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Context
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+1.5 millions legitimate voters (French citizens resident overseas only) 

11 deputies chosen for 5 years (11 constituencies split in ~200 consulates)

+500 000 ballots cast over the Internet (~77% of all the expressed votes)

This protocol was based on a new protocol (FLEP), better be sure it is secure!
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Contributions
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First public and comprehensive specification of the protocol

➡ by reversing the obfuscated voting client (Javascript & HTML)

Verifiability and vote secrecy can be attacked by a channel/server attacker:

‣ design an implementation vulnerabilities

‣ 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

Lessons for the organisation of future e-voting elections
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Security goals and threat models
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Verifiability - “No one can modify the outcome of the election” 🕵

Vote secrecy - “No one should know who I voted for”
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• There are 4 versions of      with various consistency checks in the JavaScript voting client

• Implementation vulnerability ⇨ the          actually displayed to the voter can be attacker-controlled

v
📊
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Impact: channel or server attacker can stealthily modify the outcome by replacing or dropping ballots
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Impact: channel or server attacker can stealthily learn some target voters’ vote (and perform remote coercion)

Result



Fixes for future elections

9

We proposed 6 fixes and notably:


1. Display and check  instead of 


2. Binds ballotBox to the ballot ZKPs


3. Third-Party checks ballotBox        

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) 
Special thanks to the ANSSI who have been proactive in this process.
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2. Binds ballotBox to the ballot ZKPs


3. Third-Party checks ballotBox        

(Attacks and fixes were responsibly disclosed to the vendor and stakeholders.) 
Special thanks to the ANSSI who have been proactive in this process.

✔︎/✘ partially done for 2023 election

✔︎ already implemented for 2023

✔︎ already implemented for 2023
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FLEP 
Protocol

State-of-art protocol
affected by none of the attacks

2022 ElectionAdapt the design Implement, Deploy, Audit

affected by 6 attacks
FLEP 2022

+ other concerns 
not discussed here

How can this happen? 🤔
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Any component that needs 
to be trusted is critical
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First public and comprehensive specification of the protocol

Verifiability and vote secrecy can be attacked by a channel/server attacker:

‣ design an implementation vulnerabilities

‣ 6 attack variants

We proposed 6 fixes, most of them implemented for the 2023 elections

https://eprint.iacr.org/2022/1653☜

Lessons for future e-voting elections


