Reversing, Breaking, and Fixing the French Legislative Election E-Voting Protocol

Alexandre Debant and Lucca Hirschi

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

USENIX Security Symposium August 11th 2023

Context

+1.5 millions legitimate voters (French citizens resident overseas only)

+500 000 ballots cast over the Internet (~77% of all the expressed votes)

11 deputies chosen for 5 years (11 constituencies split in ~200 consulates)

This protocol was based on a new protocol (FLEP), better be sure it is secure!

The different roles

Voting Client

Javascript running in a browser

Decryption Trustees

by representatives and officials

Third-Party

@ French Ministry for Europe and Foreign Affairs

З

The different roles

@ French Ministry for Europe and Foreign Affairs

by independent researchers

Available documentation was too lacunar to derive the workflow!

Contributions

First public and comprehensive specification of the protocol by reversing the obfuscated voting client (Javascript & HTML)

Verifiability and vote secrecy can be attacked by a channel/server attacker: design an implementation vulnerabilities

- 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

Lessons for the organisation of future e-voting elections

Voting Client

The workflow

Decryption Trustees

Decryption Trustees

Decryption Trustees

Decryption Trustees

Decryption Trustees

Decryption Trustees

Security goals and threat models

Vote secrecy - "No one should know who I voted for"

Verifiability - "No one can modify the outcome of the election"

Communication Channel

Security goals and threat models

Vote secrecy - "No one should know who I voted for"

Verifiability - "No one can modify the outcome of the election"

Security goals and threat models

Vote secrecy - "No one should know who I voted for"

Verifiability - "No one can modify the outcome of the election"

Cast-as-intended is acknowledge as not satisfied

Communication Channel

• There are 4 versions of @ with various consistency checks in the JavaScript voting client

- There are 4 versions of @ with various consistency checks in the JavaScript voting client
- Implementation vulnerability ⇒ the @ actually displayed to the voter can be attacker-controlled

• **Design vulnerability** ⇒ ballots ZKPs do not bind ballotBox

Minsk

Fixes for future elections

We proposed 6 fixes and notably:

- Display and check instead of 1.
- 2. Binds ballotBox to the ballot ZKPs
- 3. Third-Party checks ballotBox

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) Special thanks to the ANSSI who have been proactive in this process.

9

Fixes for future elections

We proposed 6 fixes and notably:

- 1. Display and check instead of
- 2. Binds ballotBox to the ballot ZKPs
- 3. Third-Party checks ballotBox

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) Special thanks to the ANSSI who have been proactive in this process.

Adapt the design

State-of-art protocol affected by none of the attacks

FLEP Protocol

Implement, Deploy, Audit

FLEP 2022 affected by 6 attacks + other concerns not discussed here

Adapt the design

State-of-art protocol affected by none of the attacks

FLEP Protocol

Implement, Deploy, Audit

2022 Election

FLEP 2022 affected by 6 attacks + other concerns not discussed here

1: Adapt the design:

- state-of-the art solutions lack features
 - multi-ballot-box for announcing fine-grain results
 - downloadable receipts
- state-of-the-art solutions propose unpractical features
 - voters authentication currently relies on a single-point-of-trust

1: Adapt the design:

- state-of-the art solutions lack features
 - multi-ballot-box for announcing fine-grain results
 - downloadable receipts
- state-of-the-art solutions propose unpractical features
 - voters authentication currently relies on a single-point-of-trust

Academic papers should take into account operational constraints

1: Adapt the design:

- state-of-the art solutions lack features
 - multi-ballot-box for announcing fine-grain results
 - downloadable receipts
- state-of-the-art solutions propose unpractical features
 - voters authentication currently relies on a single-point-of-trust

2: Implement, deploy, audit

- transparency and openness
 - clear security objectives and threat models
 - open specification, promote public scrutiny (e.g. as in Switzerland)
- identify the (most) critical components, e.g. Voting client > Server
 - make it auditable (specification, open source, etc)
 - make it monitorable

Academic papers should take into account operational constraints

1: Adapt the design:

- state-of-the art solutions lack features
 - multi-ballot-box for announcing fine-grain results
 - downloadable receipts
- state-of-the-art solutions propose unpractical features
 - voters authentication currently relies on a single-point-of-trust

2: Implement, deploy, audit

- transparency and openness
 - clear security objectives and threat models
 - open specification, promote public scrutiny (e.g. as in Switzerland)
- identify the (most) critical components, e.g. Voting client > Server
 - make it auditable (specification, open source, etc)
 - make it monitorable

Academic papers should take into account operational constraints

Any component that **needs** to be trusted is critical

First public and comprehensive specification of the protocol

Verifiability and vote secrecy can be attacked by a channel/server attacker: design an implementation vulnerabilities

- 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

Lessons for future e-voting elections

Conclusion

