Themis: An On-Site Voting System with Systematic Cast-as-intended Verification and Partial Accountability

Mikaël Bougon1, Hervé Chabanne1, Véronique Cortier2, Alexandre Debant2, Emmanuelle Dottax1, Jannik Dreier2, Pierrick Gaudry2, Mathieu Turuani2

1 IDEMIA, France
2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

CCS Conference
Los Angeles, November 10th 2022
On-site e-voting

Main goal: **enhance the trust** compared to pure paper-based voting

Security targets:

- **Vote secrecy**: no-one can know who I voted for
- **Verifiability**: no-one can modify the result of the election
On-site e-voting

Main goal: enhance the trust compared to pure paper-based voting

Security targets:

- **Vote secrecy**: no-one can know who I voted for
- **Verifiability**: no-one can modify the result of the election
On-site e-voting

Main goal: enhance the trust compared to pure paper-based voting

Security targets:

- **Vote secrecy**: no-one can know who I voted for
- **Verifiability**: no-one can modify the result of the election

New requirements in IDEMIA's use context

- limited access to the technology (the Internet, printers, etc)
- require a high level of robustness
- must cope with strained contexts (risks of corruptions, false accusations, etc)
Limited access to technology

- use pre-printed paper ballots ➔ do not need printers
- use smart cards and voting machines ➔ given by the service provider
- use a hash-chain to ensure the integrity of the electronic ballot-box ➔ can be monitored offline a posteriori
Themis

Limited access to technology
- use pre-printed paper ballots ➔ do not need printers
- use smart cards and voting machines ➔ given by the service provider
- use a hash-chain to ensure the integrity of the electronic ballot-box ➔ can be monitored offline a posteriori

Require a high level of security and robustness
- verifiability (with cast-as-intended) and vote secrecy
- can always return to a pure paper-based voting system with the same guarantees
Themis

Limited access to technology
- use pre-printed paper ballots ➡ do not need printers
- use smart cards and voting machines ➡ given by the service provider
- use a hash-chain to ensure the integrity of the electronic ballot-box ➡ can be monitored offline a posteriori

Require a high level of security and robustness
- verifiability (with cast-as-intended) and vote secrecy
- can always return to a pure paper-based voting system with the same guarantees

Strained contexts
- implement a dispute resolution procedure to decide who is the culprit ➡ proven to never wrongly blame someone
- require the corruption of several authorities to defeat vote secrecy of verifiability ➡ proven in symbolic models
Overview of the system

Entry

Global election screen
Overview of the system

1. check id in the electoral register

Entry

Global election screen
Overview of the system

1. check id in the electoral register

2. take a smart card and 1 ballot per candidate

Global election screen
Overview of the system

1. check id in the electoral register
2. take a smart card and 1 ballot per candidate
3. make their choice in the voting booth
Overview of the system

1. Check ID in the electoral register
2. Take a smart card and 1 ballot per candidate
3. Make their choice in the voting booth
Overview of the system

1. check id in the electoral register
2. take a smart card and 1 ballot per candidate
3. make their choice in the voting booth
4. confirm the ballot with the authorities
Overview of the system

1. check id in the electoral register
2. take a smart card and 1 ballot per candidate
3. make their choice in the voting booth
4. confirm the ballot with the authorities

Entry

Exit
Well-crafted ballots for cast-as-intended

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter
Well-crafted ballots for cast-as-intended

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer
e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: \(X = A + B \mod n \) (for a predefined \(n \))
e.g. \(1 = 4 + 7 \mod 10 \)
Well-crafted ballots for cast-as-intended

Cast-as-intended:
a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer
e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: \(X = A + B \mod n \) (for a predefined \(n \))
e.g. \(1 = 4 + 7 \mod 10 \)

Electronic ballot format:

- each ballot contains 3 ciphertexts \(c_X, c_A, c_B \) and 1 ZKP \(\pi \) such that
\[
\pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n)
\]
e.g. \(c_X = \{1\}_{pkE}, \ c_A = \{4\}_{pkE}, \ c_B = \{7\}_{pkE} \)
Well-crafted ballots for cast-as-intended

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:
- each candidate is associated to a unique integer
 - e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: \(X = A + B \mod n \) (for a predefined \(n \))
 - e.g. \(1 = 4 + 7 \mod 10 \)

Electronic ballot format:
- each ballot contains 3 ciphertexts \(c_X, c_A, c_B \) and 1 ZKP \(\pi \) such that
 \[
 \pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n)
 \]
 - e.g. \(c_X = \{1\}_pke, c_A = \{4\}_pke, c_B = \{7\}_pke \)

The voter chooses to audit \(A \) or \(B \) and the smart card must reveal the random used to forge the corresponding encryption \(c_A \) or \(c_B \).
Well-crafted ballots for cast-as-intended

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:
- each candidate is associated to a unique integer
 - e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: \(X = A + B \mod n \) (for a predefined \(n \))
 - e.g. \(1 = 4 + 7 \mod 10 \)

Electronic ballot format:
- each ballot contains 3 ciphertexts \(c_X, c_A, c_B \) and 1 ZKP \(\pi \) such that
 \[\pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n) \]
 - e.g. \(c_X = \{1\}_{pkE}, c_A = \{4\}_{pkE}, c_B = \{7\}_{pkE} \)

Ballot manipulations are detected with probability \(\frac{1}{2} \)

The voter chooses to audit \(A \) or \(B \) and the smart card must reveal the random used to forge the corresponding encryption \(c_A \) or \(c_B \).
Accountability by-design

- Digital signatures by the printer
- Digital signatures by the smart card
- A hash chain of blocks signed by the server
- Voters and local authorities mutually control their actions

A dispute resolution procedure

- executed when a critical error is detected
- 9 steps:
 - 5 can be executed live
 - + 4 offline because breaks privacy
- can (almost) always deduce the culprit (sometimes a subset of possible culprits)
- protects against false accusations
A formally proven protocol

ProVerif

- An automatic prover for **symbolic analysis**
- Handle **trace-based properties** for e.g., verifiability or accountability
- Handle **equivalence-based** properties for e.g., vote secrecy
A formally proven protocol

ProVerif

- An automatic prover for symbolic analysis
- Handle trace-based properties for e.g., verifiability or accountability
- Handle equivalence-based properties for e.g., vote secrecy

2 main challenges

- Accountability: ProVerif does not support liveness properties
 - carefully define the queries
 - exhaustively identify each possible final state of the protocol by an event
A formally proven protocol

ProVerif

- An automatic prover for **symbolic analysis**
- Handle **trace-based properties** for e.g., verifiability or accountability
- Handle **equivalence-based** properties for e.g., vote secrecy

2 main challenges

- **Accountability:** ProVerif does not support liveness properties
 - carefully define the queries
 - exhaustively identify each possible final state of the protocol by an event

- **Audit mechanism:** ProVerif does not support arithmetics in \(\mathbb{Z}_n \)
 - reachability: over-approximate the “+” operator
 - equivalence: prove a relation preservation
Modeling arithmetics in \mathbb{Z}_n

Modelling:

- integers are modeled by abstract atomic values, x, y, a, b, c, \ldots
- whenever someone checks $x = ? a + b$, we execute the event $isSum(x, a, b)$
Modeling arithmetics

in \mathbb{Z}_n

Modelling:

- integers are modeled by abstract atomic values, x, y, a, b, c, \ldots

- whenever someone checks $x = a + b$, we execute the event $\text{isSum}(x, a, b)$

Reachability properties:

« For all $x, a \in \mathbb{Z}_n$, there exists a unique $b \in \mathbb{Z}_n$ such that $b = x + a$ »

Restrictions such that

\[
\text{isSum}(x, a, b) \land \text{isSum}(x, a, b') \Rightarrow b = b' \\
\text{isSum}(x, a, b) \land \text{isSum}(x, a', b) \Rightarrow a = a' \\
\ldots
\]
Modeling arithmetics
in \mathbb{Z}_n

Modelling:
- integers are modeled by abstract atomic values, x, y, a, b, c, \ldots
- whenever someone checks $x = ? a + b$, we execute the event $isSum(x, a, b)$

Reachability properties:

« For all $x, a \in \mathbb{Z}_n$, there exists a unique $b \in \mathbb{Z}_n$ such that $b = x + a$ »

Restrictions such that

$\begin{align*}
 isSum(x, a, b) & \land isSum(x, a, b') \Rightarrow b = b' \\
 isSum(x, a, b) & \land isSum(x, a', b) \Rightarrow a = a' \\
 \ldots
\end{align*}$

Equivalence properties: relation preservation

Lemma (intuition): given two processes P and Q, for all traces $tr_P \in Traces(P)$ and $tr_Q \in Traces(Q)$ such that $tr_P \approx tr_Q$ we have:

$\begin{align*}
isSum(x, a, b) \in tr_P & \iff isSum(x, a, b) \in tr_Q
\end{align*}$

(related to the notion of bi-process and diff-equivalence)
Conclusion

Themis is:

- a verifiable, private, and accountable voting protocol
- a formally proven protocol
- protocol that can be used in practice
 - preliminary experiments have been conducted to demonstrate its usability (still require large scale experiments)
Conclusion

Themis is:

- a verifiable, private, and accountable voting protocol
- a formally proven protocol
- protocol that can be used in practice
 - preliminary experiments have been conducted to demonstrate its usability (still require large scale experiments)

Thank you!