
Reversing, Breaking, and Fixing
 the French Legislative Election

E-Voting Protocol

 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

USENIX Security Symposium
August 11th 2023

Alexandre Debant and Lucca Hirschi

1

Context

2

+1.5 millions legitimate voters (French citizens resident overseas only)

11 deputies chosen for 5 years (11 constituencies split in ~200 consulates)

+500 000 ballots cast over the Internet (~77% of all the expressed votes)

This protocol was based on a new protocol (FLEP), better be sure it is secure!

3

Voter Voting Client Third-Party
@ French Ministry for Europe and Foreign AffairsJavascript running in a browser by independent researchers

by representatives

and officials

At home

The different roles

Voting Server

Decryption Trustees

3

Voter Voting Client Third-Party
@ French Ministry for Europe and Foreign AffairsJavascript running in a browser by independent researchers

by representatives

and officials

?
?
? ?

?

? ?

At home

The different roles

Voting Server

Decryption Trustees

? 
fl 

Contributions

4

First public and comprehensive specification of the protocol

➡ by reversing the obfuscated voting client (Javascript & HTML)

Verifiability and vote secrecy can be attacked by a channel/server attacker:

‣ design an implementation vulnerabilities

‣ 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

Lessons for the organisation of future e-voting elections

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

Ballot Privacy: 
votes are encrypted

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)
1 per ballotBox

ballotBox for each consular (~city)

Ballot Privacy: 
votes are encrypted

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

H := h(b, ballotBox) 𝗌𝗂𝗀𝗇(H)

1 per ballotBox

ballotBox for each consular (~city)

Ballot Privacy: 
votes are encrypted

=

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

H := h(b, ballotBox) 𝗌𝗂𝗀𝗇(H)

1 per ballotBox

ballotBox for each consular (~city)

Ballot Privacy: 
votes are encrypted

=

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

H := h(b, ballotBox) 𝗌𝗂𝗀𝗇(H)

📊
1 per ballotBox

📊

ballotBox for each consular (~city)

result per ballotBox

Ballot Privacy: 
votes are encrypted

=

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

H := h(b, ballotBox) 𝗌𝗂𝗀𝗇(H)

📊

∈

1 per ballotBox

📊

ballotBox for each consular (~city)

result per ballotBox

Ballot Privacy: 
votes are encrypted

=

5

The workflow

Voter Third-PartyVoting Client Voting Server

Decryption Trustees

pkD

v b := ({v}pkD, 𝖹𝖪𝖯s)

H := h(b, ballotBox) 𝗌𝗂𝗀𝗇(H)

📊

∈

1 per ballotBox

📊

ballotBox for each consular (~city)

result per ballotBox

Ballot Privacy: 
votes are encrypted

Verifiability:  
act as verifiable receipts

=

Security goals and threat models

6

Verifiability - “No one can modify the outcome of the election” 🕵

Vote secrecy - “No one should know who I voted for”

Voter Voting Client Voting Server Third-PartyDecryption

Trustees

Ballot Privacy

Verifiability

😇

😇

😇

😇

😇 😇

😇

⇄
Communication 

Channel

Threat models — security expectations under

Security goals and threat models

6

Verifiability - “No one can modify the outcome of the election” 🕵

Vote secrecy - “No one should know who I voted for”

Voter Voting Client Voting Server Third-PartyDecryption

Trustees

Ballot Privacy

Verifiability

😇

😇

😇

😇

😇 😇

😇

⇄
Communication 

Channel

Threat models — security expectations under

Cast-as-
intended is

Cast-as-intended is
acknowledge as not satisfied

Security goals and threat models

6

Verifiability - “No one can modify the outcome of the election” 🕵

Vote secrecy - “No one should know who I voted for”

Voter Voting Client Voting Server Third-PartyDecryption

Trustees

Ballot Privacy

Verifiability

😇

😇

😇

😇

😇 😇

😇

⇄
Communication 

Channel

Threat models — attacks under

😇

😇

😇

Cast-as-
intended is

Cast-as-intended is
acknowledge as not satisfied

Attack against verifiability
(implementation bug…)

7

Voter Voting Client Third-Party

v

∈

v
📊

Voting Server

=

Attack against verifiability
(implementation bug…)

7

Voter Voting Client Third-Party

v

∈
• There are 4 versions of with various consistency checks in the JavaScript voting client

v
📊

Voting Server

=

Attack against verifiability
(implementation bug…)

7

Voter Voting Client Third-Party

v

∈
• There are 4 versions of with various consistency checks in the JavaScript voting client

• Implementation vulnerability ⇨ the actually displayed to the voter can be attacker-controlled

v
📊

Voting Server

=

Attack against verifiability
(implementation bug…)

7

Voter Voting Client Third-Party

v

∈
• There are 4 versions of with various consistency checks in the JavaScript voting client

• Implementation vulnerability ⇨ the actually displayed to the voter can be attacker-controlled

v
📊

Voting Server

=

Impact: channel or server attacker can stealthily modify the outcome by replacing or dropping ballots

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Target VoterIn Sydney Sydney

Minsk

In Minsk

Voting Server

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Target VoterIn Sydney Sydney

Minsk

v?

In Minsk

Voting Server

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Target VoterIn Sydney Sydney

Minsk

v?

v?
In Minsk

Voting Server

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Target VoterIn Sydney Sydney

H := h(,)Minskb

Minsk

v?

v?
In Minsk

Voting Server

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

Target VoterIn Sydney Sydney

H := h(,)Minskb

Minsk

v?

v?
In Minsk

Voting Server

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

v2

Target VoterIn Sydney Sydney

H := h(,)Minskb

Minsk

v1

v?

v?
In Minsk v2

Voting Server

v1

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

v2

Target VoterIn Sydney Sydney

H := h(,)Minskb

Minsk

v1

v?

v?
In Minsk v2 📊

v?

v1

v2

Voting Server

v1

Result

Attack against vote privacy
(design vulnerability…)

8

• Design vulnerability ⇨ ballots ZKPs do not bind ballotBox

v2

Target VoterIn Sydney Sydney

H := h(,)Minskb

Minsk

v1

v?

v?
In Minsk v2 📊

v?

v1

v2

Voting Server

v1

Impact: channel or server attacker can stealthily learn some target voters’ vote (and perform remote coercion)

Result

Fixes for future elections

9

We proposed 6 fixes and notably:

1. Display and check instead of

2. Binds ballotBox to the ballot ZKPs

3. Third-Party checks ballotBox

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) 
Special thanks to the ANSSI who have been proactive in this process.

Fixes for future elections

9

We proposed 6 fixes and notably:

1. Display and check instead of

2. Binds ballotBox to the ballot ZKPs

3. Third-Party checks ballotBox

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) 
Special thanks to the ANSSI who have been proactive in this process.

✔︎/✘ partially done for 2023 election

✔︎ already implemented for 2023

✔︎ already implemented for 2023

Lessons learned
(recommandations and research questions)

10

Lessons learned
(recommandations and research questions)

10

FLEP 
Protocol

State-of-art protocol
affected by none of the attacks

2022 ElectionAdapt the design Implement, Deploy, Audit

affected by 6 attacks
FLEP 2022

+ other concerns 
not discussed here

Lessons learned
(recommandations and research questions)

10

FLEP 
Protocol

State-of-art protocol
affected by none of the attacks

2022 ElectionAdapt the design Implement, Deploy, Audit

affected by 6 attacks
FLEP 2022

+ other concerns 
not discussed here

How can this happen? 🤔

Lessons learned
(recommandations and research questions)

11

1: Adapt the design:

➡ state-of-the art solutions lack features

• multi-ballot-box for announcing fine-grain results

• downloadable receipts

➡ state-of-the-art solutions propose unpractical features

• voters authentication currently relies on a single-point-of-trust

Lessons learned
(recommandations and research questions)

11

1: Adapt the design:

➡ state-of-the art solutions lack features

• multi-ballot-box for announcing fine-grain results

• downloadable receipts

➡ state-of-the-art solutions propose unpractical features

• voters authentication currently relies on a single-point-of-trust

Academic papers should take into
account operational constraints

Lessons learned
(recommandations and research questions)

11

1: Adapt the design:

➡ state-of-the art solutions lack features

• multi-ballot-box for announcing fine-grain results

• downloadable receipts

➡ state-of-the-art solutions propose unpractical features

• voters authentication currently relies on a single-point-of-trust

Academic papers should take into
account operational constraints

2: Implement, deploy, audit

➡ transparency and openness

• clear security objectives and threat models

• open specification, promote public scrutiny (e.g. as in Switzerland)

➡ identify the (most) critical components, e.g. Voting client Server

• make it auditable (specification, open source, etc)

• make it monitorable

>

Lessons learned
(recommandations and research questions)

11

1: Adapt the design:

➡ state-of-the art solutions lack features

• multi-ballot-box for announcing fine-grain results

• downloadable receipts

➡ state-of-the-art solutions propose unpractical features

• voters authentication currently relies on a single-point-of-trust

Academic papers should take into
account operational constraints

2: Implement, deploy, audit

➡ transparency and openness

• clear security objectives and threat models

• open specification, promote public scrutiny (e.g. as in Switzerland)

➡ identify the (most) critical components, e.g. Voting client Server

• make it auditable (specification, open source, etc)

• make it monitorable

>

Any component that needs
to be trusted is critical

Conclusion

12

First public and comprehensive specification of the protocol

Verifiability and vote secrecy can be attacked by a channel/server attacker:

‣ design an implementation vulnerabilities

‣ 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

https://eprint.iacr.org/2022/1653☜

Lessons for future e-voting elections

