Election Verifiability with ProVerif

Vincent Cheval’, Veronique Cortier?, Alexandre Debant?

Inna Paris, France
2Universite de Lorraine, Inria, CNRS, Nancy, France

CSF 2023
Dubrovnik, Croatia

FRANCE

2020
S

IIIIIII

....... Lor|0

Loborc’ronre lorrain de recherche

IOI H en informatique et ses applications
|||||||

Security properties

Vote secrecy

“No one should know who | voted for”

Verifiability

“No one can modify the outcome of the election”

Security properties

Verifiability

“No one can modify the outcome of the elec

E-voting protocol
- overview -

login i
) Setup phase
@ - pwd l “
login, pwd »
4 u
ballot 3 Voting phase
(ok,B)/(ko, -) o
<
g Verification phase
yes/no

E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

where:
> Vyy is the multiset of votes of honest voters who verify

» Vi is @ submultiset of the multiset of votes of honest voters who do not verify
» V} contains at most one vote per dishonest voter

E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

where:
> Vyy is the multiset of votes of honest voters who verify

> Vv is @ submultiset of the multiset of votes of honest voters who ¢
» V} contains at most one vote per dishonest voter

E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

where:
> Vyy is the multiset of votes of honest voters who verify

> Vv is @ submultiset of the multiset of votes of honest voters who ¢
» V} contains at most one vote per dishonest voter

Approaches based on sub-properties e.g, [Cortier et al - CSF’19], [Baloglu et al - CSF’21]

> Eligibility: each vote has been cast by a legitimate voter

> Individual verifiability
» Cast-as-intended: the voter’s ballot contains their intended vote
» Recorded-as-cast: the counted ballot corresponds to the cast one

> Universal verifiability: the result corresponds to the content of the ballot-box

> No clash attacks: two voters cannot agree on the same ballot

E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

where:
> Vyy is the multiset of votes of honest voters who verify

> Vv is @ submultiset of the multiset of votes of honest voters who ¢
» V} contains at most one vote per dishonest voter

> Eligibility: each vote has been cast by a legitimate voter

» Individual verifiability N o
» Cast-as-intended: the voter’s ballot contains their intended vot @o
> Recorded-as-cast: the counted ballot corresponds to the c~ 90‘7’ N

Q
» Universal verifiability: the result corresponds to the content ¢ & 00X

> No clash attacks: two voters cannot agree on the same ballo.

Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2

Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

ProVerif

What is ProVerif?

P,O:=0

> Is an automatic prover for symbolic analysis new n; P

> messages abstracted with terms let x=v in P else O;

> Dolev-Yao attacker model (intercept/inject/modify) . .

in(c, x); P
> can model an unbounded number of sessions out(c, u); P
| (P | Q)

> handles trace-based properties P
» handles equivalence-based properties event e(uy, ..., u,); P
> has already be used to analyse voting protocols, A trace tr is a finite sequence of in, out,

e.g., Helios, Belenios, Swiss Post, CHVote, etc or event(e(uy, ..., u,)).

Queries

Event satisfaction - A trace 1r = tr, .. . tr, executes event E(u,, ..., u,) attimez € {1,...,n},

noted (tr,7) = E(uy, ..., u,), if tr, = event(E(uy, ..., u,))

Queries

Event satisfaction - A trace 1r = tr, .. . tr, executes event E(u,, ..., u,) attimez € {1,...,n},
noted (fr,7) = E(uy, ..., u,), if tr, = event(E(uy, ..., u,))

Query formula - A trace fr = try . .. tr, satisfies a query of the form

p m ni * o ¢ o
/\Fk(vl, o vlk) == \//\Ei,j(u{’f, el ulf’f_)
l,J
k=1

i=1 j=1

if for all substitution o such that for all k, (tr, 7)) = Fi(vy, ..., v, Jo for some 7;, there exists ¢’ and i such

that for all j, there exists 7; ; such that (tr, Ti’j) = El-,j(uf’j e, u’;’j)a’ and F(vy, ..., vlk)a =F.(vy, ..., vlk)a’

Injective queries

Injective query - A trace fr = fr; ... Ir, satisfies an injective query of the form

P
iIlj — FO(VO’ ...,Vlo) /AN /\Fk(vla -°°9Vlk) =
k=1

m

H;
o 1,0 1,0 l,] l,]
\/ inj — E;o(u;", ..., ul,-o) A /\Ei,j(ulf, e ul,-j)
i=1 | =1 |

if for all substitution ¢ such that for all k, (tr, 7,) = F (vy, ..., vlk)a for some 7, there exists ¢’ and i such that

for all j, there exists 7; ; such that (tr, 7; j) = Ei,j(uli’j Ve ui’j)a’ and Fi (v, ..., vlk)a = F.(vy, ..., vlk)G’.

Moreover, there exists an injective function f : & (tr) — &(tr) such that if (¢r,) = Fy(vy, ..., le)(r then
(tr, fla)) + E;o(u?, ..., ulif)a'.

Fo(tr), Ey(tr) C {1,...,n} are the sets of indices matching respectively Fy(vy, - .., Vlo) and £, O(uf’o, s uli’o)
’ 1,0

Injective query - A trace fr = fr, . .. tr, satisfies an injective query of the form

If

fo

e

Injective queries

r 2

Example: p = inj — F)(x) = inj — Ey(x)
V inj — E(x)

at

Injective query - A trace fr = fr, . .. tr, satisfies an injective query of the form

If

fo

e

Injective queries

r 2

Example: p = inj — F)(x) = inj — Ey(x)

>

V inj — E(x)

tr; = event(ky(a)) . event(£(a)) . event(Fy(a)) . event(Fy(a))

at

Injective query - A trace fr = fr, . .. tr, satisfies an injective query of the form

If

fo

e

Example: p = inj — F)(x) = inj — Ey(x)

> tr; = event(ky(a)).event(E (a)).event(Fy(a)).event(Fy(a))

'\

Injective queries

r 2

V inj — E(x)

\/

/

f

r

.

o
tr, satisfies p Q
/

at

Injective query - A trace fr = fr, . .. tr, satisfies an injective query of the form

If

fo

e

Injective queries

r 2

Example: p = inj — F)(x) = inj — Ey(x)

>

>

tr; = event(ky(a)) . event(£(a)) . event(Fy(a)) . event(Fy(a))

f

ir, = event(Ey(a)) . event(Fy(a)).event(Fy(a))

r

.

o
tr, satisfies p Q
/

at

Injective queries

Injective query - A trace fr = fr, . .. tr, satisfies an injective query of the form

If

fo

e

Example: p = inj — F)(x) = inj — Ey(x)
V inj — E(x)

>

>

tr; = event(ky(a)) . event(£(a)) . event(Fy(a)) . event(Fy(a))

r 2

ir, = event(Ey(a)) . event(Fy(a)).event(Fy(a))

f

-

~

f

r

.

o
tr, satisfies p Q
/

f

.

ir, does not satisfy p x

~

,

at

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

where:
» result = {v | (tr,7) - counted(v)}

» Vy={v | (tr,7) - verified(id, v) and (tr, ") = hv(id) }
> Vinw ©, Viw = {v | (tr,7) F voted(id, v) and (tr, 7') F hnv(id) }
» | V5| £ |D| where D = {id | (tr,7) = corrupt(id)}

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

all the counted votes

where:
» result = {v | (tr,7) - counted(v)}

» Vy={v | (tr,7) - verified(id, v) and (tr, ") = hv(id) }
> Vinw ©, Viw = {v | (tr,7) F voted(id, v) and (tr, 7') F hnv(id) }
» | V5| £ |D| where D = {id | (tr,7) = corrupt(id)}

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

all the counted votes

all the votes of honest voters
who verify

where:

» result = {v | (tr,7) - counted(v)}
» Viy=1{v | (tr,7) - verified(id,v) and (tr,7’) - hv(id) }} /

> Vinw ©, Viw = {v | (tr,7) F voted(id, v) and (tr, 7') F hnv(id) }
» | V5| £ |D| where D = {id | (tr,7) = corrupt(id)}

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

all the counted votes

all the votes of honest voters
who verify

where:

» result = {v | (tr,7) - counted(v)} /

» Vy={v | (tr,7) - verified(id, v) and (tr, ") = hv(id) }
> View © Viw = {v | (tr,7) F voted(id, v) and (tr,7') - hnv(id)} —

A subset of the votes of honest
voters who do not verify

A

» | V5| £ |D| where D = {id | (tr,7) = corrupt(id)}

E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter: Protocol steps

» hv(id), an honest voter who verifies » voted(id,v), voter id has cast a vote v

» hnv(id), an honest voter who does not verify » verified(id,v), voter id has cast a vote v and verified

» corrupt(id), a dishonest voter » counted(v), a vote for v has been counted during the tally

» finish, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

all the counted votes

all the votes of honest voters
who verify

where:

» result = {v | (tr,7) - counted(v)} /

» Vy={v | (tr,7) - verified(id, v) and (tr, ") = hv(id) }
> View © Viw = {v | (tr,7) F voted(id, v) and (tr,7') - hnv(id)} —

A subset of the votes of honest
voters who do not verify

A

» | V5| £ |D| where D = {id | (tr,7) = corrupt(id)}

At most 1 vote per dishonest voter

Exact characterization
of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces 7r satisfy:

> (Query 1) finish A inj — counted(x) = inj — hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish A inj —verified(z,x) = inj — counted(x)

10

Exact characterization
of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces 7r satisfy:

> (Query 1) finish A inj — counted(x) = inj — hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish A inj —verified(z,x) = inj — counted(x)

Ideas of the proof

“easy”, we can straightforwardly verify the queries

10

Exact characterization
of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces 7r satisfy:

> (Query 1) finish A inj — counted(x) = inj — hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish A inj —verified(z,x) = inj — counted(x)

Ideas of the proof

“easy”, we can straightforwardly verify the queries
“more difficult”...

10

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

» (Query 1) finish Ainj — counted(x) = inj — hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

171

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

» (Query 1) finish Ainj — counted(x) = inj — hv(z) A verified(z, x)
V inj — hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

‘ Goal: define an injective function
h:result - HV wHNV W D that is
surjective over HV

171

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

» (Query 1) finish Ainj — counted(x) = inj — hv(z) A verified(z, x)
V inj — hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

Goal: define an injective function (v N (o
h:result - HV wHNV W D that is
surjective over HV

- V. -

-

.

result

171

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

> (Query 1) finish A inj — counted(x) = inj

V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

— hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)

Injective function f

Goal: define an injective function (v N o N " N
h:result - HV wHNV W D that is
surjective over HV 4 ¢
- , , - ,
é ‘ |)

Subset of result
mapped to HV by f

Subset of result
mapped to HNV by f

Subset of result
mapped to D by fJ

result

171

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

» (Query 1) finish A inj — counted(x) = inj — hv(z) A verified(z, x) Iniective function
J J jective functio
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x) Injective function g

" Goal: define an injective function r 2 s N - N
h:result - HVWHNV WD thatis

surjective over HV ? 1\ \A
- _ Y, - Y,
r vy 4 \ .\ N

Subset of result Subset of result Subset of result
mapped to HV by f mapped to HNV by f mapped to D by fJ

result
11

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

» (Query 1) finish A inj — counted(x) = inj — hv(z) A verified(z, x) Iniective function
J J jective functio
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x) Injective function g

" Goal: define an injective function r 2 s N - N
| HV HNV D
h:result — HVWHNV WD thatis h(x) -
surjective over HV !

- ﬁ \A J - y
h(x) =
g 1(x) if x € g(HV) \
R : h

Subset of result Subset of result Subset of result
mapped to HV by f mapped to HNV by f mapped to D by fJ

= <

result
11

h(x)

idea of the proof

> (Query 1) finish A inj — counted(x) = inj
V 1nj
V 1n]

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

— hv(z) A verified(z, x)
— hnv(z) A voted(z, x)

— corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

Injective function f

Injective function g

4 ™)
D
\ y

™ Goal: define an injective function e N
h:result — HVwWHNV WD that is —
surjective over HV L ’

g 1(x) if x € g(HV)

(feg)ef(x) ifx & g(HV)andf(x) € HV - \

wheren = min{i > 0 | (fo g) o f(x) & HV} .-
Subset of result
. mapped to HV by |

Subset of result
mapped to HNV by f

et

Subset of result
mapped to D by fJ

result

171

h(x)

idea of the proof

> (Query 1) finish A inj — counted(x) = inj
V 1nj
V 1n]

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

— hv(z) A verified(z, x)
— hnv(z) A voted(z, x)

— corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

Injective function f

Injective function g

4 ™)
D
\ y

™ Goal: define an injective function e N
h:result - HVwHNV w D that is
L . —
surjective over HV L
g 1(x) if x € g(HV)
(fog) of(x) ifx & g(HV)andf(x) € HV -
where n = min{i > 0 | (fo 2)' o f(x) & HV} v b
Subset of result
. mapped to HV by |

Subset of result
mapped to HNV by f

et

Subset of result
mapped to D by fJ

result

171

h(x)

idea of the proof

> (Query 1) finish A inj — counted(x) = inj
V 1nj
V 1n]

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

— hv(z) A verified(z, x)
— hnv(z) A voted(z, x)

— corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

Injective function f

Injective function g

4 ™)
D
\ y

™ Goal: define an injective function e N
h:result - HVwHNV w D that is
L . o~
surjective over HV L
g 1(x) if x € g(HV)
(fog) of(x) ifx & g(HV)andf(x) € HV -
where n = min{i > 0 | (fo 2)' o f(x) & HV} v b
Subset of result
. mapped to HV by |

Subset of result
mapped to HNV by f

et

Subset of result
mapped to D by fJ

result

171

h(x)

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

> (Query 1) finish Ainj — counted(x) = inj
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

—hv(z) A verified(z, x) Injective function f

Injective function g

" Goal: define an injective function e e N
h:result - HVwHNV w D that is
surjective over HV ?
q q y
g_l(x) if x € g(HV)
(fog) o f(x) ifx & g(HV)and f(x) € HV . .
wheren = min{i > 0 | (fog) o f(x) & HV} .- o
Subset of result Subset of result Subset of result
. mapped to HV by f mapped to HNV by f mapped to D by fJ

result

171

h(x)

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

> (Query 1) finish Ainj — counted(x) = inj
V inj —hnv(z) A voted(z, x)
V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

—hv(z) A verified(z, x) Injective function f

Injective function g

" Goal: define an injective function e e N
h:result - HVwHNV w D that is h(x)
surjective over HV !

q q y

g_l(x) if x € g(HV)

(fog) o f(x) ifx & g(HV)and f(x) € HV . .

wheren = min{i > 0 | (fog) o f(x) & HV} .- o
Subset of result Subset of result Subset of result
. mapped to HV by f mapped to HNV by f mapped to D by fJ

result

171

h(x)

™ Goal: define an injective function (o D - D ~ N
h:result - HVwHNV W@ D that is h(x)
surjective over HV ! ¢
4 4 y
g~ 1(x) if x € g(HV)
(fog)'of(x) ifx & g(HV)and f(x) € HV . .
where n = min{i > 0 | (fo 2)' o f(x) & HV} v * X
(%) otherwise Subset of result Subset of result Subset of result
. mapped to HV by f mapped to HNV by f mapped to D by fJ

idea of the proof

Assumptions - for all traces 7r, Query 1 and Query 2 are satisfied.

> (Query 1) finish A inj — counted(x) = inj

V inj — corrupt(z)

> (Query 2) finish Ainj —verified(z,x) = inj — counted(x)

— hv(z) A verified(z, x)
V inj —hnv(z) A voted(z, x)

Injective function f

Injective function g

result

171

Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

12

k%

Description of each role
(in isolation)

%
Generic process

> linking the different roles

> defining accurate and
meaningful scenarios

Our framework

Sy

J>
ProVerif

13

k%

Description of each role
(in isolation)

%
Generic process

> linking the different roles

> defining accurate and
meaningful scenarios

Our framework

Sy

J>
ProVerif

| N

GSVerif-like
ProVerif library

[Cheval et al - CSF’18]

13

k%

Description of each role
(in isolation)

%
Generic process

> linking the different roles

> defining accurate and
meaningful scenarios

Our framework

Sy

g

ProVerif

| N

GSVerif-like
ProVerif library

[Cheval et al - CSF’18]

N

Generic
lemmas

13

Protocol specific
processes

Detalls

12 processes

Setup phase: 4 processes (how voting data are generated, how they are
received by voters, what are their initial knowledge, what is a valid vote)

Voting phase:
- Voter: 2 processes (how a voter casts a vote, how they verify)
- Bulletin board: 5 processes (how to update the bulletin board, what is a valid

ballot, how voters are publicly identified)
Tally: 1 process (how to open a ballot)

14

Protocol specific
processes

Detalls

12 processes

Setup phase: 4 processes (how voting data are generated, how they are
received by voters, what are their initial knowledge, what is a valid vote)

Voting phase:
- Voter: 2 processes (how a voter casts a vote, how they verify)
- Bulletin board: 5 processes (how to update the bulletin board, what is a valid

ballot, how voters are publicly identified)
Tally: 1 process (how to open a ballot)

We do model the tally unlike

previous approaches

14

Protocol specific
processes

Generic processes

and libraries

Detalls

12 processes

Setup phase: 4 processes (how voting data are generated, how they are
received by voters, what are their initial knowledge, what is a valid vote)

Voting phase:

- Voter: 2 processes (how a voter casts a vote, how they verify)

- Bulletin board: 5 processes (how to update the bulletin board, what is a valid
ballot, how voters are publicly identified)

Tally: 1 process (how to open a ballot) We do model the tally unlike

previous approaches

8 processes (voter registration, voting process, tally, main system...)
Unbounded number of elections and voters
Modeler can define honesty assumptions through restrictions

GSVerif-like axioms to manipulate cells, counters, etc
= 2 new axioms for nested counters and emphasize term freshness
8 well-crafted lemmas (27 queries) to improve termination and accuracy

14

Applications

Registrar Server E2E

Protocol Origin of the files Voter (setup) (1 CCR/M) verifiability

Helios (toy) (new files) ﬁ

SN TN 11\ M (eXisting personal files)
ST I[N (R VM (existing personal files) ﬁ
SN R 1T [h 1 I (=514 M (eXxisting personal files) ﬁ
Belenios-hash' (last) (new files) ﬁ

SIWEH M (Swiss Post gitlab?)

€)| €l

o1, \"[s] -0 [Bernhard et al - 2018]

linspired by [Baloglu et al - EVotelD 2021]
2https://qgitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models 15

http://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models

Conclusion

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

10

Conclusion

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

Future work

> Extend the framework to analyze vote secrecy
> Extend GSVerif with the new invariants introduced in this work
> Improve the modeling of the tally:

- consider counting functions different from the multiset of votes (e.g., Condorcet, Single
Transferable Vote, d’Hondt method)

- provide a more accurate model of the homomorphic or mixnet tally

10

