Themis: An On-Site Voting System with Systematic **Cast-as-intended Verification an Partial Accountability**

Mikaël Bougon¹, Hervé Chabanne¹, Véronique Cortier², Alexandre Debant², Emmanuelle Dottax¹, Jannik Dreier², Pierrick Gaudry², Mathieu Turuani²

² Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

CCS Conference Los Angeles, November 10th 2022

¹ IDEMIA, France

On-site e-voting

Main goal: enhance the trust compared to pure paper-based voting

Security targets:

- Vote secrecy: no-one can know who I voted for
- Verifiability: no-one can modify the result of the election

On-site e-voting

Main goal: enhance the trust compared to pure paper-based voting

Security targets:

- Vote secrecy: no-one can know who I voted for
- Verifiability: no-one can modify the result of the election

2

voting machine can be compromised

On-site e-voting

Main goal: enhance the trust compared to pure paper-based voting

Security targets:

- Vote secrecy: no-one can know who I voted for
- Verifiability: no-one can modify the result of the election

New requirements in IDEMIA's use context

- Imited access to the technology (the Internet, printers, etc)
- require a high level of robustness
- must cope with strained contexts (risks of corruptions, false accusations, etc)

voting machine can be compromised

Themis

- use a hash-chain to ensure the integrity of the electronic ballot-box
 - can be monitored offline a posteriori

Themis

- use pre-printed paper ballots → do not need printers
- use a hash-chain to ensure the integrity of the electronic ballot-box

can be monitored offline a posteriori

verifiability (with cast-as-intended) and vote secrecy

can always return to a pure paper-based voting system with the same guarantees

Themis

- use pre-printed paper ballots → do not need printers
- use a hash-chain to ensure the integrity of the electronic ballot-box

can be monitored offline a posteriori

- verifiability (with cast-as-intended) and vote secrecy
- can always return to a pure paper-based voting system with the same guarantees
- implement a dispute resolution procedure to decide who is the culprit
 proven to never wrongly blame someone
- require the corruption of several authorities to defeat vote secrecy of verifiability
 proven in symbolic models

Overview of the system

Global election screen

4

Overview of the system

Global election screen

4

Overview of the system

2. take a smart card and 1 ballot per candidate

Global election screen

Overview of the system

2. take a smart card and 1 ballot per candidate

Global election screen

3. make their choice in the voting booth

with the authorities

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: $X = A + B \mod n$ (for a predefined *n*) e.g. $1 = 4 + 7 \mod 10$

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: $X = A + B \mod n$ (for a predefined *n*) e.g. $1 = 4 + 7 \mod 10$

Electronic ballot format:

each ballot contains 3 ciphertexts c_X , c_A , c_B and 1 ZKP π such that $\pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n)$ e.g. $c_X = \{1\}_{pkE}, c_A = \{4\}_{pkE}, c_B = \{7\}_{pkE}$

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: $X = A + B \mod n$ (for a predefined *n*) e.g. $1 = 4 + 7 \mod 10$

Electronic ballot format:

each ballot contains 3 ciphertexts c_X , c_A , c_B and 1 ZKP π such that $\pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n)$ e.g. $c_X = \{1\}_{pkE}, c_A = \{4\}_{pkE}, c_B = \{7\}_{pkE}$

> The voter choses to audit A or B and the smart card must reveal the random used to forge the corresponding encryption c_A or c_B .

Cast-as-intended: a corrupted device cannot modify the intended choice of a voter

Paper ballot format:

- each candidate is associated to a unique integer e.g. Smith = 1
- each ballot for candidate X contains 2 verification codes A and B such that: $X = A + B \mod n$ (for a predefined *n*) e.g. $1 = 4 + 7 \mod 10$

Electronic ballot format:

each ballot contains 3 ciphertexts c_X , c_A , c_B and 1 ZKP π such that $\pi = ZKP(ptxt(c_X) = ptxt(c_A) + ptxt(c_B) \mod n)$ e.g. $c_X = \{1\}_{pkE}, c_A = \{4\}_{pkE}, c_B = \{7\}_{pkE}$

the corresponding encryption c_A or c_B .

Accountability by-design

mutually control their actions

A dispute resolution procedure

- executed when a critical error is detected
- 9 steps:
 - 5 can be executed live
 - + 4 offline because breaks privacy
- can (almost) always deduce the culprit (sometimes a subset of possible culprits)
- protects against false accusations

A formally proven protocol

ProVerif

- An automatic prover for symbolic analysis
- Handle trace-based properties for e.g., verifiability or accountability
- Handle equivalence-based properties for e.g., vote secrecy

A formally proven protocol

ProVerif

- An automatic prover for symbolic analysis
- Handle trace-based properties for e.g., verifiability or accountability
- Handle equivalence-based properties for e.g., vote secrecy

2 main challenges

- Accountability: ProVerif does not support liveness properties
- carefully define the queries
- exhaustively identify each possible final state of the protocol by an event

A formally proven protocol

ProVerif

- An automatic prover for symbolic analysis
- Handle trace-based properties for e.g., verifiability or accountability
- Handle equivalence-based properties for e.g., vote secrecy

2 main challenges

- Accountability: ProVerif does not support liveness properties
- carefully define the queries
- exhaustively identify each possible final state of the protocol by an event
- Audit mechanism: ProVerif does not support arithmetics in \mathbb{Z}_n
- reachability: over-approximate the "+" operator
- equivalence: prove a relation preservation

Modeling arithmetics in \mathbb{Z}_n

- Modelling:

• integers are modeled by abstract atomic values, x, y, a, b, c, \ldots

• whenever someone checks $x = a^2 + b$, we execute the event isSum(x, a, b)

Modeling arithmetics in \mathbb{Z}_n

- Modelling:

Reachability properties:

« For all $x, a \in \mathbb{Z}_n$, there exists a unique

 $b \in \mathbb{Z}_n$ such that $b = x + a \gg$

Restrictions such that

 $isSum(x, a, b) \land isSum(x, a, b') \Rightarrow b = b'$

 $isSum(x, a, b) \land isSum(x, a', b) \Rightarrow a = a'$

• • •

• integers are modeled by abstract atomic values, x, y, a, b, c, \ldots

• whenever someone checks $x = a^{?} a + b$, we execute the event isSum(x, a, b)

Modeling arithmetics in \mathbb{Z}_n

- Modelling:

Reachability properties:

« For all $x, a \in \mathbb{Z}_n$, there exists a unique

 $b \in \mathbb{Z}_n$ such that $b = x + a \gg$

Restrictions such that

 $isSum(x, a, b) \land isSum(x, a, b') \Rightarrow b = b'$

 $isSum(x, a, b) \land isSum(x, a', b) \Rightarrow a = a'$

• • •

• integers are modeled by abstract atomic values, x, y, a, b, c, \ldots

• whenever someone checks $x = a^{?} a + b$, we execute the event isSum(x, a, b)

Equivalence properties: relation preservation

Lemma (intuition): given two processes P and Q, for all traces $tr_P \in Traces(P)$ and $tr_O \in Traces(Q)$ such that $tr_P \approx tr_O$ we have:

 $isSum(x, a, b) \in tr_P \Leftrightarrow isSum(x, a, b) \in tr_O$

(related to the notion of bi-process and diff-equivalence)

Conclusion

Themis is:

a formally proven protocol

- protocol that can be used in practice

a verifiable, private, and accountable voting protocol

preliminary experiments have been conducted to demonstrate its usability (still require large scale experiments)

Conclusion

Themis is:

a formally proven protocol

- protocol that can be used in practice

Thank you!

a verifiable, private, and accountable voting protocol

preliminary experiments have been conducted to demonstrate its usability (still require large scale experiments)

