Election Verifiability with ProVerif
(published at CSF’23)

Vincent Cheval1, Véronique Cortier2, Alexandre Debant2

1University of Oxford
2Université de Lorraine, Inria, CNRS, Nancy, France

Journée du PEPR cybersécurité SVP
06 février 2024 - Paris, France
Security properties

Vote secrecy

“No one should know who I voted for”

Verifiability

“No one can modify the outcome of the election”
Security properties

Vote secrecy

“No one should know who I voted for”

Verifiability

“No one can modify the outcome of the election”
E-voting protocol
- overview -

Setup phase

- login
- login, pwd

Voting phase

- ballot
- (ok, file) / (ko, −)

Verification phase

- yes/no

Tally phase

- result
- (b₁, ..., bₙ)
Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V_{HV} \sqcup V_{HNV} \sqcup V_D
\]

where:

- \(V_{HV} \) is the multiset of votes of honest voters who verify
- \(V_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(V_D \) contains at most one vote per dishonest voter
E2E verifiability [Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = \begin{cases}
V_{HV} & \text{is the multiset of votes of honest voters who verify} \\
V_{HNV} & \text{is a submultiset of the multiset of votes of honest voters who do not verify} \\
V_D & \text{contains at most one vote per dishonest voter}
\end{cases}
\]

Cannot be checked directly with existing tools…
E2E verifiability [Cortier et al - ESORICS’14]

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V_{HV} \cup V_{HNV} \cup V_D
\]

where:

- \(V_{HV} \) is the multiset of votes of honest voters who verify
- \(V_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(V_D \) contains at most one vote per dishonest voter

Approaches based on sub-properties e.g, [Cortier et al - CSF’19], [Baloglu et al - CSF’21]

- **Eligibility**: each vote has been cast by a legitimate voter
- **Individual verifiability**
 - **Cast-as-intended**: the voter’s ballot contains their intended vote
 - **Recorded-as-cast**: the counted ballot corresponds to the cast one
- **Universal verifiability**: the result corresponds to the content of the ballot-box
- **No clash attacks**: two voters cannot agree on the same ballot
E2E verifiability

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

\[
\text{result} = V_{HV} \cup V_{HNV} \cup V_D
\]

where:

- \(V_{HV} \) is the multiset of votes of honest voters who verify
- \(V_{HNV} \) is a submultiset of the multiset of votes of honest voters who do not verify
- \(V_D \) contains at most one vote per dishonest voter

Approaches based on sub-properties:

- **Eligibility**: each vote has been cast by a legitimate voter
- **Individual verifiability**
 - **Cast-as-intended**: the voter’s ballot contains their intended vote
 - **Recorded-as-cast**: the counted ballot corresponds to the cast one
- **Universal verifiability**: the result corresponds to the content of the ballot box
- **No clash attacks**: two voters cannot agree on the same ballot

Cannot be checked directly with existing tools…

These are only sufficient conditions…

e.g., [Cortier et al - ESORICS'14], [Baloglu et al - CSF'19], [Cortier et al - CSF'19]
Contributions

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2
Contributions

1. Exact characterization of E2E verifiability

 Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

 Applied to several protocols: Helios, Belenios, Swiss Post, CHVote
What is ProVerif?

- is an automatic prover for symbolic analysis
 - messages abstracted with terms
 - Dolev-Yao attacker model (intercept/inject/modify)
- can model an unbounded number of sessions
- handles trace-based properties
- handles equivalence-based properties
- has already been used to analyse voting protocols, e.g., Helios, Belenios, Swiss Post, CHVote, etc

A trace \(tr \) is a finite sequence of \(\text{in}, \text{out}, \) or \(\text{event}(e(u_1, \ldots, u_n)) \).
Event satisfaction - A trace \(tr = tr_1 \ldots tr_n \) executes event \(E(u_1, \ldots, u_n) \) at time \(\tau \in \{ 1, \ldots, n \} \), noted \((tr, \tau) \vdash E(u_1, \ldots, u_n) \), if \(tr_\tau = \text{event}(E(u_1, \ldots, u_n)) \).
Queries

Event satisfaction - A trace \(tr = tr_1 \ldots tr_n \) executes event \(E(u_1, \ldots, u_n) \) at time \(\tau \in \{1,\ldots,n\} \), noted \((tr, \tau) \vdash E(u_1, \ldots, u_n) \), if \(tr_\tau = \text{event}(E(u_1, \ldots, u_n)) \)

Query formula - A trace \(tr = tr_1 \ldots tr_n \) satisfies a query of the form

\[
\bigwedge_{k=1}^{p} F_k(v_1, \ldots, v_{l_k}) \Rightarrow \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} E_{i,j}(u_{1,i}^{j}, \ldots, u_{l_{i,j}}^{j})
\]

if for all substitution \(\sigma \) such that for all \(k \), \((tr, \tau_k) \vdash F_k(v_1, \ldots, v_{l_k})\sigma \) for some \(\tau_k \), there exists \(\sigma' \) and \(i \) such that for all \(j \), there exists \(\tau_{i,j} \) such that \((tr, \tau_{i,j}) \vdash E_{i,j}(u_{1,i}^{j}, \ldots, u_{l_{i,j}}^{j})\sigma' \) and \(F_k(v_1, \ldots, v_{l_k})\sigma = F_k(v_1, \ldots, v_{l_k})\sigma' \)
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

$$\text{inj} = F_0(v_0, \ldots, v_l_0) \land \bigwedge_{k=1}^{p} F_k(v_1, \ldots, v_l_k) \Rightarrow \bigvee_{i=1}^{m} \text{inj} = E_{i,0}(u_{i,1}^{i,0}, \ldots, u_{i,l_i}^{i,0}) \land \bigwedge_{j=1}^{n_i} E_{i,j}(u_{i,1}^{i,j}, \ldots, u_{i,l_i}^{i,j})$$

if for all substitution σ such that for all k, $(tr, \tau_k) \vdash F_k(v_1, \ldots, v_l_k)\sigma$ for some τ_k, there exists σ' and i such that for all j, there exists $\tau_{i,j}$ such that $(tr, \tau_{i,j}) \vdash E_{i,j}(u_{i,1}^{i,j}, \ldots, u_{i,l_i}^{i,j})\sigma'$ and $F_k(v_1, \ldots, v_l_k)\sigma = F_k(v_1, \ldots, v_l_k)\sigma'$.

Moreover, there exists an injective function $f : \mathcal{F}_0(tr) \to \mathcal{E}_0(tr)$ such that if $(tr, \alpha) \vdash F_0(v_1, \ldots, v_l_0)\sigma$ then $(tr, f(\alpha)) \vdash E_{i,0}(u_{i,1}^{i,0}, \ldots, u_{i,l_i}^{i,0})\sigma'$.

$\mathcal{F}_0(tr), \mathcal{E}_0(tr) \subseteq \{1, \ldots, n\}$ are the sets of indices matching respectively $F_0(v_0, \ldots, v_l_0)$ and $E_{i,0}(u_{i,1}^{i,0}, \ldots, u_{i,l_i}^{i,0})$.
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

$$\forall \sigma_k \left(\forall t \in tr, \exists \tau_k \left(\forall i, j, \sigma_{\tau_k i, j} (tr, \sigma_k (tr, f(\alpha))) \Rightarrow \exists F_k (v_1, \ldots, v_l) \right) \right)$$

Moreover, there exists an injective function $f: \mathcal{F}_0 (tr) \rightarrow \mathcal{E}_0 (tr)$ such that if

$$\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x) \lor \text{inj} - E_1(x)$$

Example: $\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x) \lor \text{inj} - E_1(x)$
Injective queries

Injective query - A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

\[\sigma_{k}(tr, \tau_k) \vdash F_k(v_1, \ldots, v_{l_k}) \]

Moreover, there exists an injective function \mathcal{f} such that if

\[\mathcal{f}: \mathcal{F}_0(tr) \rightarrow \mathcal{E}_0(tr)(tr, \alpha) \vdash F_0(v_1, \ldots, v_{l_0}) \]

\[if \quad tr \vdash E_{i,0}(u_{i,0}1, \ldots, u_{i,0}l_i) \sigma' \]

\[\mathcal{f}_0(tr), \mathcal{E}_0(tr) \subseteq \{1, \ldots, n\} \]

\[F_0(v_1, \ldots, v_{l_0}) \]

\[\sigma' \mathcal{f}_0(tr) \]

\[E_{i,0}(u_{i,0}1, \ldots, u_{i,0}l_i) \sigma' \]

\[F_k(v_1, \ldots, v_{l_k}) \mathcal{f} \]

Example: \(\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x) \)

\[\lor \text{ inj} - E_1(x) \]

\[tr_1 = \text{event}(E_0(a)).\text{event}(E_1(a)).\text{event}(F(a)).\text{event}(F(a)) \]
Injective queries

Example: \(\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x) \vee \text{inj} - E_1(x) \)

\(tr_1 = \text{event}(E_0(a)) \cdot \text{event}(E_1(a)) \cdot \text{event}(F(a)) \cdot \text{event}(F(a)) \)

\(tr_1 \) satisfies \(\rho \) ✅
Injective queries

A trace $tr = tr_1 \ldots tr_n$ satisfies an injective query of the form

$$\forall \tau_{1:n} \in \mathcal{T}_{1:n}.$$

Moreover, there exists an injective function $f: \mathcal{F}_0(tr) \to \mathcal{E}_0(tr)$ such that if

$$tr_1 = \text{event}(E_0(a)) \cdot \text{event}(E_1(a)) \cdot \text{event}(F(a)) \cdot \text{event}(F(a))$$

then tr_1 satisfies ρ.

Example: $\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x)$

$\lor \text{inj} - E_1(x)$

- $tr_1 = \text{event}(E_0(a)) \cdot \text{event}(E_1(a)) \cdot \text{event}(F(a)) \cdot \text{event}(F(a))$

tr_1 satisfies ρ.

- $tr_2 = \text{event}(E_0(a)) \cdot \text{event}(F(a)) \cdot \text{event}(F(a))$
Injective queries

Example: \(\rho = \text{inj} - F(x) \Rightarrow \text{inj} - E_0(x) \)
\[\vee \text{ inj} - E_1(x) \]

\(tr_1 = \text{event}(E_0(a)).\text{event}(E_1(a)).\text{event}(F(a)).\text{event}(F(a)) \)

\(tr_2 = \text{event}(E_0(a)).\text{event}(F(a)).\text{event}(F(a)) \)

\(f \)

\(tr_1 \) satisfies \(\rho \)

\(tr_2 \) does not satisfy \(\rho \)
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:
- hv(id), an honest voter who verifies
- hnv(id), an honest voter who does not verify
- corrupt(id), a dishonest voter

Protocol steps
- voted(id, v), voter id has cast a vote v
- verified(id, v), voter id has cast a vote v and verified
- counted(v), a vote for v has been counted during the tally
- finish, the tally has been completed
E-voting protocol
- overview -

Setup phase

Voting phase

Verification phase

Tally phase

hv(id)
hnv(id)
corrupt(id)

login

pwd

login, pwd

voted(id, v)
ballet

(ok, ✓)/(ko, −)

verifed(id, v)

counted(v)

(b1, ..., bn)

result

 finish
E2E verifiability

Events used to model E2E verifiability

Honesty and behavior of voter:
- $hv(id)$, an honest voter who verifies
- $hnv(id)$, an honest voter who does not verify
- $corrupt(id)$, a dishonest voter

Protocol steps
- $voted(id, v)$, voter id has cast a vote v
- $verified(id, v)$, voter id has cast a vote v and verified
- $counted(v)$, a vote for v has been counted during the tally
- $finish$, the tally has been completed

Definition - An evoting protocol satisfies E2E verifiability if for any execution,

$$result = V_{HV} \cup V_{HNV} \cup V_D$$

where:
- $result = \{ v \mid (tr, \tau) \vdash counted(v) \}$
- $V_{HV} = \{ v \mid (tr, \tau) \vdash verified(id, v) \text{ and } (tr, \tau) \vdash hv(id) \}$
- $V_{HNV} \subseteq_m \{ v \mid (tr, \tau) \vdash voted(id, v) \text{ and } (tr, \tau) \vdash hnv(id) \}$
- $|V_D| \leq |D|$, where $D = \{ id \mid (tr, \tau) \vdash corrupt(id) \}$
Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces \(tr\) satisfy:

- (Query 1) \(\text{finish} \land \text{inj} \rightarrow \text{counted}(x) \Rightarrow \text{inj} \rightarrow \text{hv}(z) \land \text{verified}(z, x)\)
 - \(\lor \text{inj} \rightarrow \text{hnv}(z) \land \text{voted}(z, x)\)
 - \(\lor \text{inj} \rightarrow \text{corrupt}(z)\)
Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces \(tr \) satisfy:

- (Query 1) \[\text{finish} \land \text{inj} - \text{counted}(x) \Rightarrow \text{inj} - \text{hv}(z) \land \text{verified}(z, x) \]
 \[\lor \text{inj} - \text{hvn}(z) \land \text{voted}(z, x) \]
 \[\lor \text{inj} - \text{corrupt}(z) \]
Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces \(tr \) satisfy:

- **(Query 1)** \(finish \land inj - counted(x) \Rightarrow inj - hv(z) \land verified(z, x) \land inj - hnv(z) \land voted(z, x) \land inj - corrupt(z) \)

- **(Query 2)** \(finish \land inj - verified(z, x) \Rightarrow inj - counted(x) \)

Strong notion of eligibility
Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces tr satisfy:

- **(Query 1)** $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z,x) \lor \text{inj} \land \text{hnv}(z) \land \text{voted}(z,x) \lor \text{inj} \land \text{corrupt}(z)$

- **(Query 2)** $\text{finish} \land \text{inj} \land \text{verified}(z,x) \Rightarrow \text{inj} \land \text{counted}(x)$
Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces \(tr \) satisfy:

- **(Query 1)** \(\text{finish} \land \text{inj} - \text{counted}(x) \Rightarrow \text{inj} - \text{hv}(z) \land \text{verified}(z, x) \)

 \[\lor \text{inj} - \text{hnv}(z) \land \text{voted}(z, x) \]

 \[\lor \text{inj} - \text{corrupt}(z) \]

- **(Query 2)** \(\text{finish} \land \text{inj} - \text{verified}(z, x) \Rightarrow \text{inj} - \text{counted}(x) \)

Ideas of the proof

\[\Rightarrow \] “easy”, we can straightforwardly verify the queries
Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it all its traces tr satisfy:

- (Query 1) $\text{finish} \land \text{inj} - \text{counted}(x) \Rightarrow \text{inj} - \text{hv}(z) \land \text{verified}(z, x)$
 \hspace{1cm} \lor \hspace{1cm} \text{inj} - \text{hvn}(z) \land \text{voted}(z, x)$
 \hspace{1cm} \lor \hspace{1cm} \text{inj} - \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} - \text{verified}(z, x) \Rightarrow \text{inj} - \text{counted}(x)$

Ideas of the proof

⇒ “easy”, we can straightforwardly verify the queries

⇐ “more difficult”…
Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x) \)
 \[\lor \text{inj} \land \text{hnv}(z) \land \text{voted}(z, x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]

- (Query 2) \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)
Goal: define an injective function

$h : \text{result} \rightarrow HV \cup HNV \cup D$ that is surjective over HV

Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x)$
 $\lor \text{inj} \land \text{h宛}(z) \land \text{voted}(z, x)$
 $\lor \text{inj} \land \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x)$

idea of the proof
Goal: define an injective function

\[h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D} \]

that is surjective over HV

Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- **(Query 1)** \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x) \)
 \[\lor \text{inj} \land \text{hvn}(z) \land \text{voted}(z, x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]

- **(Query 2)** \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)
Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV.

Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z, x)$
 $\lor \text{inj} \land \text{hnv}(z) \land \text{voted}(z, x)$
 $\lor \text{inj} \land \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x)$
Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV.
Goal: define an injective function $h : \text{result} \to \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV

\[
h(x) = \begin{cases}
g^{-1}(x) & \text{if } x \in g(\text{HV})
\end{cases}
\]
Goal: define an injective function

\[
h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}
\]

that is surjective over HV

\[
h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(\text{HV}) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV} \\
 & \text{where } n = \min\{i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV}\}
\end{cases}
\]
Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land h(x) \land \text{verified}(z,x)$
 $\lor \text{inj} \land h_n(z) \land \text{voted}(z,x)$
 $\lor \text{inj} \land \text{corrupt}(z)$

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(z,x) \Rightarrow \text{inj} \land \text{counted}(x)$

Goal: define an injective function $h: \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV.

$h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(\text{HV}) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV} \\
\end{cases}$
where $n = \min \{i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV}\}$
Assumptions - for all traces tr, Query 1 and Query 2 are satisfied.

- (Query 1) $\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land \text{hv}(z) \land \text{verified}(z,x)$
 \[\lor \text{inj} \land \text{hvv}(z) \land \text{voted}(z,x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]

- (Query 2) $\text{finish} \land \text{inj} \land \text{verified}(z,x) \Rightarrow \text{inj} \land \text{counted}(x)$

Goal: define an injective function $h : \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV

$h(x) =
\begin{cases}
 g^{-1}(x) & \text{if } x \in g(\text{HV}) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV}
\end{cases}

\text{where } n = \min\{i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV}\}$
Assumptions - for all traces \(tr \), Query 1 and Query 2 are satisfied.

- (Query 1) \(\text{finish} \land \text{inj} \land \text{counted}(x) \Rightarrow \text{inj} \land h(v(z)) \land \text{verified}(z, x) \)
 \[\lor \text{inj} \land h_n(v(z)) \land \text{voted}(z, x) \]
 \[\lor \text{inj} \land \text{corrupt}(z) \]
- (Query 2) \(\text{finish} \land \text{inj} \land \text{verified}(z, x) \Rightarrow \text{inj} \land \text{counted}(x) \)

Goal: define an injective function
\[h : \text{result} \rightarrow HV \cup HNV \cup \Delta \] that is surjective over HV.

\[h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV) \\
 (f \circ g)^n \circ f(x) & \text{if } x \not\in g(HV) \text{ and } f(x) \in HV
\end{cases} \]

where \(n = \min \{ i > 0 \mid (f \circ g)^i \circ f(x) \not\in HV \} \)
Goal: define an injective function $h: \text{result} \rightarrow \text{HV} \cup \text{HNV} \cup \text{D}$ that is surjective over HV

$$h(x) = \begin{cases} g^{-1}(x) & \text{if } x \in g(\text{HV}) \\ (f \circ g)^n \circ f(x) & \text{if } x \notin g(\text{HV}) \text{ and } f(x) \in \text{HV} \\ \end{cases}$$

where $n = \min\{i > 0 \mid (f \circ g)^i \circ f(x) \notin \text{HV}\}$
Goal: define an injective function

\[h : \text{result} \rightarrow HV \cup HNV \cup D \text{ that is surjective over } HV \]

\[h(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in g(HV) \\
 (f \circ g)^n \circ f(x) & \text{if } x \notin g(HV) \text{ and } f(x) \in HV \\
 f(x) & \text{otherwise}
\end{cases} \]

where \(n = \min \{ i > 0 \mid (f \circ g)^i \circ f(x) \notin HV \} \)
Contributions

1. Exact characterization of E2E verifiability

 Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

 Applied to several protocols: Helios, Belenios, Swiss Post, CHVote
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

✅

❓

❌
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

GSVerif-like ProVerif library

[Cheval et al - CSF'18]
Our framework

Description of each role (in isolation)

Generic process
- linking the different roles
- defining accurate and meaningful scenarios

ProVerif

GSVerif-like ProVerif library

Generic lemmas

[Cheval et al - CSF’18]
Which scenarios?

A scenario as general as possible

- An arbitrary number of voters…
- who can freely revote…
- with a private bulletin board…
- and a counting function equivalent to the multiset of votes.
Which scenarios?

A scenario as general as possible

- An arbitrary number of voters…
- who can freely revote…
- with a private bulletin board…
- and a counting function equivalent to the multiset of votes.

How to extend/adapt this scenario?

- Bound the number of voters ➔ define a restriction
- Prevent revote ➔ define a restriction
- Model a public bulletin board ➔ add an output on a public channel
- …
Details

- **12 processes**
- **Setup phase:** 4 processes (how voting data are generated, how they are received by voters, what are their initial knowledge, what is a valid vote)
- **Voting phase:**
 - **Voter:** 2 processes (how a voter casts a vote, how they verify)
 - **Bulletin board:** 5 processes (how to update the bulletin board, what is a valid ballot, how voters are publicly identified)
- **Tally:** 1 process (how to open a ballot)
- **Other components:** everything else (e.g. voting server, control component, etc)
Details

- **12 processes**

 - **Setup phase:** 4 processes (how voting data are generated, how they are received by voters, what are their initial knowledge, what is a valid vote)

 - **Voting phase:**
 - **Voter:** 2 processes (how a voter casts a vote, how they verify)
 - **Bulletin board:** 5 processes (how to update the bulletin board, what is a valid ballot, how voters are publicly identified)

 - **Tally:** 1 process (how to open a ballot)

- **Other components:** everything else (e.g. voting server, control component, etc)

- **Protocol specific processes**

- **Generic processes and libraries**

 - **8 processes defining the generic scenario** (voter registration, voting process, tally, main system...)

 - GSVerif-like axioms to manipulate cells, counters, etc
 - 2 new axioms for nested counters and emphasize term freshness

 - 8 well-crafted lemmas (27 queries) to improve termination and accuracy
Applications

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Origin of the files</th>
<th>Voter</th>
<th>Registrar (setup)</th>
<th>Server (1 CCR/M)</th>
<th>E2E verifiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helios (toy)</td>
<td>(new files)</td>
<td>😊</td>
<td>—</td>
<td>😊</td>
<td>✔️ 16s</td>
</tr>
<tr>
<td>Belenios (tally)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✔️ 24s</td>
</tr>
<tr>
<td>Belenios (last)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✗ 5s</td>
</tr>
<tr>
<td>Belenios-counter (last)</td>
<td>(existing personal files)</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✗ 8s</td>
</tr>
<tr>
<td>Belenios-hash(^1) (last)</td>
<td>(new files)</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✔️ 62s</td>
</tr>
<tr>
<td>Swiss Post</td>
<td>(Swiss Post gitlab(^2))</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✔️ 58s</td>
</tr>
<tr>
<td>CHVote</td>
<td>[Bernhard et al - 2018]</td>
<td>😊</td>
<td>😎</td>
<td>😎</td>
<td>✔️ 17s</td>
</tr>
</tbody>
</table>

\(^1\)inspired by [Baloglu et al - EVoteID 2021]

\(^2\)https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Symbolic-models
Conclusion

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote
Conclusion

1. Exact characterization of E2E verifiability

Theorem - An evoting protocol satisfies E2E verifiability if and only if it satisfies Query 1 and Query 2

2. A ProVerif framework to analyze evoting protocols

Applied to several protocols: Helios, Belenios, Swiss Post, CHVote

Future work

- Extend the framework to analyze vote secrecy
- Extend GSVerif with the new invariants introduced in this work
- Improve the modeling of the tally:
 - consider counting functions different from the multiset of votes (e.g., Condorcet, Single Transferable Vote, d’Hondt method)
 - provide a more accurate model of the homomorphic or mixnet tally