Modeling Event Implications for Compositional Semantics

Sai Qian
Maxime Amblard
Calligramme, LORIA \& INRIA Nancy Grand-Est CAuLD Workshop: Logical Methods for Discourse

December 13, 2010

Outline

1 Motivation for Events

2 Events in More Situations

- Coordination
- Quantification
- Dynamic Semantics

3 Conclusion \& Future Work

Ahead of Events...

- Adjectives as a very first clue:
(1) a. John is tall, strong, handsome...
b. *...(Handsome(Strong (Tall(J))))
c. Tall $(J) \wedge$ Strong $(J) \wedge$ Handsome $(J) \wedge \ldots$
- A bunch of adjectives (probably infinite) being expressed as coordination (conjunction) of predicates
- Conventional semantic representation

$$
\llbracket t a l l \rrbracket=\lambda P \lambda x .(P(x) \wedge \operatorname{Ta} l l(x))
$$

- The above representation is for intersective adjectival modification

Analogy to Adjectives - Adverbs

(2) a. Brutus stabbed Caesar.
b. Brutus stabbed Caesar in the back.
c. Brutus stabbed Caesar with a knife.
d. Brutus stabbed Caesar in the back with a knife.

- Permutation

Brutus stabbed Caesar in the back with a knife. Brutus stabbed Caesar with a knife in the back.
■ Drop

Parallelism Between Adjectives \& Adverbs

- Similarities between adjectival and adverbial quantification wrt some certain properties
- Adjectival quantification takes a property (common noun), returns a new property: $(e \rightarrow t) \rightarrow e \rightarrow t$
- Adverbial quantification: ???
- An implicit Event argument inside sentences
- Similar to the treatment for adjectives,

$$
\llbracket i n_{-} t h e_{-} b a c k \rrbracket=\lambda Q \lambda e .(Q(e) \wedge \text { in_the_back }(e))
$$

Adverbial Quantification with Events

(3) a. $\exists e . \operatorname{Stab}(e, B, C)$
b. $\quad \exists e .(S t a b(e, B, C) \wedge \operatorname{In}(e$, back $))$
c. $\quad \exists e .(S t a b(e, B, C) \wedge$ With $(e$, knife $))$
d. $\exists e .(S t a b(e, B, C) \wedge \operatorname{In}(e$, back $) \wedge$ With $(e$, knife $))$

■ Various versions of event semantic

- Davidsonian Theory
- Neo-Davidsonian Theory

Example

$$
\exists e .(\operatorname{Stab}(e) \wedge \operatorname{Subj}(e, B) \wedge \operatorname{Obj}(e, C))
$$

Other Evidences

■ Preceptual idioms - a perceptual verb followed by a clause missing tense
(4) a. Sam heard Mary shoot Bill.

- Mary saw Brutus stab Caesar.

■ Mary saw that Brutus stabs Caesar.

Type Analysis

Different types for the perceptual verb "see" ${ }^{1}$:
1 sb. sees sb./sth.: $e \rightarrow e \rightarrow t$
2 sb. sees some event: $e \rightarrow v \rightarrow t$
3 sb. sees some fact: $e \rightarrow t \rightarrow t$
1 " e " and " t " are the same as in other conventional semantic theory, while " v " stands for the type of event.

Other Evidences Continued

Corresponding Interpretations

```
\(1 \exists e\left(\operatorname{See}(e) \wedge \operatorname{Subj}(e, M) \wedge \exists e^{\prime}\left(\operatorname{Stab}(e) \wedge \operatorname{Subj}\left(e^{\prime}, B\right) \wedge \operatorname{Obj}\left(e^{\prime}, C\right) \wedge\right.\right.\)
    Obj(e, é \()\) ))
\(2 \exists e\left(\operatorname{See}(e) \wedge \operatorname{Subj}(e, M) \wedge \operatorname{Obj}\left(e, \exists e^{\prime}\left(\operatorname{Stab}(e) \wedge \operatorname{Subj}\left(e^{\prime}, B\right) \wedge \operatorname{Obj}\left(e^{\prime}, C\right)\right)\right)\right.\)
```

- Explicit reference to events
(5) a. After the singing of La Marseillaise they saluted the flag.
b. John arrived late. This/It annoyed Mary.

LEvents in More Situations

Intuitional Clues

(6)
a. John smiles. \Longrightarrow

Smile (J)
b. John and Bill smile. \Longrightarrow

Smile $(J \& B)$ or Simle $(J) \wedge \operatorname{Smile}(B)^{2}$
c. John, Bill and Mike smile. \Longrightarrow

Smile(J\&B\&M) or
Simle $(J) \wedge \operatorname{Smile}(B) \wedge \operatorname{Smile}(M)$ or Smile $(J) \wedge \operatorname{Smile}(B \& M)$ or

■ Intersective Reading

- Collective Reading
${ }^{2}$ The "\&" symbol is a informal denotation for the combination of two entities.

Event in Coordination - "and"

(7) a. John smiles. \Longrightarrow
$\exists e .(S m i l e(e) \wedge \operatorname{Subj}(e,\{J\}))$
b. John and Bill smile. \Longrightarrow
$\exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e,\{J, B\}))$ or
$\exists e_{1} \exists e_{2} .\left(\operatorname{Smile}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1},\{J\}\right) \wedge \operatorname{Smile}\left(e_{2}\right) \wedge\right.$ $\left.\operatorname{Subj}\left(e_{2},\{B\}\right)\right)$

- Assumption: all events are conducted by a group of entities
- The subject position is occupied by a set, e.g., $\{J, B\},\{J\}$

■ Type transforming: " e " to " $e \rightarrow t$ "

- Coordination

Naive Conclusion

- An intuitional representation (1st version): $\exists e_{1} \exists e_{2} \ldots \exists e_{n} .\left(\operatorname{Simle}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1}, G_{1}\right) \wedge\right.$ $\left.\operatorname{Smile}\left(e_{2}\right) \wedge \operatorname{Subj}\left(e_{2}, G_{2}\right) \wedge \ldots \wedge \operatorname{Simle}\left(e_{n}\right) \wedge \operatorname{Subj}\left(e_{n}, G_{n}\right)\right)$
- A more general representation (2nd version):

Condition_On_Subject $\rightarrow \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))$
■ Problem: to specify and restrict the condition for subject

- Coordination

A More General Representation

- Observation

1 Two elements in the set:

\bigcirc
 \bigcirc

2 Three elements in the set:

■ Conclusion: different combinations of elements in the whole set result in different structures of events

— Events in More Situations

A More General Representation

- Observation

1 Two elements in the set:

\bigcirc
\bigcirc
2 Three elements in the set:

■ Conclusion: different combinations of elements in the whole set result in different structures of events

- Coordination

A More General Representation Continued

Definition ("and" Function - $F_{\text {and }} /$ Partition Function)

Let $F_{\text {and }}$ be a partition function, which takes any set with finite number of elements (e.g., $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$) as input, and returns a set of sets (e.g., $G_{\text {and }}^{2}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$) such that:
1 For any $G_{x}, G_{y}(x, y$ from 1 to $n)$, if $a_{i} \in G_{x}$ and $a_{j} \in G_{y}(i$, j from 1 to $k)$, then $a_{i} \neq a_{j}$
2 For all a_{i} (i from 1 to k), $a_{i} \in G_{x}(x$ from 1 to $n)$

- A modified general representation (3rd version):

$$
\forall G .\left(G \in G_{\text {and }}^{2} \rightarrow \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))\right)
$$

- Events in More Situations

Event in Coordination - "or"

(8) a. John or Bill smiles. \Longrightarrow $\exists e_{1} .\left(\operatorname{Smile}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1},\{J\}\right)\right) \vee \exists e_{1} .\left(\operatorname{Smile}\left(e_{2}\right) \wedge\right.$ $\left.\operatorname{Subj}\left(e_{2},\{B\}\right)\right)$
b. John or Bill or Mike or ... smiles. \Longrightarrow $\exists e_{1} .\left(\operatorname{Smile}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1},\{J\}\right)\right) \vee \exists e_{2} .\left(\operatorname{Smile}\left(e_{2}\right) \wedge\right.$ $\left.\operatorname{Subj}\left(e_{2},\{B\}\right)\right) \vee \ldots \vee \exists e_{n} .\left(\operatorname{Smile}\left(e_{n}\right) \wedge \operatorname{Subj}\left(e_{n},\{N\}\right)\right)$

■ We assume every element in the set conjoined by "or" will result in an independent event

- The representation of the sentence is the disjunction of all events

LEvents in More Situations

Intuitional Clues

(9) a. Every child smiles. \Longrightarrow $\exists e .\left(\operatorname{Smile}(e) \wedge \operatorname{Subj}\left(e,\left\{C_{1} \& C_{2} \& \ldots \& C_{n}\right\}\right)\right)$ or $\exists e_{1} \exists e_{2} \ldots \exists e_{3}$. $\left(\operatorname{Smile}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1},\left\{C_{1}\right\}\right) \wedge \operatorname{Smile}\left(e_{2}\right) \wedge\right.$ $\left.\operatorname{Subj}\left(e_{2},\left\{C_{2}\right\}\right) \wedge \ldots \operatorname{Smile}\left(e_{n}\right) \wedge \operatorname{Subj}\left(e_{n},\left\{C_{n}\right\}\right)\right)$ or
b. A child smiles. \Longrightarrow $\exists e .\left(\operatorname{Smile}(e) \wedge \operatorname{Subj}\left(e,\left\{C_{1} / C_{2} / \ldots / C_{n}\right\}\right)\right)$

Comparison between:
■ Universal quantifier "every" and coordination "and"
■ Existential quantifier "a" and coordination "or"
-Quantification

Event in Universal Quantifier

■ Events are still conducted by a group of entities
■ Unlike coordination "and", different groups could contain overlapping elements

Example (everyone smiles)
12 elements - A and B

- Smile(A), Smile(B)
- Smile(A\&B), Smile(A)

23 elements - A, B and C

- Smile(A), Smile(B), Smile(C)
- Smile(A\&B), Smile(B\&C), Smile(C)
- *Smile(A), Smile(A\&B)

■

Event in Universal Quantifier Continued

- A general representation: Condition_On_Subject $\rightarrow \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))$

Definition (Universal Function - $F_{\text {uni }}$)

Let $F_{\text {uni }}$ be function, which takes any set with finite number of elements (e.g., $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$) as input, and returns a set of sets (e.g., $\left.G_{u n i}^{2}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}\right)$ such that:

1 For all a_{i} (ifrom 1 to k), $a_{i} \in G_{x}$ (x from 1 to n)

- A modified general representation:

$$
\forall G .\left(G \in G_{u n i}^{2} \rightarrow \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))\right)
$$

- Events in More Situations

-Quantification

Event in Existential Quantifier

■ The subject group only contains one element

- Every element is possible to be applied

Example (a man smiles)

12 elements - A and B

- $\operatorname{Smile}(A)$
- Smile(B)
- Smile(A), Smile(B)
- *Smile(A\&B)

23 elements - A, B and C

- Smile(A), Smile(B), Smile(C)
- *Smile(A\&B), Smile(B\&C), Smile(C\&A)
-

Event in Existential Quantifier Continued

- A general representation: Condition_On_Subject $\wedge \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))$

Definition (Existential Function - $F_{\text {ex }}$)

Let $F_{\text {ex }}$ be function, which takes any set with finite number of elements (e.g., $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$) as input, and returns a set of sets (e.g., $\left.G_{e x}^{2}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}\right)$ such that:
1 There exists a_{i} (i from 1 to k), $a_{i} \in G_{x}$ (x from 1 to n)
2 If $a_{i} \in G_{x}$, for any other a_{j}, if $a_{j} \in G_{x}$ then $a_{i}=a_{j}$

- A modified general representation:

$$
\exists G .\left(G \in G_{e x}^{2} \wedge \exists e .(\operatorname{Smile}(e) \wedge \operatorname{Subj}(e, G))\right)
$$

LEvents in More Situations

QQuantification

Scope Ambiguity

(10) Every man loves a woman. \Longrightarrow
a. $\quad \forall x .(\operatorname{Man}(x) \rightarrow \exists y .(\operatorname{Woman}(y) \wedge \operatorname{Love}(x, y)))$
b. $\quad \exists y .(\operatorname{Woman}(y) \wedge \forall x .(\operatorname{Man}(x) \rightarrow \operatorname{Love}(x, y)))$
c. $\forall x .\left(x \in G_{u n i}^{2} \rightarrow \exists y \cdot(y \in\right.$ $\left.\left.G_{e x}^{2}\right) \wedge \exists e .(\operatorname{Love}(e) \wedge \operatorname{Subj}(e, x) \wedge \operatorname{Obj}(e, y))\right)$
d. $\quad \exists y .\left(y \in G_{e x}^{2} \wedge \forall x .\left(x \in G_{u n i}^{2}\right) \rightarrow\right.$ $\exists e .(\operatorname{Love}(e) \wedge \operatorname{Subj}(e, x) \wedge \operatorname{Obj}(e, y)))$

Relations Among Representations

$$
\begin{aligned}
& b \subset a, d \subset c \\
& a \approx c, b \approx d
\end{aligned}
$$

LEvents in More Situations

－Quantification

Comparison with Traditional MG

■ In traditional MG，quantifiers are represented semantically as：
■ \llbracket every】 $=\lambda P \lambda Q \forall x .(P(x) \rightarrow Q(x))$
■ $\llbracket a \rrbracket=\lambda P \lambda Q \exists x .(P(x) \wedge Q(x))$
■ With a similar structure，we proposed：
■ 【every】 $=\lambda P \forall G .\left(G \in G_{u n i}^{2} \rightarrow P(G)\right)$
－$\llbracket a \rrbracket=\lambda P \exists G .\left(G \in G_{e x}^{2} \wedge P(G)\right)$
■ No essential difference，however：
－We focus on group of entities，not single entities
－We distinguish events by different combination of subjects and objects（e．g．，＂every man loves a woman＂，but different man might have different ways to love a woman．）

Making Things Compositional

- Since we already have the general semantic representations, the next step is to obtain them compositionally
■ Possible proposition:

Example (Semantic Representations)

$$
\begin{aligned}
& \llbracket s t a b \rrbracket=\lambda o s e .(\operatorname{stab}(e) \wedge \operatorname{Subj}(e, s) \wedge \operatorname{Obj}(e, o)) \\
& \llbracket \text { with_a_knife }=\lambda P e .(P(e) \wedge \text { with_a_knife }(e)) \\
& \llbracket E O E \rrbracket=\lambda P \exists e . P(e)
\end{aligned}
$$

- Infinite number of adverbial modifier could be added
- Thematic roles for verbs need to be predefined
- The "EOE" operator is used to terminate an event
-Quantification

Making Things Compositional Continued

General Representations

Conditions $\rightarrow \exists e$. $(\operatorname{Predicate}(e) \wedge \operatorname{Subject}(e, G) \ldots \ldots$.$) or$ Conditions $\wedge \exists e .(\operatorname{Predicate}(e) \wedge \operatorname{Subject}(e, G)$.

■ Event variable " e " is always located deepest

- However, if processing subject or object first, other quantifiers would fall inside the scope of " e ", such as in:

$$
\llbracket s t a b \rrbracket=\operatorname{\lambda ose.}(\operatorname{stab}(e) \wedge \operatorname{Subj}(e, s) \wedge \operatorname{Obj}(e, o))
$$

Quantification

Making Things Compositional Continued

■ Proposal: The $\lambda \mu$-Calculus

- Steps of semantic processing:

1 Assign subject/object (also other thematic roles, if there are) as μ-terms, the representations for verbs keep unchanged
2 Form the semantic representation with the μ-term frozen
3 Apply the representation to "EOE" operator
4 Retrieve the μ-terms in different orders to obtain the final representation

L Dynamic Semantics

Bring Dynamics to MG

Basic Types

Based on Church's simple type theory, Montague Semantics provides two basic atomic types:

- ι (also known as e), the type of individuals (entities)
- o (also known as t), the type of propositions (truth values)

Besides, another atomic type is introduced: γ, which stands for the type of the left context

- Events in More Situations

LDynamic Semantics

Discourse Example

(11) John smiles. He is happy.

L Dynamic Semantics

Discourse Example Continued

- Events in More Situations

- Dynamic Semantics

Discourse Example Continued

Points to Notice

- Type for "::" is $\iota \rightarrow \gamma \rightarrow \gamma$
- Type for "sel $l_{h e}$ " is $\gamma \rightarrow \iota$
- The sense of "dynamic" is realized through the list structure, which can update the variables for future processing

LEvents in More Situations

— Dynamic Semantics

Discourse Example with Event

L Dynamic Semantics

Discourse Example with Event Continued

LEvents in More Situations

- Dynamic Semantics

Discourse Example with Event Continued

- To avoid misunderstanding, we assume the following new set denotations:

■ Left context "l", of type γ
■ Right context " r ", of type $\gamma \rightarrow t$
■ Event "e", of type v

- The current sentence S_{1} ' and S_{2} ' are of type:

$$
\gamma \rightarrow(\gamma \rightarrow t) \rightarrow v \rightarrow t
$$

- We propose an "EOE ${ }_{\text {dynamic }}$ " operator to specify the existence of events:

$$
\lambda P / r \exists e .(P / r e)
$$

- After applying S_{1} ' and S_{2} ' to "EOE" operator, they are of type:

$$
\gamma \rightarrow(\gamma \rightarrow t) \rightarrow t
$$

LEvents in More Situations

$\square_{\text {Dynamic Semantics }}$

Discourse Example with Event Continued

S

$\lambda I r \exists e_{1} e_{2} \cdot\left(\operatorname{Run}\left(e_{1}\right) \wedge \operatorname{Subj}\left(e_{1},\{j\}\right) \wedge I s_{-}\right.$happy $\left.\left(e_{2}\right) \wedge \operatorname{Subj}\left(e_{2}, \operatorname{sel}_{h e}(\{j\}:: I)\right) \wedge r(\{j\}:: I)\right)$

|
Composition
$\llbracket S_{1} \cdot S_{2} \rrbracket=\lambda e \phi \cdot \llbracket S_{1} \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S_{2} \rrbracket e^{\prime} \phi\right)$

$\lambda / r \exists e .(R u n(e) \wedge \operatorname{Subj}(e,\{j\}) \wedge r(\{j\}:: I)) \quad \lambda / r \exists e .\left(I s _h a p p y(e) \wedge \operatorname{Subj}\left(e, \operatorname{sel}_{h e} I\right) \wedge r l\right)$

$$
\lambda e \phi .(r u n(j) \wedge \phi(j:: e)) \quad \lambda e \phi .\left(\text { is_happy }\left(\text { sel }_{h e} e\right) \wedge \phi e\right)
$$

Summary

■ Motivations and evidences for the existence of explicit event argument in semantic analysis

- Not only for adverbial modifiers, event structure can also be applied for coordination, quantification and dynamic semantics
- A general structure is proposed:

$$
\begin{gathered}
\text { Conditions } \rightarrow \exists e .(\text { Predicate }(e) \wedge \text { Subject }(e, G)) \\
\text { Conditions } \wedge \exists e .(\operatorname{Predicate~}(e) \wedge \text { Subject }(e, G) . \ldots . .)
\end{gathered}
$$

■ Conditions could be specified by a set of functions " $F_{\text {and }}$ ", " $F_{\text {uni" }}$, " $F_{\text {ex }}$ " and etc.

■ An intermediate level between semantics and pragmatics

Future Work

- Other coordination situations (e.g., coordination over predicate, modifiers) need deeper investigation
- The details for those condition functions needs to be further determined, so that they could be implemented with pure λ-calculus
- More complicated cases (involving both subject groups and object groups, subject quantifiers and object quantifiers) need to be considered
- More choices for event in dynamic semantics (e.g., sentence composition, the "EOE dynamic " function) could be compared
- More complicated accessibility problem in dynamic semantics should be studied
- The rhetorical relation (λ-DRT) should be attempted to add in the dynamic event structure

References

圊 Donald Davidson, The logical form of action sentences, The Logic of Decision and Action (Nicholas Rescher, ed.), University of Pittsburgh Press, Pittsburgh, 1967.

Philippe de Groote, Towards a montagovian account of dynamics, Proceedings of Semantics and Linguistic Theory XVI (2006).
(0) Michel Parigot, lambda mu-calculus: An algorithmic interpretation of classical natural deduction, Lecture Notes in Computer Science 624 (1992), 190-201.

Terence Parsons, Events in the semantics of english: A study in subatomic semantics, MIT Press, Cambridge, MA, 1991.

围 Yoad Winter, A unified semantic treatment of singular np coordination, Linguistics and Philosophy 19 (1996), 337-391.

