$

Derivations

$$\frac{1}{x^{s}:s\cdot[\alpha]\vdash_{\Sigma}x^{s}:s\cdot[\alpha]} \frac{\alpha\in\tau(\boldsymbol{c})}{\vdash_{\Sigma}\boldsymbol{c}:\alpha}$$

$$\frac{\Gamma \vdash_{\Sigma} M : \beta}{\Gamma - \{x^{\$} : \alpha\} \vdash_{\Sigma} \lambda x^{\$} . M : \alpha \rightarrow \beta} \quad \frac{\Gamma \vdash_{\Sigma} M : \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N : \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} MN : \beta}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

 $\boldsymbol{\Sigma} = \big(\mathscr{A}, \mathscr{C}, \tau \big)$

- A a finite set of atomic types
- τ the typing function $\mathscr{C} \to \mathscr{L}(\mathscr{A})$

Derivations

$$\frac{1}{x^{s}:s\cdot[\alpha]\vdash_{\Sigma}x^{s}:s\cdot[\alpha]} \quad \frac{\alpha\in\tau(\mathbf{c})}{\vdash_{\Sigma}\mathbf{c}:\alpha}$$

$$\frac{\Gamma \vdash_{\Sigma} M : \beta}{\Gamma - \{x^{\$} : \alpha\} \vdash_{\Sigma} \lambda x^{\$} . M : \alpha \rightarrow \beta} \quad \frac{\Gamma \vdash_{\Sigma} M : \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N : \alpha}{\Gamma \cup \Delta \vdash_{\Sigma} MN : \beta}$$

⊢	М	:	ā	1	' H	М	;	$\overline{\alpha_2}$
	F	1	И	:	$\overline{\alpha_1}$ (ה ר	12	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Characteristic typing

The most general signature for M

Given M ∈ Λ_Σ where Σ = (𝔄, 𝔅, τ) and ⊢_Σ M : α principal simple type

 $\Sigma_M = (\mathscr{A} \cup \{\omega\}, \mathscr{C}, \tau_M)$ such that:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

• if
$$\mathbf{c} \in \mathscr{C}$$
 in $M \Rightarrow \tau_M(\mathbf{c}) = \tau(\mathbf{c})$

• otherwise, for
$$\tau(\mathbf{c}) \in \mathscr{L}_{\mathbf{s}}(\mathscr{A}),$$

 $\tau_{\mathbf{M}}(\mathbf{c}) = \bigcap_{(a_1, \dots, a_{n-1}) \in (\mathscr{A} \cup \{\omega\})^{n-1}} \mathbf{s} \cdot [a_1, \dots, a_{n-1}, \omega]$

Characteristic typing

The most general signature for M

Given M ∈ Λ_Σ where Σ = (𝔄, 𝔅, τ) and ⊢_Σ M : α principal simple type

 $\Sigma_M = (\mathscr{A} \cup \{\omega\}, \mathscr{C}, \tau_M)$ such that:

• if
$$\mathbf{c} \in \mathscr{C}$$
 in $M \Rightarrow \tau_M(\mathbf{c}) = \tau(\mathbf{c})$

• otherwise, for
$$\tau(\mathbf{c}) \in \mathscr{L}_{s}(\mathscr{A}),$$

 $\tau_{\mathcal{M}}(\mathbf{c}) = \bigcap_{(a_{1},...,a_{n-1})\in (\mathscr{A}\cup\{\omega\})^{n-1}} s \cdot [a_{1},\ldots,a_{n-1},\omega]$

Characteristic typing

If $\vdash_{\Sigma} M : \alpha$ is *M*'s principal typing, we can build Σ_M minimal in $|\mathscr{A}|$ and obtain $\vdash_{\Sigma_M} M : \overline{\alpha}$, where $\overline{\alpha} = \alpha_1 \cap \ldots \alpha_n$ and *n* maximal as follows:

Example $\mathscr{C} = \{c_1, c_2, c_3\}$

Principal on Simple Types:

 $\tau(c_1) = (a \to u \to b) \to d, \tau(c_2) = a \to a \to b \vdash_{\Sigma} \lambda x. c_1(\lambda x_1 x_2. c_2 x_1 x_1) : u' \to d$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Example $\mathscr{C} = \{c_1, c_2, c_3\}$

Principal on Simple Types:

 $\tau(c_1) = (a \to u \to b) \to d, \tau(c_2) = a \to a \to b \vdash_{\Sigma} \lambda x. c_1(\lambda x_1 x_2. c_2 x_1 x_1) : u' \to d$

Principal with Rigid Variables:

► $\tau(c_1) = (a \rightarrow (u_3 \rightarrow u_4) \rightarrow b) \rightarrow d, \tau(c_2) = a \rightarrow a \rightarrow b \vdash_{\Sigma} \lambda x^{o \rightarrow o} \cdot c_1(\lambda x_1^o x_2^{o \rightarrow o} \cdot c_2 x_1 x_1) : (u_1 \rightarrow u_2) \rightarrow d$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@
Example $\mathscr{C} = \{c_1, c_2, c_3\}$

Principal with Rigid Variables:

►
$$\tau(c_1) = (a \rightarrow (u_3 \rightarrow u_4) \rightarrow b) \rightarrow d, \tau(c_2) = a \rightarrow a \rightarrow b \vdash_{\Sigma} \lambda x^{o \rightarrow o} \cdot c_1(\lambda x_1^o x_2^{o \rightarrow o} \cdot c_2 x_1 x_1) : (u_1 \rightarrow u_2) \rightarrow d$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Characteristic Typing:

►
$$\tau(c_1) = \overline{\alpha_1}, \tau(c_2) = \overline{\alpha_2}, \tau(c_3) = \overline{\alpha_3} \vdash_{\Sigma}$$

 $\lambda x^{o \to o} \cdot c_1(\lambda x_1^o x_2^{o \to o} \cdot c_2 x_1 x_1) : \overline{\alpha}$
► $\overline{\alpha_1} = \bigcap_{t \in \mathscr{A}_{\omega}} (a \to (t \to \omega) \to b) \to d$
► $\overline{\alpha_2} = a \to a \to b$
► $\overline{\alpha_3} = \bigcap_{t \in \mathscr{A}_{\omega}} t \to \omega$
► $\overline{\alpha} = \bigcap_{t \in \mathscr{A}_{\omega}} (t \to \omega) \to d$

Example $\mathscr{C} = \{c_1, c_2, c_3\}$

Characteristic Typing:

►
$$\tau(c_1) = \overline{\alpha_1}, \tau(c_2) = \overline{\alpha_2}, \tau(c_3) = \overline{\alpha_3} \vdash_{\Sigma}$$

 $\lambda x^{o \to o} \cdot c_1(\lambda x_1^o x_2^{o \to o} \cdot c_2 x_1 x_1) : \overline{\alpha}$
► $\overline{\alpha_1} = \bigcap_{t \in \mathscr{A}_{\omega}} (a \to (t \to \omega) \to b) \to d$
► $\overline{\alpha_2} = a \to a \to b$
► $\overline{\alpha_3} = \bigcap_{t \in \mathscr{A}_{\omega}} t \to \omega$
► $\overline{\alpha} = \bigcap_{t \in \mathscr{A}_{\omega}} (t \to \omega) \to d$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\overline{\alpha_1} = \bigcap_{t \in \mathscr{A}} (a \to (t \to \omega) \to b) \to d$$
 $\overline{\alpha_2} = a \to a \to b$
 $\overline{\alpha_3} = \bigcap_{t \in \mathscr{A}} t \to \omega$
 $\overline{\alpha} = \bigcap_{t \in \mathscr{A}} (t \to \omega) \to d$

Useful occurrences of atomic types

$$\blacktriangleright \ \overline{\alpha_1} = \bigcap_{t \in \mathscr{A}} (a^- \to (t \to \omega) \to b^+) \to d^-$$

$$\blacktriangleright \ \overline{\alpha_2} = \mathbf{a}^+ \to \mathbf{a}^+ \to \mathbf{b}^-$$

$$\blacktriangleright \ \overline{\alpha_3} = \bigcap_{t \in \mathscr{A}} t \to \omega$$

►
$$\overline{\alpha} = \bigcap_{t \in \mathscr{A}} (t \to \omega) \to d^+$$

Such a typing is called a PN-typing

Useful occurrences of atomic types

► $\overline{\alpha_1} = \bigcap_{t \in \mathscr{A}} (a^- \to (t \to \omega) \to b^+) \to d^-$

$$\blacktriangleright \ \overline{\alpha_2} = \mathbf{a}^+ \to \mathbf{a}^+ \to \mathbf{b}^-$$

$$\blacktriangleright \ \overline{\alpha_3} = \bigcap_{t \in \mathscr{A}} t \to \omega$$

$$\blacktriangleright \ \overline{\alpha} = \bigcap_{t \in \mathscr{A}} (t \to \omega) \to d^+$$

Such a typing is called a PN-typing

Theorem

If a term M is in long-normal form for a PN-typing $\langle \overline{\Gamma}; \overline{\gamma} \rangle$ it is the unique long-normal inhabitant of this pair.

Useful occurrences of atomic types

►
$$\overline{\alpha_1} = \bigcap_{t \in \mathscr{A}} (a^- \to (t \to \omega) \to b^+) \to d^-$$

$$\blacktriangleright \ \overline{\alpha_2} = \mathbf{a}^+ \to \mathbf{a}^+ \to \mathbf{b}^-$$

$$\blacktriangleright \ \overline{\alpha_3} = \bigcap_{t \in \mathscr{A}} t \to \omega$$

$$\blacktriangleright \overline{\alpha} = \bigcap_{t \in \mathscr{A}} (t \to \omega) \to d^+$$

Such a typing is called a PN-typing

Theorem

If a term M is in long-normal form for a PN-typing $\langle \overline{\Gamma}; \overline{\gamma} \rangle$ it is the unique long-normal inhabitant of this pair.

Theorem

An almost affine term has a PN characteristic typing.

Properties

The characteristic typing is the simplest typing of $\vdash_{\Sigma_M} M : \overline{\alpha}$ which ensures:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. *M* is the unique inhabitant of it.
- 2. If an almost affine term $M' \twoheadrightarrow_{\beta} M$, then $\vdash_{\Sigma_M} M : \overline{\alpha}$

Properties

The characteristic typing is the simplest typing of $\vdash_{\Sigma_M} M : \overline{\alpha}$ which ensures:

- 1. *M* is the unique inhabitant of it.
- 2. If an almost affine term $M' \twoheadrightarrow_{\beta} M$, then $\vdash_{\Sigma_M} M : \overline{\alpha}$

Moreover, we show almost affine terms *M* and *M'* in Λ_{Σ_M} verify $M =_{\beta} M'$ iff they share the same characteristic typing.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea: Use Types

If M_{Σ_1} and $\mathscr{H}_1(M_{\Sigma})$ share the same characteristic typing then $M_{\Sigma_1} =_{\beta} \mathscr{H}_1(M_{\Sigma})$

Outline

Second-order ACG and Lexical Semantics Abstract Categorial Grammars Integrating some lexical semantics informatio

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Parsing ACG

General Idea Using types

Extended parsers

Typing issues A new typing system Example and Datalog

READ JOHN_{char} HAM_{info-cont}

IDB

 $\begin{array}{l} \mathcal{L}(John) = \lambda QP.P(Q \; \textit{JOHN}_{char} \; \textit{undefined} \; \textit{undefined}) \\ \mathcal{L}(Hamlet) = \lambda QP.P(Q \; \textit{HAM}_{char} \; \textit{HAM}_{phys-obj} \; \textit{HAM}_{info-cont}) \\ \mathcal{L}(read) = \lambda QP.P\pi_1(\lambda x.Q\pi_3 \; (\lambda y.\textit{READ} \; x \; y)) \end{array}$

 $\pi_i \equiv \lambda x_1 x_2 x_3 . x_i$

Example

EDB

IDB

 $\begin{array}{l} S(x_6): NP(x_1, x_2, x_3, x_1, x_4, x_5, x_6), NP(y_1, y_2, y_3, y_3, y_4, y_5, x_5), \textit{READ}(x_4, y_4, y_5). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-JOHN}_{char}(x_1), \textit{undefined}(x_2), \textit{undefined}(x_3). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-HAM}_{char}(x_1), \textit{HAM}_{phys-obj}(x_2), \textit{HAM}_{info-cont}(x_3). \end{array}$

 IDB_{ω}

READ (x_1, x_2, ω) :-type (x_1) , type (x_2) . **EAT** (x_1, x_2, ω) :-type (x_1) , type (x_2) . $\begin{array}{l} \textbf{READ}(1,2,3).\\ \textbf{JOHN}_{char}(1).\\ \textbf{HAM}_{phys-cont}(2). \end{array}$

 EDB_{ω}

 $JOHN_{char}(\omega).$ $HAM_{phys-cont}(\omega).$ $undefined(\omega).$ $MARY_{char}(\omega).$ type(1). type(2). type(2). $type(\omega).$

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

?:-S(3)

Example

EDB

IDB

 $\begin{array}{l} S(x_6): NP(x_1, x_2, x_3, x_1, x_4, x_5, x_6), NP(y_1, y_2, y_3, y_3, y_4, y_5, x_5), \textit{READ}(x_4, y_4, y_5). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-JOHN}_{char}(x_1), \textit{undefined}(x_2), \textit{undefined}(x_3). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-HAM}_{char}(x_1), \textit{HAM}_{phys-obj}(x_2), \textit{HAM}_{info-cont}(x_3). \end{array}$

IDB_{ω}

 $\begin{array}{l} \textit{READ}(x_1, x_2, \omega) & \because \texttt{type}(x_1), \texttt{type}(x_2). \\ \textit{EAT}(x_1, x_2, \omega) & \because \texttt{type}(x_1), \texttt{type}(x_2). \end{array}$

 $\begin{array}{l} \textbf{READ}(1,2,3).\\ \textbf{JOHN}_{char}(1).\\ \textbf{HAM}_{phys-cont}(2). \end{array}$

 EDB_{ω}

 $JOHN_{char}(\omega).$ $HAM_{phys-cont}(\omega).$ $undefined(\omega).$ $MARY_{char}(\omega).$ type(1). type(2). type(3). $type(\omega).$

Example

EDB

IDB

 $\begin{array}{l} S(x_6): NP(x_1, x_2, x_3, x_1, x_4, x_5, x_6), NP(y_1, y_2, y_3, y_3, y_4, y_5, x_5), \textit{READ}(x_4, y_4, y_5). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-JOHN}_{char}(x_1), \textit{undefined}(x_2), \textit{undefined}(x_3). \\ NP(x_1, x_2, x_3, x_4, x_4, x_5, x_5): \textit{-HAM}_{char}(x_1), \textit{HAM}_{phys-obj}(x_2), \textit{HAM}_{info-cont}(x_3). \end{array}$

IDB_{ω}

 $\begin{array}{l} \textit{READ}(x_1, x_2, \omega) & \because \texttt{type}(x_1), \texttt{type}(x_2). \\ \textit{EAT}(x_1, x_2, \omega) & \because \texttt{type}(x_1), \texttt{type}(x_2). \end{array}$

 $\begin{array}{l} \textbf{READ}(1,2,3).\\ \textbf{JOHN}_{char}(1).\\ \textbf{HAM}_{phys-cont}(2). \end{array}$

 EDB_{ω}

 $\begin{array}{l} JOHN_{char}(\omega).\\ HAM_{phys-cont}(\omega).\\ undefined(\omega).\\ MARY_{char}(\omega).\\ type(1).\\ type(2).\\ type(3).\\ type(\omega). \end{array}$

Conclusion

- Kanazawa: Datalog recognizer for (almost)-linear ACG: efficient parsing (LOGCFL)
 - Result extended to almost affine ACG; at least polynomial time

- A more complex typing system is needed (intersection which are used in [Sal10])
- Principal Typings replaced with Charateristic Typing.
- Deletion can be used to enrich the grammar with:
 - Aspects (lexical semantics)
 - Agreement (syntax)
 - ▶ ...

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- ► Extract derivations: recognizer → parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

Parsing:

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- ► Extract derivations: recognizer → parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

Parsing:

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

Parsing:

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

Parsing:

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parsing:

- Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
- Extract derivations: recognizer \rightarrow parser.
- Development.
- From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

- Parsing:
 - Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
 - Extract derivations: recognizer \rightarrow parser.
 - Development.
 - From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

- Parsing:
 - Check magic-set rewriting to lead to prefix-correct Earley algorithm [Kan08]
 - Extract derivations: recognizer \rightarrow parser.
 - Development.
 - From listed HOS to intersected HOS?
- Linguistic Model:
 - Basic treatment.
 - Unable to reject unfelicitous sentences ("John fished and ate a fast salmon." (?))

For Further Reading I

T. Aoto.

Uniqueness of normal proofs in implicational intuitionistic logic. *Journal of Logic, Language and Information*, 8:217–242, 1999.

A. Babaev and S. Soloviev.

A coherence theorem for canonical morphism in cartesian closed categories. *Journal of Soviet Mathematics*, 20:2263 – 2279, 1982.

P. de Groote.

Towards abstract categorial grammars.

In Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference, pages 148–155, 2001.

M. Kanazawa.

Parsing and generation as Datalog queries.

In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, pages 176–183, Prague, 2007. Association for Computational Linguistics.

For Further Reading II

M. Kanazawa.

A prefix-correct earley recognizer form multiple context-free grammars. In *TAG+9, Proceedings of the ninth International Workshop on Tree Adjoining Grammars and Related Frameworks*, Tubingen, Germany, June 2008.

J. Lambek.

The mathematics of sentence structure. *Amer. Math. Mon.*, 65:154–170, 1958.

R. Montague.

The proper treatment of quantification in ordinary english. *Approaches to Natural Language*, pages 221–242, 1973.

R. Muskens.

Lambda Grammars and the Syntax-Semantics Interface.

In R. van Rooy and M. Stokhof, editors, *Proceedings of the Thirteenth Amsterdam Colloquium*, pages 150–155, Amsterdam, 2001.

Sylvain Salvati.

On the membership problem for non-linear abstract categorial grammars. *Journal of Logic, Language and Information*, 19(2):163–183, 2010.