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Introduction

I Goal: extend parsing techniques on ACG by adding new
operation (here: deletion)

I Parsing ACG⇒ Natural Language Generation
I Deletion can be used to represent lexical semantics

information in our grammar
I No intension of creating a new lexical semantics theory.
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Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

ACG

I [dG01, Mus01]
I Computational linguistics.
I Focus on syntax, semantics and their relation.
I Based on two main ideas:

I Montagovian semantics,

λ-calculus for semantics

I Curry’s distinction between phenogrammar and
tectogrammar.

intermediate structure between syntax and
semantics

I Plus, uniformity of the formalism: use of the λ-calculus to
describe every module/grammar
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Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons
I We use homomorphisms.
I Nothing new:

I [Mon73], [Lam58]
I If terms are typed, H applies to both terms and types.

As an example (syntax)

I eat :np → np → s
I Hsyn(np)=str
I Hsyn(s)=str
I Hsyn(λxy .eatxy )=λx1x2.x2 + eat + x1



Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons
I We use homomorphisms.
I Nothing new:

I [Mon73], [Lam58].
I If terms are typed, H applies to both terms and types.

As an example (semantics)

I eat :np → np → s
I Hsem(np)=(e → t) → t
I Hsem(s)=t
I Hsem(λxy .eatxy )=λPQ.P(λx .Q(λy .EATxy))



Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Formally

Higher-Order Signature
A higher-order signature Σ = (A ,C , τ):

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → T (A )

Derivation system

x : α `Σ x : α `Σ c : τ(c)

Γ `Σ M : β

Γ− {x : α} `Σ λx .M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪∆ `Σ MN : β



Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G ) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G ) = {M ∈ ΛΣ2 |∃N ∈ A (G ), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing
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Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview(2)

Σtecto
eat Mary (a cake)

Σsyn
Mary+eat+a+cake

Σsem
∃(λx.∧(CAKEx)(EATxMARY ))

Hsyn

Hsem
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Integrating some lexical semantics information

Original ACG

Linearity
A term M is linear if every variable in M has one and only one
occurrence in M (no deletion, no copy)

Example
x , λx .fx but not λx .fxx

(Linear) ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is linear.
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Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

First extension

Almost Linearity
A term M is almost linear if every variable in M has at least one
occurrence in M (no deletion).
A variable which has more than one occurrence in M is
assigned an atomic type in M ’s principal typing limited copy)

Example
x , λx .fx , λx .fxx but not λx .f (fx)

Almost linear ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is almost
linear.
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Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar ) (READ HAMinfo−cont JOHNchar )
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Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Choice as deletion

List of aspects on NP

I Hsem(hamlet) = λP.P HAM

I Hsyn(hamlet) =
λQP.P(Q HAMchar HAMphys−obj HAM info−cont )

I Q is the selector

Verb (predicate) as selector

I Hsem(read) = λPQ.P(λx .Q(λy .READxy))

I Hsem(read) = λPQ.Pπ3(λx .Qπ1(λy .READxy))

I πi = λx1x2x3.xi
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Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Almost affine terms

Almost affine terms
A term M is almost affine if every variable/constant which has
more than one occurrence in M is assigned an atomic type in
M ’s principal typing

Example
λxayb.f a→a→cxaxa but not λxayb.f a→a→a(f a→a→axaxa)xa

Almost affine ACG
An ACG (Σ1,Σ2,L , s) is almost affine if for every constant c in
Σ1, L (c) is almost affine.
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Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the terms MΣ, such that H1(MΣ) �β MΣ1

3. Get the terms MΣ2 , such that H2(MΣ) �β MΣ2
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Parsing ACG

Using types

Idea: Use Types

Σprinc

MΣ

Σprinc
1
MΣ1

H1

If MΣ1 and H1(MΣ) share the same principal typing then
MΣ1 =β H1(MΣ)



Parsing ACG

Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is ??? it is the unique β-normal inhabitant
of 〈Γ; γ〉

Theorem
[Subject Expansion] Let’s consider a ??? term M, a term M ′

such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ
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Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is linear it is the unique β-normal
inhabitant of 〈Γ; γ〉 [BS82]

Theorem
[Subject Expansion] Let’s consider a linear term M, a term M ′

such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ



Parsing ACG

Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is almost linear it is the unique β-normal
inhabitant of 〈Γ; γ〉 [Aot99]

Theorem
[Subject Expansion] Let’s consider a almost linear term M, a
term M ′ such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ
[Kan07]
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Using types

Results

I [Kan07] gave a Datalog recognizer for linear and almost
linear terms.

I Complexity is LOGCFL ⊆ P
I [Sal10] proved natural language generation is decidable in

the Montagovian framework

With deletion?
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Typing issues

What we would like

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is almost affine it is the unique β-normal
inhabitant of 〈Γ; γ〉

Theorem
[Subject Expansion] Let’s consider a almost affine term M, a
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Typing issues

Typing issues with deletion

Example

I (λP.c)(λx .fcc) �β c

I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a

I λP.f((λy .c)(Pc)) �β λP.fc

I c : a, f : a→ b ` λP.f((λy .c)(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b

1. Need to include all possible free variables (i.e. constants in
the case of HOS)

2. Need to know type structure (skeleton) for each variable.
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Extended parsers

Typing issues

Intersection Types

I (λP.c)(λx .fxx) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a
I We do not know the type of f
I Idea: use intersection types to enumerate possible types in

the signature: f : (b → b → c) ∩ (a→ b → c) ∩ . . .

I λP.f(λy .c(Pc)) �β λP.fc
I c : a, f : a→ b ` λP.f(λy .c(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b
I We do not know the type of P
I Idea: use intersection types to enumerate possible types in

the signature: P : (a→ c) ∩ (a→ b) ∩ . . .
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Extended parsers

Typing issues

Intersection Types

Moreover, intersection types are already present (but hidden) in
Kanazawa’s technique:

∃(λx .∧(CAKE x) (∧ (BUY x MARY ) (EAT x MARY )))

I The two occurrences of MARY come from the same lexical
entry (Hsem(Mary))

I The two occurrences of ∧ come from two different lexical
entries (Hsem(and) and Hsem(a))

I “Pseudo-principal typing”:
MARY : a,∧ : (b1 → b2 → c2) ∩ (c1 → c2 → d), . . .



Extended parsers

A new typing system

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog



Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A ) ::= A | A → T (A )

I Ts(A ): simple types of skeletons s
I Ls(A ) ::= Ts(A ) | Ls(A ) ∩Ls(A )
I L (A ) =

⋃
s Ls(A )

I Listed types are noted α, . . . and we note α ∈ α
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Extended parsers

A new typing system

Listed Higher-order Signature
Definition
Σ = (A ,C , τ)

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → L (A )

Derivations

xs : s · [α] `Σ xs : s · [α]

α ∈ τ(c)

`Σ c : α

Γ `Σ M : β

Γ− {xs : α} `Σ λxs.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪ ∆ `Σ MN : β

` M : α1 ` M : α2

` M : α1 ∩ α2
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Extended parsers

A new typing system

Characteristic typing

The most general signature for M

I Given M ∈ ΛΣ where Σ = (A ,C , τ) and `Σ M : α
principal simple type

ΣM = (A ∪ {ω},C , τM) such that:
I if c ∈ C in M ⇒ τM(c) = τ(c)
I otherwise, for τ(c) ∈ Ls(A ),
τM(c) =

⋂
(a1,...,an−1)∈(A∪{ω})n−1 s · [a1, . . . ,an−1, ω]

Characteristic typing
If `Σ M : α is M ’s principal typing, we can build ΣM minimal in
|A | and obtain `ΣM M : α, where α = α1 ∩ . . . αn and n maximal
as follows:
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Extended parsers

A new typing system

Example C = {c1, c2, c3}

I Principal on Simple Types:
I τ(c1) = (a→ u → b)→ d , τ(c2) = a→ a→ b `Σ

λx .c1(λx1x2.c2x1x1) : u′ → d

I Principal with Rigid Variables:
I τ(c1) = (a→ (u3 → u4)→ b)→ d , τ(c2) = a→ a→ b `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : (u1 → u2)→ d
I Characteristic Typing:

I τ(c1) = α1, τ(c2) = α2, τ(c3) = α3 `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : α
I α1 =

T
t∈Aω

(a → (t → ω) → b) → d
I α2 = a → a → b
I α3 =

T
t∈Aω

t → ω
I α =

T
t∈Aω

(t → ω) → d
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Extended parsers

A new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types

I α1 =
⋂

t∈A (a→ (t → ω)→ b)→ d
I α2 = a→ a→ b
I α3 =

⋂
t∈A t → ω

I α =
⋂

t∈A (t → ω)→ d

Theorem
If a term M is in long-normal form for a PN-typing 〈Γ; γ〉 it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.
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Properties

The characteristic typing is the simplest typing of `ΣM M : α
which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term M ′ �β M, then `ΣM M : α

Moreover, we show almost affine terms M and M ′ in ΛΣM verify
M =β M ′ iff they share the same characteristic typing.
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Extended parsers

A new typing system

Idea: Use Types

Σchar
M
M

Σchar
M1
M1

H1

If MΣ1 and H1(MΣ) share the same characteristic typing then
MΣ1 =β H1(MΣ)
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Extended parsers

Example and Datalog

Example

READ JOHNchar HAMinfo−cont

IDB

L(John) = λQP.P(Q JOHNchar undefined undefined)
L(Hamlet) = λQP.P(Q HAMchar HAMphys−obj HAMinfo−cont )
L(read) = λQP.Pπ1(λx .Qπ3 (λy .READ x y))

πi ≡ λx1x2x3.xi
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Example and Datalog

Example

IDB
S(x6) :- NP(x1, x2, x3, x1, x4, x5, x6),NP(y1, y2, y3, y3, y4, y5, x5),READ(x4, y4, y5).
NP(x1, x2, x3, x4, x4, x5, x5) :- JOHNchar (x1), undefined(x2), undefined(x3).
NP(x1, x2, x3, x4, x4, x5, x5) :- HAMchar (x1),HAMphys−obj (x2),HAMinfo−cont (x3).

IDBω

READ(x1, x2, ω) :- type(x1), type(x2).
EAT (x1, x2, ω) :- type(x1), type(x2).

EDB
READ(1, 2, 3).
JOHNchar (1).
HAMphys−cont (2).

EDBω

JOHNchar (ω).
HAMphys−cont (ω).

undefined(ω).
MARYchar (ω).
type(1).
type(2).
type(3).
type(ω).

? :- S(3)
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Conclusion

Conclusion

I Kanazawa: Datalog recognizer for (almost)-linear ACG:
efficient parsing (LOGCFL)

I Result extended to almost affine ACG; at least polynomial
time

I A more complex typing system is needed (intersection
which are used in [Sal10])

I Principal Typings replaced with Charateristic Typing.
I Deletion can be used to enrich the grammar with:

I Aspects (lexical semantics)
I Agreement (syntax)
I . . .
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Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))
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