Election Verifiability with ProVerif

Vincent Cheval1, Véronique Cortier2, Alexandre Debant2

1Inria Paris, France
2Université de Lorraine, Inria, CNRS, Nancy, France

CSF 2023
Dubrovnik, Croatia
Security properties

Vote secrecy

“No one should know who I voted for”

Verifiability

“No one can modify the outcome of the election”
Security properties

Vote secrecy

“No one should know who I voted for”

Verifiability

“No one can modify the outcome of the election”
E-voting protocol
- overview -

Setup phase

Voting phase

Verification phase
E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V_{HV} \cup V'_{HNV} \cup V_D
\]

where:
- \(V_{HV} \) is the multiset of votes of honest voters who verify
- \(V'_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(V_D \) contains at most one vote per dishonest voter
E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V_{HV} \cup V'_{HNV} \cup V_D
\]

where:
- \(V_{HV}\) is the multiset of votes of **honest voters who verify**
- \(V'_{HNV}\) is a submultiset of the multiset of votes of **honest voters who do not verify**
- \(V_D\) contains at most one vote per **dishonest voter**

Cannot be check directly with existing tools…
E2E verifiability

[Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[\text{result} = V_{HV} \cup V'_{HNV} \cup V_D \]

where:

- \(V_{HV} \) is the multiset of votes of honest voters who verify
- \(V'_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(V_D \) contains at most one vote per dishonest voter

Approaches based on sub-properties e.g, [Cortier et al - CSF’19], [Baloglu et al - CSF’21]

- **Eligibility**: each vote has been cast by a legitimate voter
- **Individual verifiability**
 - **Cast-as-intended**: the voter’s ballot contains their intended vote
 - **Recorded-as-cast**: the counted ballot corresponds to the cast one
- **Universal verifiability**: the result corresponds to the content of the ballot-box
- **No clash attacks**: two voters cannot agree on the same ballot

Cannot be check directly with existing tools...
Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[\text{result} = \mathbb{V}_H \cup \mathbb{V}_{HNV} \cup \mathbb{V}_D \]

where:

- \(\mathbb{V}_H \) is the multiset of votes of honest voters who verify
- \(\mathbb{V}_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(\mathbb{V}_D \) contains at most one vote per dishonest voter

Approaches based on sub-properties: e.g., [Cortier et al - CSF’19], [Balaglu et al - CSF’21]

- Eligibility: each vote has been cast by a legitimate voter
- Individual verifiability
 - Cast-as-intended: the voter’s ballot contains their intended vote
 - Recorded-as-cast: the counted ballot corresponds to the cast one
- Universal verifiability: the result corresponds to the content of the ballot box
- No clash attacks: two voters cannot agree on the same ballot

Cannot be checked directly with existing tools…

These are only sufficient conditions…
Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies

Query 1 and Query 2
Contributions

1. Exact characterization of E2E verifiability

 Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

 Applied to several protocols: Helios, Belenios, Swiss Post, CHVote
What is ProVerif?

- is an automatic prover for symbolic analysis
 - messages abstracted with terms
 - Dolev-Yao attacker model (intercept/inject/modify)
- can model an unbounded number of sessions
- handles trace-based properties
- handles equivalence-based properties
- has already be used to analyse voting protocols, e.g., Helios, Belenios, Swiss Post, CHVote, etc

A trace tr is a finite sequence of in, out, or $\text{event}(e(u_1, \ldots, u_n))$.

$$P, Q := 0$$
$$\quad | \text{new } n; P$$
$$\quad | \text{let } x = v \text{ in } P \text{ else } Q;$$
$$\quad | \text{in}(c, x); P$$
$$\quad | \text{out}(c, u); P$$
$$\quad | (P \mid Q)$$
$$\quad | \neg P$$
$$\quad | \text{event } e(u_1, \ldots, u_n); P$$
Queries

Event satisfaction - A trace \(tr = tr_1 \ldots tr_n \) executes event \(E(u_1, \ldots, u_n) \) at time \(\tau \in \{1, \ldots, n\} \), noted \((tr, \tau) \vdash E(u_1, \ldots, u_n) \), if \(tr_{\tau} = \text{event}(E(u_1, \ldots, u_n)) \).
Queries

Event satisfaction - A trace $tr = tr_1 \ldots tr_n$ executes event $E(u_1, \ldots, u_n)$ at time $\tau \in \{1, \ldots, n\}$, noted $(tr, \tau) \vdash E(u_1, \ldots, u_n)$, if $tr_{\tau} = \text{event}(E(u_1, \ldots, u_n))$

Query formula - A trace $tr = tr_1 \ldots tr_n$ satisfies a query of the form

$$\bigwedge_{k=1}^{p} F_k(v_1, \ldots, v_{l_k}) \Rightarrow \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} E_{i,j}(u_1^{i,j}, \ldots, u_{l_{i,j}}^{i,j})$$

if for all substitution σ such that for all k, $(tr, \tau_k) \vdash F_k(v_1, \ldots, v_{l_k})\sigma$ for some τ_k, there exists σ' and i such that for all j, there exists $\tau_{i,j}$ such that $(tr, \tau_{i,j}) \vdash E_{i,j}(u_1^{i,j}, \ldots, u_{l_{i,j}}^{i,j})\sigma'$ and $F_k(v_1, \ldots, v_{l_k})\sigma = F_k(v_1, \ldots, v_{l_k})\sigma'$
Injective queries

Injective query - A trace \(tr = tr_1 \ldots tr_n \) satisfies an injective query of the form

\[
\text{inj} - F_0(v_0, \ldots, v_{l_0}) \land \bigwedge_{k=1}^{p} F_k(v_1, \ldots, v_{l_k}) \Rightarrow \bigvee_{i=1}^{m} \text{inj} - E_{i,0}(u_1^{i,0}, \ldots, u_{l_0}^{i,0}) \land \bigwedge_{j=1}^{n_i} E_{i,j}(u_1^{i,j}, \ldots, u_{l_j}^{i,j})
\]

if for all substitution \(\sigma \) such that for all \(k, (tr, \tau_k) \vdash F_k(v_1, \ldots, v_{l_k})\sigma \) for some \(\tau_k \), there exists \(\sigma' \) and \(i \) such that for all \(j \), there exists \(\tau_{i,j} \) such that \((tr, \tau_{i,j}) \vdash E_{i,j}(u_1^{i,j}, \ldots, u_{l_j}^{i,j})\sigma' \) and \(F_k(v_1, \ldots, v_{l_k})\sigma = F_k(v_1, \ldots, v_{l_k})\sigma' \).

Moreover, there exists an injective function \(f : \mathcal{F}_0(tr) \rightarrow \mathcal{E}_0(tr) \) such that if \((tr, \alpha) \vdash F_0(v_1, \ldots, v_{l_0})\sigma \) then

\((tr, f(\alpha)) \vdash E_{i,0}(u_1^{i,0}, \ldots, u_{l_0}^{i,0})\sigma' \).

\(\mathcal{F}_0(tr), \mathcal{E}_0(tr) \subseteq \{ 1, \ldots, n \} \) are the sets of indices matching respectively \(F_0(v_0, \ldots, v_{l_0}) \) and \(E_{i,0}(u_1^{i,0}, \ldots, u_{l_0}^{i,0}) \).
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

Example: $\rho = \text{inj} - F_0(x) \Rightarrow \text{inj} - E_0(x)$

$\lor \text{inj} - E_1(x)$
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

$$\sigma_k(tr_1, \tau_k) \vdash F_k(v_1, \ldots, v_{l_k})$$

Moreover, there exists an injective function $f: \mathcal{F}_0(tr) \rightarrow \mathcal{E}_0(tr)$ such that if

$$\sigma_\tau(tr, f(\alpha)) \vdash E_{i,0}(u_{i,0}^1, \ldots, u_{i,0}^l)$$

$$\mathcal{F}_0(tr), \mathcal{E}_0(tr) \subseteq \{1, \ldots, n\}$$

$F_0(v_1, \ldots, v_{l_0})$ $E_{i,0}(u_{i,0}^1, \ldots, u_{i,0}^l)$

Example: $\rho = inj - F_0(x) \Rightarrow inj - E_0(x)$

$$\vee\ inj - E_1(x)$$

$tr_1 = \text{event}(E_0(a)).\text{event}(E_1(a)).\text{event}(F_0(a)).\text{event}(F_0(a))$
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

$$\sigma_{k}(tr, \tau_k) \vdash F_k(v_1, \ldots, v_l)$$

Moreover, there exists an injective function f such that if

$$f(\alpha)\text{satisfies }\rho$$

then

$$\sigma_{\tau_k}F_k(v_1, \ldots, v_l) = F_k(v_1, \ldots, v_l)$$

are the sets of indices matching respectively $tr = tr_1 \ldots tr_n$.

Example: $\rho = \text{inj} - F_0(x) \Rightarrow \text{inj} - E_0(x)$

$$\lor \text{ inj} - E_1(x)$$

- $tr_1 = \text{event}(E_0(a)) \cdot \text{event}(E_1(a)) \cdot \text{event}(F_0(a)) \cdot \text{event}(F_0(a))$

tr_1 satisfies ρ ✅
Injective queries

Injective query - A trace \(tr = tr_1 \ldots tr_n \) satisfies an injective query of the form

\[\rho = \text{inj} - F_0(x) \implies \text{inj} - E_0(x) \]

\[\lor \text{inj} - E_1(x) \]

\[tr_1 = \text{event}(E_0(a)).\text{event}(E_1(a)).\text{event}(F_0(a)).\text{event}(F_0(a)) \]

\[\text{tr}_1 \text{ satisfies } \rho \]

\[tr_2 = \text{event}(E_0(a)).\text{event}(F_0(a)).\text{event}(F_0(a)) \]
Injective queries

Example: \(\rho = \text{inj} - F_0(x) \Rightarrow \text{inj} - E_0(x) \)
\(\lor \text{inj} - E_1(x) \)

- \(tr_1 = \text{event}(E_0(a)) \cdot \text{event}(E_1(a)) \cdot \text{event}(F_0(a)) \cdot \text{event}(F_0(a)) \)
 \(tr_1 \) satisfies \(\rho \)

- \(tr_2 = \text{event}(E_0(a)) \cdot \text{event}(F_0(a)) \cdot \text{event}(F_0(a)) \)
 \(tr_2 \) does not satisfy \(\rho \)
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:
- $hv(id)$, an honest voter who verifies
- $hnv(id)$, an honest voter who does not verify
- $corrupt(id)$, a dishonest voter

Protocol steps
- $voted(id, v)$, voter id has cast a vote v
- $verified(id, v)$, voter id has cast a vote v and verified
- $counted(v)$, a vote for v has been counted during the tally
- $finish$, the tally has been completed
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:
- \(hv(id) \), an honest voter who verifies
- \(hnv(id) \), an honest voter who does not verify
- \(corrupt(id) \), a dishonest voter

Protocol steps
- \(voted(id, v) \), voter \(id \) has cast a vote \(v \)
- \(verified(id, v) \), voter \(id \) has cast a vote \(v \) and verified
- \(counted(v) \), a vote for \(v \) has been counted during the tally
- \(finish \), the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
result = V_{HV} \cup V'_{HNV} \cup V_D
\]

where:
- \(result = \{ v \mid (tr, \tau) \vdash counted(v) \} \)
- \(V_{HV} = \{ v \mid (tr, \tau) \vdash verified(id, v) \land (tr, \tau') \vdash hv(id) \} \)
- \(V'_{HNV} \subseteq_m V_{HNV} = \{ v \mid (tr, \tau) \vdash voted(id, v) \land (tr, \tau') \vdash hnv(id) \} \)
- \(| V_D | \leq |D| \) where \(D = \{ id \mid (tr, \tau) \vdash corrupt(id) \} \)
Events used to model E2E verifiability

Honesty and behavior of voter:
- \(hv(id) \), an honest voter who verifies
- \(hnv(id) \), an honest voter who does not verify
- \(corrupt(id) \), a dishonest voter

Protocol steps
- \(voted(id, v) \), voter \(id \) has cast a vote \(v \)
- \(verified(id, v) \), voter \(id \) has cast a vote \(v \) and verified
- \(counted(v) \), a vote for \(v \) has been counted during the tally
- \(finish(v) \), the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
result = V_{HV} \cup V'_{HNV} \cup V_D
\]

where:
- \(result = \{v \mid (tr, \tau) \vdash counted(v)\} \)
- \(V_{HV} = \{v \mid (tr, \tau) \vdash verified(id, v) \text{ and } (tr, \tau') \vdash hv(id)\} \)
- \(V'_{HNV} \subseteq_m V_{HNV} = \{v \mid (tr, \tau) \vdash voted(id, v) \text{ and } (tr, \tau') \vdash hnv(id)\} \)
- \(|V_D| \leq |D| \text{ where } D = \{id \mid (tr, \tau) \vdash corrupt(id)\} \)
Events used to model E2E verifiability

Honesty and behavior of voter:
- \(hv(id) \), an honest voter who verifies
- \(hnv(id) \), an honest voter who does not verify
- \(corrupt(id) \), a dishonest voter

Protocol steps
- \(voted(id, v) \), voter \(id \) has cast a vote \(v \)
- \(verified(id, v) \), voter \(id \) has cast a vote \(v \) and verified
- \(counted(v) \), a vote for \(v \) has been counted during the tally
- \(finish \), the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
result = V_{HV} \cup V'_{HNV} \cup V_D
\]

where:
- \(result = \{ v \mid (tr, \tau) \vdash counted(v) \} \)
- \(V_{HV} = \{ v \mid (tr, \tau) \vdash verified(id, v) \text{ and } (tr, \tau') \vdash hv(id) \} \)
- \(V'_{HNV} \subseteq_m V_{HNV} = \{ v \mid (tr, \tau) \vdash voted(id, v) \text{ and } (tr, \tau') \vdash hnv(id) \} \)
- \(|V_D| \leq |D| \) where \(D = \{ id \mid (tr, \tau) \vdash corrupt(id) \} \)
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:
- $hv(id)$, an honest voter who verifies
- $hnv(id)$, an honest voter who does not verify
- $corrupt(id)$, a dishonest voter

Protocol steps
- $voted(id, v)$, voter id has cast a vote v
- $verified(id, v)$, voter id has cast a vote v and verified
- $counted(v)$, a vote for v has been counted during the tally
- $finish$, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

$$result = V_{HV} \cup V'_{HNV} \cup V_D$$

where:
- $result = \{v \mid (tr, \tau) \vdash counted(v)\}$
- $V_{HV} = \{v \mid (tr, \tau) \vdash verified(id, v) \text{ and } (tr, \tau') \vdash hv(id)\}$
- $V'_{HNV} \subseteq m V_{HNV} = \{v \mid (tr, \tau) \vdash voted(id, v) \text{ and } (tr, \tau') \vdash hnv(id)\}$
- $|V_D| \leq |D|$ where $D = \{id \mid (tr, \tau) \vdash corrupt(id)\}$

all the votes of honest voters who verify

all the counted votes

A subset of the votes of honest voters who do not verify
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:

- \(hv(id)\), an honest voter who verifies
- \(hnv(id)\), an honest voter who does not verify
- \(corrupt(id)\), a dishonest voter

Protocol steps

- \(voted(id, v)\), voter \(id\) has cast a vote \(v\)
- \(verified(id, v)\), voter \(id\) has cast a vote \(v\) and verified
- \(counted(v)\), a vote for \(v\) has been counted during the tally
- \(finish\), the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V^\prime_H \cup V''_H \cup V_D
\]

where:

- \(\text{result} = \{v | (tr, \tau) \vdash counted(v)\}\)
- \(V_H = \{v | (tr, \tau) \vdash verified(id, v) \text{ and } (tr, \tau') \vdash hv(id)\}\)
- \(V''_H \subseteq_m V_H = \{v | (tr, \tau) \vdash voted(id, v) \text{ and } (tr, \tau') \vdash hnv(id)\}\)
- \(|V_D| \leq |D|\) where \(D = \{id | (tr, \tau) \vdash corrupt(id)\}\)
Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces tr satisfy:

- **(Query 1)** $\text{finish} \land \text{inj} \rightarrow \text{counted}(x) \Rightarrow \text{inj} \rightarrow \text{hv}(z) \land \text{verified}(z, x)$
 - $\lor \text{inj} \rightarrow \text{hvn}(z) \land \text{voted}(z, x)$
 - $\lor \text{inj} \rightarrow \text{corrupt}(z)$

- **(Query 2)** $\text{finish} \land \text{inj} \rightarrow \text{verified}(z, x) \Rightarrow \text{inj} \rightarrow \text{counted}(x)$
Exact characterization
of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces \(ir \) satisfy:

- **(Query 1)** \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x) \land \text{voted}(z, x) \land \text{corrupt}(z) \)

- **(Query 2)** \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Ideas of the proof

\(\Rightarrow \) “easy”, we can straightforwardly verify the queries
Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces tr satisfy:

- **(Query 1)** \(\text{finish} \land \text{inj} - \text{counted}(x) \Rightarrow \text{inj} - \text{hv}(z) \land \text{verified}(z,x) \)
 - \(\lor \text{inj} - \text{hvn}(z) \land \text{voted}(z,x) \)
 - \(\lor \text{inj} - \text{corrupt}(z) \)

- **(Query 2)** \(\text{finish} \land \text{inj} - \text{verified}(z,x) \Rightarrow \text{inj} - \text{counted}(x) \)

Ideas of the proof

- \(\Rightarrow \) “easy”, we can straightforwardly verify the queries
- \(\Leftarrow \) “more difficult”…
Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \rightarrow \text{counted}(x) \Rightarrow \text{inj} \rightarrow \text{hv}(z) \land \text{verified}(z,x)$

 $\lor \text{inj} \rightarrow \text{hnv}(z) \land \text{voted}(z,x)$

 $\lor \text{inj} \rightarrow \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} \rightarrow \text{verified}(z,x) \Rightarrow \text{inj} \rightarrow \text{counted}(x)$
idea of the proof

Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \rightarrow \text{counted}(x) \Rightarrow \text{inj} \rightarrow \text{hv}(z) \land \text{verified}(z, x) \)
 \[\lor \text{inj} \rightarrow \text{hnv}(z) \land \text{voted}(z, x) \]
 \[\lor \text{inj} \rightarrow \text{corrupt}(z) \]

- (Query 2) \(\text{finish} \land \text{inj} \rightarrow \text{verified}(z, x) \Rightarrow \text{inj} \rightarrow \text{counted}(x) \)

Goal: define an injective function

\(h : \text{result} \rightarrow HV \cup HNV \cup D \) that is

surjective over HV
Goal: define an injective function

\[h : \text{result} \rightarrow HV \cup HNV \cup D \] that is surjective over HV

Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land h\text{v}(z) \land \text{verified}(z, x) \)
 \(\lor \) \(\text{inj} \land h\text{v}(z) \land \text{voted}(z, x) \)
 \(\lor \) \(\text{inj} \land \text{corrupt}(z) \)

- (Query 2) \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Goal: define an injective function

\[h : \text{result} \rightarrow HV \cup HNV \cup D \] that is surjective over HV
Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land
\text{hv}(z) \land \text{verified}(\,z, x)
\lor \text{inj} \land \text{hvn}(z) \land \text{voted}(\,z, x)
\lor \text{inj} \land \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(\,z, x) \Rightarrow \text{inj} \land \text{counted}(x)$

Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV
idea of the proof

Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \rightarrow \text{counted}(x) \Rightarrow \text{inj} \rightarrow h(z) \land \text{verified}(z,x)$
 \[\lor \text{inj} \rightarrow h(n)(z) \land \text{voted}(z,x) \]
 \[\lor \text{inj} \rightarrow \text{corrupt}(z) \]

- (Query 2) $\text{finish} \land \text{inj} \rightarrow \text{verified}(z,x) \Rightarrow \text{inj} \rightarrow \text{counted}(x)$

Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV
Idea of the Proof

Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z,x)$

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(z,x) \Rightarrow \text{inj} \land \text{counted}(x)$

Goal: Define an injective function $h : \text{result} \rightarrow HV \cup HNV \cup D$ that is surjective over HV

$$h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV)
\end{cases}$$

Diagram:

- HV
- HNV
- D
- subset of result mapped to HV by f
- subset of result mapped to HNV by f
- subset of result mapped to D by f
Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land h(v(z)) \land \text{verified}(z,x) \)
 \[\lor \text{inj} \land h(v(z)) \land \text{voted}(z,x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]

- (Query 2) \(\text{finish} \land \text{inj} \land \text{verified}(z,x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Goal: define an injective function \(h : \text{result} \rightarrow HV \sqcup HNV \sqcup D \) that is surjective over \(HV \)

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(HV) \text{ and } f(x) \in HV \\
\end{cases}
\]

where \(n = \min\{i > 0 \mid (f \circ g)^i \circ f(x) \notin HV\} \)
idea of the proof

Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} - \text{counted}(x) \Rightarrow \text{inj} - \text{hv}(z) \land \text{verified}(z,x) \)
 \[\lor \text{inj} - \text{hvn}(z) \land \text{voted}(z,x) \]
 \[\lor \text{inj} - \text{corrupt}(z) \]

- (Query 2) \(\text{finish} \land \text{inj} - \text{verified}(z,x) \Rightarrow \text{inj} - \text{counted}(x) \)

Goal: define an injective function \(h : \text{result} \rightarrow HV \cup HNV \cup D \) that is surjective over HV

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(HV) \text{ and } f(x) \in HV \\
 & \text{where } n = \min \{ i > 0 \mid (f \circ g)^i \circ f(x) \notin HV \}
\end{cases}
\]
Goal: define an injective function

\(h : \text{result} \to HV \cup HNV \cup D \) that is surjective over HV

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(HV) \text{ and } f(x) \in HV \\
 & \text{where } n = \min \{i > 0 \mid (f \circ g)^i \circ f(x) \notin HV \}
\end{cases}
\]
Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV

$$h(x) = \begin{cases} g^{-1}(x) & \text{if } x \in g(\text{HV}) \\ (f \circ g)^n \circ f(x) & \text{if } x \not\in g(\text{HV}) \text{ and } f(x) \in \text{HV} \\ \end{cases}$$

where $n = \min\{i > 0 \mid (f \circ g)^i \circ f(x) \not\in \text{HV}\}$
Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x) \)
 \(\lor \) \(\text{inj} \land \text{hnv}(z) \land \text{voted}(z, x) \)
 \(\lor \) \(\text{inj} \land \text{corrupt}(z) \)

- (Query 2) \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Goal: define an injective function
\(h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup D \) that is surjective over HV

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(\text{HV}) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV} \\
 \text{where } n = \min \{i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV} \}
\end{cases}
\]
Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- **(Query 1)** \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x) \)
 \[\lor \text{inj} \land \text{h}(z) \land \text{voted}(z, x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]

- **(Query 2)** \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Goal: define an injective function \(h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup D \) that is surjective over HV

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(\text{HV}) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV} \\
 f(x) & \text{otherwise}
\end{cases}
\]

where \(n = \min \{ i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV} \} \)
Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

- ✔️
- ✗
- ❓
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

GSVerif-like ProVerif library

[Cheval et al - CSF’18]
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

GSVerif-like ProVerif library
[Cheval et al - CSF’18]

Generic lemmas

[Cheval et al - CSF’18]
Details

- 12 processes
- **Setup phase:** 4 processes (how voting data are generated, how they are received by voters, what are their initial knowledge, what is a valid vote)
- **Voting phase:**
 - **Voter:** 2 processes (how a voter casts a vote, how they verify)
 - **Bulletin board:** 5 processes (how to update the bulletin board, what is a valid ballot, how voters are publicly identified)
- **Tally:** 1 process (how to open a ballot)
Details

- 12 processes
- **Setup phase:** 4 processes (how voting data are generated, how they are received by voters, what are their initial knowledge, what is a valid vote)
- **Voting phase:**
 - **Voter:** 2 processes (how a voter casts a vote, how they verify)
 - **Bulletin board:** 5 processes (how to update the bulletin board, what is a valid ballot, how voters are publicly identified)
- **Tally:** 1 process (how to open a ballot)

We do model the tally unlike previous approaches
Details

- **12 processes**
- **Setup phase**: 4 processes (how voting data are generated, how they are received by voters, what are their initial knowledge, what is a valid vote)
- **Voting phase**:
 - **Voter**: 2 processes (how a voter casts a vote, how they verify)
 - **Bulletin board**: 5 processes (how to update the bulletin board, what is a valid ballot, how voters are publicly identified)
- **Tally**: 1 process (how to open a ballot)

Protocol specific processes

Generic processes and libraries

- **8 processes** (voter registration, voting process, tally, main system…)
- Unbounded number of elections and voters
- Modeler can define honesty assumptions through restrictions
- GSVerif-like axioms to manipulate cells, counters, etc
 - 2 new axioms for nested counters and emphasize term freshness
- 8 well-crafted lemmas (27 queries) to improve termination and accuracy

We do model the tally unlike previous approaches.
Applications

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Origin of the files</th>
<th>Voter</th>
<th>Registrar (setup)</th>
<th>Server (1 CCR/M)</th>
<th>E2E verifiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helios (toy)</td>
<td>(new files)</td>
<td>😊</td>
<td></td>
<td>😊</td>
<td>✓ 16s</td>
</tr>
<tr>
<td>Belenos (tally)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😬</td>
<td>😊</td>
<td>✓ 24s</td>
</tr>
<tr>
<td>Belenos (last)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😊</td>
<td>😁</td>
<td>✗ 5s</td>
</tr>
<tr>
<td>Belenos-counter (last)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😊</td>
<td>😁</td>
<td>✗ 8s</td>
</tr>
<tr>
<td>Belenos-hash¹ (last)</td>
<td>(new files)</td>
<td>😊</td>
<td>😬</td>
<td>😊</td>
<td>✓ 62s</td>
</tr>
<tr>
<td>Swiss Post</td>
<td>(Swiss Post gitlab²)</td>
<td>😊</td>
<td>😊</td>
<td>😁</td>
<td>✓ 58s</td>
</tr>
<tr>
<td>CHVote</td>
<td>[Bernhard et al - 2018]</td>
<td>😊</td>
<td></td>
<td>😊</td>
<td>✓ 17s</td>
</tr>
</tbody>
</table>

¹inspired by [Baloglu et al - EVoteID 2021]
Conclusion

1. Exact characterization of E2E verifiability

\textbf{Theorem} - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

\textbf{Applied to several protocols:} Helios, Belenios, Swiss Post, CHVote
Conclusion

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

Future work

- Extend the framework to analyze vote secrecy
- Extend GSVerif with the new invariants introduced in this work
- Improve the modeling of the tally:
 - consider counting functions different from the multiset of votes (e.g., Condorcet, Single Transferable Vote, d’Hondt method)
 - provide a more accurate model of the homomorphic or mixnet tally