A privacy attack on the Swiss Post e-voting system

Véronique Cortier, Alexandre Debant, and Pierrick Gaudry

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Amsterdam, April 13th 2022

Today... and tomorrow...

1 July 2018

Revision of the Federal Chancellery Ordinance on Electronic voting (VEIeS)

- Art. 7a⁴ Publication of the source code

¹ The source code for the system software must be made public.

Examination criteria: The protocol must meet the security objective according to the trust assumptions in the abstract model in accordance with Section 4. In addition, a cryptographic and a symbolic proof must be provided. The proofs relating to cryptographic basic components may be provided according to generally accepted security assumptions (for example, the "random oracle model", "decisional Diffie-Hellman assumption", "Fiat-Shamir heuristic"). The protocol should be based if possible on existing and proven protocols.

Today... and tomorrow...

1 July 2018

Revision of the Federal Chancellery Ordinance on Electronic voting (VEIeS)

21 Dec. 2020

Federal Council launches redesign of trials

- Art. 7a⁴ Publication of the source code

¹ The source code for the system software must be made public.

05 July 2021

Federal government launches examination of new e-voting system

10 Dec. 2021

New legal basis for e-voting (to be finalized by mid-2022)

Sept. 2022

Federal elections including e-voting

5.1.1 Examination criteria: The protocol must meet the security objective according to the trust assumptions in the abstract model in accordance with Section 4. In addition, a cryptographic and a symbolic proof must be provided. The proofs relating to cryptographic basic components may be provided according to generally accepted security assumptions (for example, the "random oracle model", "decisional Diffie-Hellman assumption", "Fiat-Shamir heuristic"). The protocol should be based if possible on existing and proven protocols.

https://www.fedlex.admin.ch/eli/cc/2013/859/en

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2019 (ALEX?)
- Fixed vulnerabilities
- Improved the code and the specification

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2019 (ALEX?)
- Fixed vulnerabilities
- Improved the code and the specification

We have been contacted to update the symbolic proofs of the systems.

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2019 (ALEX?)
- Fixed vulnerabilities
- Improved the code and the specification

We have been contacted to update the symbolic proofs of the systems.

There is a vote secrecy attack: an attacker can learn the vote of everyone!

Print Office

4 Control Components (CCRs)

4 Control Components (CCRs)

Voting Server

Federal chancellerie requirements:

- 2.9.3.1 The following system participants are regarded as untrustworthy:
 - UT system
 - three of four control components per group, leaving open which three they are
 - a significant proportion of voters
- 2.9.3.2 The following system participants may be considered trustworthy:
 - set-up component
 - print component
 - user device
 - one of four control components per group, leaving open which one it is
 - one auditor in any group, leaving open which auditor it is; Number 2.7.2 takes precedence

Federal chancellerie requirements:

- 2.9.3.1 The following system participants are regarded as untrustworthy:
 - UT system
 - three of four control components per group, leaving open which three they are
 - a significant proportion of voters
- 2.9.3.2 The following system participants may be considered trustworthy:
 - set-up component
 - print component
 - user device
 - one of four control components per group, leaving open which one it is
 - one auditor in any group, leaving open which auditor it is; Number 2.7.2 takes precedence

- three of four control components per group, leaving open which
- a significant proportion of voters

The following system participants may be considered trustworthy:

- one of four control components per group, leaving open which one it
- one auditor in any group, leaving open which auditor it is; Number

Few details about the actual implementation

Few details about the actual implementation

Few details about the actual implementation

Few details about

the actual implementation

The attacker learns Alice's vote

In theory: the attacker can learn the vote of all the voters

In theory: the attacker can learn the vote of all the voters

In practice without being detected:

- he cannot add too many fake ballot-boxes
- can learn the vote of at most k voters
- ▶ but k might be relatively large because fake ballot-boxes are very small (one ballot)

it would introduce a detectable overhead in the computation time

In theory: the attacker can learn the vote of all the voters

In practice without being detected:

- he cannot add too many fake ballot-boxes
- can learn the vote of at most k voters
- ▶ but *k* might be relatively large because fake ballot-boxes are very small (one ballot)

it would introduce a detectable overhead in the computation time

In practice being detected:

- same things as presented on the left
- \blacktriangleright + he can learn the vote of at least n voters (where n is the number of counting circle)

the auditor does not check it's received enough proofs before revealing the last key

In theory: the attacker can learn the vote of all the voters

In practice without being detected:

- he cannot add too many fake ballot-boxes
- can learn the vote of at most k voters
- ▶ but *k* might be relatively large because fake ballot-boxes are very small (one ballot)

it would introduce a detectable overhead in the computation time

In practice being detected:

- same things as presented on the left
- \blacktriangleright + he can learn the vote of at least n voters (where n is the number of counting circle)

the auditor does not check it's received enough proofs before revealing the last key

According to Swiss Post and the Chancellerie: it is a critical flaw that must be fixed!

Many similar attack scenarios can be derived from ours.

How to fix the attack?

1. A weak counter-measure:

- lacktriangle set the number n_B of ballot-boxes as a public parameter of the election
- ensure that the CCMs check they decrypt at most n_B ballot-boxes
- ightharpoonup ensure that the judge/auditor has received exactly n_B proofs before revealing the last key

How to fix the attack?

1. A weak counter-measure:

- ightharpoonup set the number n_B of ballot-boxes as a public parameter of the election
- ensure that the CCMs check they decrypt at most n_R ballot-boxes
- ensure that the judge/auditor has received exactly n_R proofs before revealing the last key

2. A stronger counter-measure:

- implement 1.
- require that each CCMs recomputes the initial payloads (i.e. the content of the initial ballot-box)
- require that each CCMs verifies all the previous proofs of correct mixing/decryption
- → These two requirement are quite expensive...

Conclusion

This attack will be fixed in a future release of the specification/implementation

Today, the Swiss Post solution provides a very high level of security. with a high level of transparency, and many expert audits

Conclusion

This attack will be fixed in a future release of the specification/implementation

Lesson learned

It is important to model all the specificities of the system when we do formal proofs (symbolic or computational ones)

e.g. multi ballot-boxes or elections scenarios

Today, the Swiss Post solution provides a very high level of security. with a high level of transparency, and many expert audits

Conclusion

This attack will be fixed in a future release of the specification/implementation

Lesson learned

It is important to model all the specificities of the system when we do formal proofs (symbolic or computational ones)

e.g. multi ballot-boxes or elections scenarios

Today, the Swiss Post solution provides a very high level of security.

with a high level of transparency, and many expert audits

Future work

The Federal Chancellerie requirements will continue to evolve...

Let's keep on working to be sure that they remain coherent and that the Swiss Post solution (and others) satisfies them.

