Modeling Event Implications for Compositional Semantics

Sai Qian Maxime Amblard

Calligramme, LORIA & INRIA Nancy Grand-Est CAuLD Workshop: Logical Methods for Discourse

December 13, 2010

1/35

Outline

1 Motivation for Events

- **2** Events in More Situations
 - Coordination
 - Quantification
 - Dynamic Semantics

3 Conclusion & Future Work

-Motivation for Events

Ahead of Events...

Adjectives as a very first clue:

- (1) a. John is tall, strong, handsome...
 - b. *...(Handsome(Strong(Tall(J))))
 - c. $Tall(J) \land Strong(J) \land Handsome(J) \land ...$
 - A bunch of adjectives (probably *infinite*) being expressed as coordination (conjunction) of predicates
 - Conventional semantic representation

$$\llbracket tall \rrbracket = \lambda P \lambda x. (P(x) \land Tall(x))$$

 The above representation is for intersective adjectival modification - Motivation for Events

Analogy to Adjectives - Adverbs

- (2) a. Brutus stabbed Caesar.
 - b. Brutus stabbed Caesar in the back.
 - c. Brutus stabbed Caesar with a knife.
 - d. Brutus stabbed Caesar in the back with a knife.

Permutation

Brutus stabbed Caesar in the back with a knife. Brutus stabbed Caesar with a knife in the back.

Drop

-Motivation for Events

Parallelism Between Adjectives & Adverbs

- Similarities between adjectival and adverbial quantification wrt some certain properties
 - Adjectival quantification takes a property (common noun), returns a new property: $(e \rightarrow t) \rightarrow e \rightarrow t$
 - Adverbial quantification: ???
- An implicit Event argument inside sentences
- Similar to the treatment for adjectives,

 $\llbracket in_the_back \rrbracket = \lambda Q \lambda e.(Q(e) \land in_the_back(e))$

-Motivation for Events

Adverbial Quantification with Events

(3) a. $\exists e.Stab(e, B, C)$

- b. $\exists e.(Stab(e, B, C) \land In(e, back))$
- c. $\exists e.(Stab(e, B, C) \land With(e, knife))$
- d. $\exists e.(Stab(e, B, C) \land In(e, back) \land With(e, knife))$

Various versions of event semantic

- Davidsonian Theory
- Neo-Davidsonian Theory

Example

$\exists e.(Stab(e) \land Subj(e, B) \land Obj(e, C))$

└─ Motivation for Events

Other Evidences

- Preceptual idioms a perceptual verb followed by a clause missing tense
 - (4) a. Sam heard Mary shoot Bill.
- Mary saw Brutus stab Caesar.
- Mary saw that Brutus stabs Caesar.

Type Analysis

Different types for the perceptual verb "see"¹:

- **1** sb. **sees** sb./sth.: $e \rightarrow e \rightarrow t$
- **2** sb. **sees** some event: $e \rightarrow v \rightarrow t$
- **3** sb. **sees** some fact: $e \rightarrow t \rightarrow t$

 └─ Motivation for Events

Other Evidences Continued

Corresponding Interpretations

- $\exists e(See(e) \land Subj(e, M) \land \exists e'(Stab(e) \land Subj(e', B) \land Obj(e', C) \land Obj(e, e')))$
- $\exists e(See(e) \land Subj(e, M) \land Obj(e, \exists e'(Stab(e) \land Subj(e', B) \land Obj(e', C)))$

Explicit reference to events

- (5) a. After the singing of La Marseillaise they saluted the flag.
 - b. John arrived late. This/It annoyed Mary.

└─ Coordination

Intuitional Clues

- (6)
- a. John smiles. \implies Smile(J)
- b. John and Bill smile. \implies Smile(J&B) or Simle(J) \land Smile(B)²
- c. John, Bill and Mike smile. \implies Smile(J&B&M) or Simle(J) \land Smile(B) \land Smile(M) or Smile(J) \land Smile(B&M) or
- Intersective Reading

.

Collective Reading

²The "&" symbol is a informal denotation for the combination of two entities. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle$

Modeling Event Implications for Compositional Semantics

Events in More Situations

- Coordination

Event in Coordination - "and"

- (7) a. John smiles. \implies $\exists e.(Smile(e) \land Subj(e, \{J\}))$
 - b. John and Bill smile. \implies $\exists e.(Smile(e) \land Subj(e, \{J, B\})) \text{ or}$ $\exists e_1 \exists e_2.(Smile(e_1) \land Subj(e_1, \{J\}) \land Smile(e_2) \land$ $Subj(e_2, \{B\}))$
 - Assumption: all events are conducted by a group of entities
 - The subject position is occupied by a set, e.g., $\{J, B\}$, $\{J\}$
 - Type transforming: "e" to " $e \rightarrow t$ "

- Coordination

Naive Conclusion

- An intuitional representation (1st version): $\exists e_1 \exists e_2 ... \exists e_n. (Simle(e_1) \land Subj(e_1, G_1) \land$ $Smile(e_2) \land Subj(e_2, G_2) \land ... \land Simle(e_n) \land Subj(e_n, G_n))$
- A more general representation (2nd version): Condition_On_Subject → ∃e.(Smile(e) ∧ Subj(e, G))
- Problem: to specify and restrict the condition for subject

Modeling Event Implications for Compositional Semantics

Events in More Situations

- Coordination

A More General Representation

Observation

Two elements in the set:

Three elements in the set:

Conclusion: different combinations of elements in the whole set result in different structures of events

Modeling Event Implications for Compositional Semantics

Events in More Situations

└─ Coordination

A More General Representation

Observation

1 Two elements in the set:

2 Three elements in the set:

 Conclusion: different combinations of elements in the whole set result in different structures of events

- Coordination

A More General Representation Continued

Definition ("and" Function - F_{and} /Partition Function)

Let F_{and} be a partition function, which takes any set with finite number of elements (e.g., $A = \{a_1, a_2, ..., a_k\}$) as input, and returns a set of sets (e.g., $G_{and}^2 = \{G_1, G_2, ..., G_n\}$) such that:

- 1 For any G_x , G_y (x, y from 1 to n), if $a_i \in G_x$ and $a_j \in G_y$ (i, j from 1 to k), then $a_i \neq a_j$
- **2** For all a_i (*i* from 1 to *k*), $a_i \in G_x$ (*x* from 1 to *n*)

• A modified general representation (3rd version):

 $\forall G.(G \in G^2_{and} \rightarrow \exists e.(Smile(e) \land Subj(e,G)))$

Modeling Event Implications for Compositional Semantics

Events in More Situations

- Coordination

Event in Coordination - "or"

- (8) a. John or Bill smiles. \implies $\exists e_1.(Smile(e_1) \land Subj(e_1, \{J\})) \lor \exists e_1.(Smile(e_2) \land$ $Subj(e_2, \{B\}))$
 - b. John or Bill or Mike or ... smiles. \implies $\exists e_1.(Smile(e_1) \land Subj(e_1, \{J\})) \lor \exists e_2.(Smile(e_2) \land$ $Subj(e_2, \{B\})) \lor ... \lor \exists e_n.(Smile(e_n) \land Subj(e_n, \{N\}))$
 - We assume every element in the set conjoined by "or" will result in an independent event
 - The representation of the sentence is the disjunction of all events

└─ Quantification

Intuitional Clues

(9) a. Every child smiles. \Longrightarrow $\exists e.(Smile(e) \land Subj(e, \{C_1 \& C_2 \& ... \& C_n\})) \text{ or}$ $\exists e_1 \exists e_2 ... \exists e_3.(Smile(e_1) \land Subj(e_1, \{C_1\}) \land Smile(e_2) \land$ $Subj(e_2, \{C_2\}) \land ... Smile(e_n) \land Subj(e_n, \{C_n\})) \text{ or}$

b. A child smiles.
$$\implies$$

 $\exists e.(Smile(e) \land Subj(e, \{C_1/C_2/.../C_n\}))$

Comparison between:

.

- Universal quantifier "every" and coordination "and"
- Existential quantifier "a" and coordination "or"

Quantification

Event in Universal Quantifier

- Events are still conducted by a group of entities
- Unlike coordination "and", different groups could contain overlapping elements

Example (everyone smiles)

- 1 2 elements A and B
 - Smile(A), Smile(B)
 - Smile(A&B), Smile(A)
- 2 3 elements A, B and C
 - Smile(A), Smile(B), Smile(C)
 - Smile(A&B), Smile(B&C), Smile(C)
 - *Smile(A), Smile(A&B)

.....

Quantification

Event in Universal Quantifier Continued

A general representation:

 $Condition_On_Subject \rightarrow \exists e.(Smile(e) \land Subj(e, G))$

Definition (Universal Function - F_{uni})

Let F_{uni} be function, which takes any set with finite number of elements (e.g., $A = \{a_1, a_2, ..., a_k\}$) as input, and returns a set of sets (e.g., $G_{uni}^2 = \{G_1, G_2, ..., G_n\}$) such that:

1 For all a_i (*i* from 1 to *k*), $a_i \in G_x$ (*x* from 1 to *n*)

A modified general representation:

$$\forall G.(G \in G^2_{uni} \rightarrow \exists e.(Smile(e) \land Subj(e,G)))$$

Quantification

Event in Existential Quantifier

- The subject group only contains one element
- Every element is possible to be applied

Example (a man smiles)

- **1** 2 elements A and B
 - Smile(A)
 - Smile(B)
 - Smile(A), Smile(B)
 - *Smile(A&B)
- 2 3 elements A, B and C
 - Smile(A), Smile(B), Smile(C)
 - *Smile(A&B), Smile(B&C), Smile(C&A)

.....

Quantification

Event in Existential Quantifier Continued

A general representation:

 $Condition_On_Subject \land \exists e.(Smile(e) \land Subj(e, G))$

Definition (Existential Function - F_{ex})

Let F_{ex} be function, which takes any set with finite number of elements (e.g., $A = \{a_1, a_2, ..., a_k\}$) as input, and returns a set of sets (e.g., $G_{ex}^2 = \{G_1, G_2, ..., G_n\}$) such that:

- **1** There exists a_i (*i* from 1 to *k*), $a_i \in G_x$ (*x* from 1 to *n*)
- **2** If $a_i \in G_x$, for any other a_j , if $a_j \in G_x$ then $a_i = a_j$

A modified general representation:

 $\exists G.(G \in G_{ex}^2 \land \exists e.(Smile(e) \land Subj(e,G)))$

19/35

Quantification

Scope Ambiguity

(10) Every man loves a woman. \Longrightarrow

- a. $\forall x.(Man(x) \rightarrow \exists y.(Woman(y) \land Love(x, y)))$
- b. $\exists y.(Woman(y) \land \forall x.(Man(x) \rightarrow Love(x, y)))$

c.
$$\forall x.(x \in G_{uni}^2 \to \exists y.(y \in G_{ex}^2) \land \exists e.(Love(e) \land Subj(e, x) \land Obj(e, y)))$$

d.
$$\exists y.(y \in G_{ex}^2 \land \forall x.(x \in G_{uni}^2) \rightarrow \exists e.(Love(e) \land Subj(e, x) \land Obj(e, y)))$$

Relations Among Representations

$$b \subset a, d \subset c$$

 $a \approx c, b \approx d$

└─ Quantification

Comparison with Traditional MG

- In traditional MG, quantifiers are represented semantically as:
 - $\llbracket every \rrbracket = \lambda P \lambda Q \forall x. (P(x) \rightarrow Q(x))$ • $\llbracket a \rrbracket = \lambda P \lambda Q \exists x. (P(x) \land Q(x))$
- With a similar structure, we proposed:
 - $\llbracket every \rrbracket = \lambda P \forall G. (G \in G^2_{uni} \rightarrow P(G))$
 - $\blacksquare \llbracket a \rrbracket = \lambda P \exists G. (G \in G_{ex}^2 \land P(G))$
- No essential difference, however:
 - We focus on group of entities, not single entities
 - We distinguish events by different combination of subjects and objects (e.g., "every man loves a woman", but different man might have different ways to love a woman.)

Quantification

Making Things Compositional

- Since we already have the general semantic representations, the next step is to obtain them compositionally
- Possible proposition:

Example (Semantic Representations)

 $[[stab]] = \lambda ose.(stab(e) \land Subj(e, s) \land Obj(e, o))$ $[[with_a_knife]] = \lambda Pe.(P(e) \land with_a_knife(e))$ $[[EOE]] = \lambda P \exists e.P(e)$

- Infinite number of adverbial modifier could be added
- Thematic roles for verbs need to be predefined
- The "EOE" operator is used to terminate an event

Quantification

Making Things Compositional Continued

General Representations

Conditions $\rightarrow \exists e.(Predicate(e) \land Subject(e, G).....)$ or Conditions $\land \exists e.(Predicate(e) \land Subject(e, G).....)$

- Event variable "e" is always located deepest
- However, if processing subject or object first, other quantifiers would fall inside the scope of "e", such as in:

 $\llbracket stab \rrbracket = \lambda ose.(stab(e) \land Subj(e, s) \land Obj(e, o))$

Quantification

Making Things Compositional Continued

Proposal: The $\lambda\mu$ -Calculus

Steps of semantic processing:

- Assign subject/object (also other thematic roles, if there are) as μ-terms, the representations for verbs keep unchanged
- **2** Form the semantic representation with the μ -term frozen
- 3 Apply the representation to "EOE" operator
- 4 Retrieve the μ-terms in different orders to obtain the final representation

Dynamic Semantics

Bring Dynamics to MG

Basic Types

Based on Church's simple type theory, Montague Semantics provides two basic atomic types:

- ι (also known as e), the type of individuals (entities)
- *o* (also known as *t*), the type of propositions (truth values)

Besides, another atomic type is introduced: γ , which stands for the type of the left context

Modeling Event Implications for Compositional Semantics

Events in More Situations

Dynamic Semantics

Discourse Example

Dynamic Semantics

Discourse Example Continued

Modeling Event Implications for Compositional Semantics

Events in More Situations

Dynamic Semantics

Discourse Example Continued

Points to Notice

- Type for "::" is $\iota \to \gamma \to \gamma$
- Type for "sel_{he}" is $\gamma \rightarrow \iota$
- The sense of "dynamic" is realized through the list structure, which can update the variables for future processing

Dynamic Semantics

Discourse Example with Event

Dynamic Semantics

Discourse Example with Event Continued

Dynamic Semantics

Discourse Example with Event Continued

- To avoid misunderstanding, we assume the following new set denotations:
 - \blacksquare Left context "/", of type γ
 - **Right context** "r", of type $\gamma \rightarrow t$
 - Event "e", of type v
- The current sentence S₁' and S₂' are of type:

$$\gamma
ightarrow (\gamma
ightarrow t)
ightarrow v
ightarrow t$$

We propose an "EOE_{dynamic}" operator to specify the existence of events:

$$\lambda Plr \exists e.(Plre)$$

After applying S₁' and S₂' to "EOE" operator, they are of type:

Dynamic Semantics

Discourse Example with Event Continued

Conclusion & Future Work

Summary

- Motivations and evidences for the existence of explicit event argument in semantic analysis
- Not only for adverbial modifiers, event structure can also be applied for coordination, quantification and dynamic semantics
 - A general structure is proposed:

 $Conditions \rightarrow \exists e.(Predicate(e) \land Subject(e, G).....)$ $Conditions \land \exists e.(Predicate(e) \land Subject(e, G).....)$

• Conditions could be specified by a set of functions " F_{and} ", " F_{uni} ", " F_{ex} " and etc.

An intermediate level between semantics and pragmatics

Conclusion & Future Work

Future Work

- Other coordination situations (e.g., coordination over predicate, modifiers) need deeper investigation
- The details for those condition functions needs to be further determined, so that they could be implemented with pure λ-calculus
- More complicated cases (involving both subject groups and object groups, subject quantifiers and object quantifiers) need to be considered
- More choices for event in dynamic semantics (e.g., sentence composition, the "EOE_{dynamic}" function) could be compared
- More complicated accessibility problem in dynamic semantics should be studied
- The rhetorical relation (λ-DRT) should be attempted to add in the dynamic event structure

.....

Conclusion & Future Work

References

- Donald Davidson, The logical form of action sentences, The Logic of Decision and Action (Nicholas Rescher, ed.), University of Pittsburgh Press, Pittsburgh, 1967.
- Philippe de Groote, *Towards a montagovian account of dynamics*, Proceedings of Semantics and Linguistic Theory XVI (2006).
- Michel Parigot, *lambda mu-calculus: An algorithmic interpretation of classical natural deduction*, Lecture Notes in Computer Science 624 (1992), 190–201.
- Terence Parsons, *Events in the semantics of english: A study in subatomic semantics*, MIT Press, Cambridge, MA, 1991.
- Yoad Winter, *A unified semantic treatment of singular np coordination*, Linguistics and Philosophy **19** (1996), 337–391.

・ロン ・四 ・ ・ ヨ ・ ・ 日 ・