Introduction	Creation of Tranducer	Implementation	Example	Going further

Learning Categorial Grammars from Annotated Corpora CauLD 2010

Noémie-Fleur Sandillon-Rezer

Supervisors : Richard Moot Christian Retoré Géraud Sénizergues

CAuLD, Dec. 2010

Introduction	Creation of Tranducer	Implementation	Example	Going further

Introduction

- Categorial grammars
- Buszkowski and Penn learning algorithm
- Corpus presentation

Creation of Tranducer

- G-transducer
- Creation of transduction rules

Implementation

- Transduction rule
- Programs

Example

Going further

- Study of the complete corpus
- Probabilistic Automata

Introduction ●○○○○○○	Creation of Tranducer	Implementation	Example 00000	Going further
Categorial gr	ammars			

- Give types to words.
- Types help to determine if sentences are correct.

Jean aime Marie $np (np \ s)/np$ np

Introduction o o o o o o o o o o o o o o o o o o	Creation of Tranducer	Implementation	Example 00000	Going further
Lambek Calc	ulus			

The mathematics of sentence structure.

The American Mathematical Monthly, 1958

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further	
Buszkowski and Penn learning algorithm					

- Learn a rigid grammar.
- Binary trees (internal nodes must be labeled \setminus or /).
- Type of each node.
- If some words have more than one type, unification phase.

W. Buszkowski and G. Penn

Categorial grammars determined from linguistic data by unification *Studia Logica*, 1990

Type of the leaves are deduced from the internal nodes.

Jean : x_1, x_4 Marie : x_2, x_3 aime : $(x_1 \setminus s)/x_2$ connaît : $(x_3 \setminus s)/x_4$

Description of Description of the state of t					
Introduction	Creation of Tranducer	Implementation	Example 00000	Going further	

Buszkowski and Penn learning algorithm : the perfect case

Unification

1
$$x_1 = x_4$$

2
$$x_2 = x_3$$

3
$$x_1 = x_2$$

ResultJean: x_1 Marie: x_1 aime: $(x_1 \setminus s)/x_1$ connaît: $(x_1 \setminus s)/x_1$

Type of the leaves are deduced from the internal nodes.

- Problem : the two types for "excellent" cannot be unified.
- Possible solution : *k*-valued grammars. (Problems : unclear how to decide for a global value of k, complexity of learning *k*-valued grammars).

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further
Cornus				

Sentence from the corpus of Paris VII.

A. Abeillé and L. Clément

Building a treebank for french

Treebanks, Kluwer, Dordrecht, 2003

N-F. Sandillon-Rezer (LaBRI, CNRS, INRIA)

Introduction ○○○○○○●	Creation of Tranducer	Implementation	Example 00000	Going further
Corpus				

Limitations

Planar trees \Rightarrow cannot apply usual learning algorithms

Solution

Tree transducer \Rightarrow binarise trees. Assign "[*E*]" or "[/*E*]" and categories to the nodes depending on the labels given by the annotation.

Selection of a reduced corpus

About 4,5% of the corpus : 545 simple verbal sentences. Extension to the totality of the corpus in a second step.

Introduction 00000000	Creation of Tranducer	Implementation	Example 00000	Going further
What is a	tree transducer ?			
Global pr	inciple			
Ask for a tree in input and write a new tree on the output.				

Example of bottom-up tree transducer from Tata.

Hubert Comon, Max Dauchet, Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi.

Tree automata techniques and applications, 1997.

N-F. Sandillon-Rezer (LaBRI, CNRS, INRIA)

Learning Categorial Grammars

Introduction 0000000	Creation of Tranducer o●oooooo	Implementation	Example 00000	Going further
Small Example				

The same rule will be applied for each NP, if the first daughter is a DET, regardless the number or the syntactic category of other daughters.

Introduction 00000000	Creation of Tranducer	Implementation	Example 00000	Going further
Why a G-tran	sducer ?			

- G stands for Generalized,
- Way to express our rules easily,
- Equivalent to top-down transducers.

Apply the same set of rules for the first and the second node SENT. This rule treats the final adverb.

The same rule is applied if X = ADV or PP-MOD or AdP-MOD, etc.

When more of one rule can be applied, the order of application is always the same.

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further
Specificat	ions			

:	by the way we defined it, there is no $arepsilon$ –rule in a
:	G-transducer. each node which occurs in the initial tree occurs in
	the result too.
:	there is only one possible result tree.
:	variables of initial tree occur only one time in the
	transformation.
:	order and multiplicity of leaves are kept.
	: : : : : : : : : : : : : : : : : : : :

Creation of	of transduction rule	29		
00000000	0000000	000000	00000	000000
Introduction	Creation of Tranducer	Implementation	Example	Going further

- In accordance with usual linguistic rules :
 - NP has always *np* type.
 - Adverbs and other modifier must not change the type of their sister node.
 - Adjectives are always linked with the nearest name.
- Systematic study of each sentence of reduced corpus.

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further		

Creation of transduction language

```
(rule [options]
  (root pattern)
  (replacement))
```

- Keyword "rule"
- : Marks the begining of a rule.
- Options
- : Allows to control the rule.
 - Root : Represents the node we want to process.
 - Pattern : Daughters of root. When the keyword *tree* is used it represents an arbitrary sequence of nodes.
- **Replacement** : Tree which replace the root and pattern.

Introduction	Creation of Tranducer	Implementation oeoooo	Example 00000	Going further
Transduction	Algorithm			

- Search for the matching rule.
- When we find it, the tree is transformed.
- Apply the same process to each daughter we need to transform.
- Forward the type if the node has only one daughter.

00000000			00000	000000		
Transducer						

- Transduce a set of tree.
- Needs a file containing the rules and a file containing trees.

Result

A set of binarised trees where internal nodes and leaves have types.

Introduction 0000000	Crea 000	ation of Tranducer	Implementation	Example 00000	Going further
Transducer	: 0	ptions			
log	:	Represents the	sub-trees that w	e hadn't treat	ed yet.
ruleUsage	:	Lists the used r	ules and the time	e they have	
		been applied.			
out	:	Result.			
		In addition to su	icceeded senten	ces, it contair	1S :
		Number of se	entences proces	sed.	
		Number of se	entences succee	eded.	
		Number of fa	ilures.		
		Number of ru	les applied.		
		Number of ru	les not found.		
rule	:	Specifies the ru	les file.		

verbose : Add more information on failures.

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further

Lexicalizer **et** Tregex_converter

Lexicalizer

Create a lexicon, from a result file given in input.

Tregex_converter

Convert the result file in a Standford Tregex format.

Introduction	Creation of Tranducer	Implementation	Example •••••	Going further
Example				

Simple sentence of the reduced corpus.

Introduction	Creation of Tranducer	Implementation	Example o ● o o o	Going further
Example				

Above all, we apply the punctuation rule.

Binarize the sub-tree of SENT.

Binarize the remaining sub-tree (NP-SUJ).

Computation of types of last binary trees.

			00000	000000
Introduction	Creation of Tranducer	Implementation	Example	Going further

Positive Ones

- 99% of the sentences of the reduced corpus have been treated.
- 2052 words in the lexicon (2056 words in the reduced corpus).
- 29% of the whole corpus is treated yet (about 3700 sentences).
- Lexicon of 20614 words extracted from these 29%.

Words untreated in the reduced corpus.

- Annotation errors.
- Complex cases.

New tools				
Introduction	Creation of Tranducer	Implementation	Example	Going further

- Compact description of a transducer :
 - parametrized
 - recursive
 - including a priority system
- Creation of a description langage of transduction and its interpreter.

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further ●○○○○○
Extention of existing rules				

- Generalization of some rules (NP).
- Management of coordination-sentences.

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further o●oooo
Study of special cases				

Non-verbal sentences

Figure: We can apply existing rules for the sub-tree, but we must create a rule for the SENT node.

Correction of corpus Ending punctuation.

N-F. Sandillon-Rezer (LaBRI, CNRS, INRIA)

Introduction	Creation of Tranducer	Implementation 000000	Example 00000	Going further ○○●○○○	
Analysis of sentences					

The resulting lexicon can be used for parsing as follows :

- If a word occurs more than *k* times in the lexicon, use one of its type.
- Else, use one of the type of its category (Part-of-Speech, eg. V, ADV, DET, NC).

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further	
Probabilistic Automata					

- Generate a tree automaton using the Marion/Besombes algorithm.
- Add weights (probabilities) using frequencies of transitions in the corpus.
- Generate the most probable tree for a given string (using intersection of tree automata and the trivial finite state automaton generating only this string).
- J. Besombes and J.Y. Marion

Learning tree languages from positive examples and membership queries

Algorithmic Learning Theory, 2004

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further
Perspective	es			

- Refine types of words.
- Extend the transducer to the whole corpus.
- Propose a new learning algorithm.

Introduction	Creation of Tranducer	Implementation	Example	Going further
				000000

Thanks for your attention !

Introduction	Creation of Tranducer	Implementation	Example 00000	Going further
Extracts of le	exicon			
	$\begin{array}{c} {\bf a} \ {\bf 61} : \\ ((np \backslash s)/(np \backslash s))/(np \backslash s) : \\ ((np \backslash s)/np)/(np \backslash s) \ {\bf 10} \\ ((np \backslash s)/pp)/(np \backslash s) \ {\bf 4} \\ ((s/(np \backslash s)/pp))/(np \backslash s) \ {\bf 10} \\ (np \backslash (np \backslash s)/pp)/(np \backslash s) \\ (np \backslash (np \backslash s)/pp)/(np \backslash s) \\ (np \backslash s)/np \ {\bf 17} \\ (np \backslash s)/np \ {\bf 4} \end{array}$	et 32: $([n_i n_i) \setminus ((n_i n_i)) / ((n_i n_i n_i)) / (n_i n_i) / (n_i $		

était 11 : $((np \setminus s)/np)/(np \setminus s)$ $((np \setminus s)/np)/(np \setminus s)$	1	$\begin{array}{c} (((np \setminus s)/np) \setminus ((np \setminus s)/np))/n \\ (((np \setminus s)/pp) \setminus ((np \setminus s)/pp))/n \\ ((np \setminus s)/(np \setminus s))/n & 1 \end{array}$	1 1
$\frac{((np \backslash s)/pp)/(np \backslash s)}{((np \backslash s) \backslash s)/np \ 1}$ $\frac{(np \backslash s)/(n \backslash n) \ 2}{(np \backslash s)/(np \backslash s) \ 1}$	1	$(np \setminus s)/((np \setminus s)/np) = 4$ $(pp \setminus (np \setminus s))/((pp \setminus (np \setminus s))/np)$ (s/s)/n = 2 $(s \setminus s)/((s \setminus s)/np) = 1$	1
$(np \ s)/np \ 3$ $np \ ((np \ s)/pp) \ 1$ $np \ s \ 1$		(s(s))/(b(s))/np) = 1 (s(s))/n = 6 np/n = 126 s/(s/np) = 1	

1

le 144 :

Figure: Extracts of lexicon