ProVerif, restrictions, equivalence... what could go wrong?

Alexandre Debant

Université de Lorraine, Inria, CNRS, Nancy, France

Pesto seminar
April 12th, 2024 - Nancy, France
Opening remarks

- this talk does not necessarily follow ProVerif notations

- what is written is not necessarily formally correct

- this talk is about ProVerif v2.05 (unless specific comment)
Modelling protocols

\[P, Q := 0 \]

| new \(n \); \(P \) |
| in(\(c, x \)); \(P \) |
| out(\(c, u \)); \(P \) |
| let \(u = v \) in \(P \) else \(Q \) |
| insert \(tbl(u) \); \(P \) |
| get \(tbl(x) \) suchthat \(\phi \) in \(P \) else \(Q \) |
| \((P \mid Q)\) |
| \(!P \) |
| event \(e(u_1, \ldots, u_n) \); \(P \) |

ProVerif before v2.02
Modelling protocols

\[P, Q := 0 \]
\[\begin{align*}
 &| \text{new } n; \; P \\
 &| \text{in}(c, x); \; P \\
 &| \text{out}(c, u); \; P \\
 &| \text{let } u = v \text{ in } P \; \text{else } Q \\
 &| \text{insert } \text{tbl}(u); \; P \\
 &| \text{get } \text{tbl}(x) \text{ suchthat } \phi \text{ in } P \; \text{else } Q \\
 &| (P \mid Q) \\
 &| !P \\
 &| \text{event } e(u_1, \ldots, u_n); \; P
\end{align*} \]

Restrictions:
\[\rho := F_1 \& \cdots \& F_n \Rightarrow H \]

“Consider only traces that satisfy \(\rho \), i.e. \(tr \vdash \rho \)”

ProVerif before v2.02

ProVerif since v2.02

ProVerif before v2.02

ProVerif since v2.02
Example

Evoting: ballot weeding

Server =

! (in(c, x);
 in(cell, x_token);
 get BB(y) such that x = y in
 out(cell, x_token) (* ballot already accepted *)
 else
 insert BB(x);
 out(cell, x_token);
 ...
)
Example

Evoting: ballot weeding

\begin{verbatim}
Server =
! (
 in(c, x);
 in(cell, x_token);
 get BB(y) suchthat x = y in
 out(cell, x_token) (* ballot already accepted *)
 else
 insert BB(x);
 out(cell, x_token);
 ...
)
\end{verbatim}

You may have troubles with else branches and cells ...
Evoting: ballot weeding

Server =
 ! (
 in(c, x);
 in(cell, x_token);
 get BB(y) suchthat x = y in
 out(cell, x_token) (* ballot already accepted *)
 else
 insert BB(x);
 out(cell, x_token);
 ...
)

You may have troubles with else branches and cells ...

Server =
 ! (
 in(c, x);
 new st; event Inserted(st, x);
 insert BB(x);
 ...
)

Restriction:
 event(Inserted(st_1, x))
 & & event(Inserted(st_2, x)) \Rightarrow st_1 = st_2.
Evoting: ballot weeding

Server =
 ! (
in(c, x);
in(cell, x_{token});
get BB(y) such that $x = y$ in
 out(cell, x_{token}) (* ballot already accepted *)
else
 insert BB(x);
 out(cell, x_{token});
 ...
)

You may have troubles with else branches and cells ...

Server =
 ! (
in(c, x);
new st; event Inserted(st, x);
insert BB(x);
 ...
)

Restriction:
 event(Inserted(st_1, x))
 && event(Inserted(st_2, x)) \Rightarrow st_1 = st_2.

No cell, no else branch
Other examples

- Ballot weeding in voting protocols

 \[\text{event(Inserted}(st_1, x)) \land \text{event(Inserted}(st_2, x)) \Rightarrow st_1 = st_2 \]

- Key updates / key revocations

 \[\text{event(Use}(k_1)) \land \text{event(Inserted}(k_2)) \land \text{subterm}(k_1, k_2) \Rightarrow \text{false} \]

- Model protocol assumptions (e.g., audits)

 \[\text{event(PublishedOnBB}(b)) \Rightarrow \phi(b) \]

- Easily bound the number of executions

 \[\text{event(Iteration}(n)) \Rightarrow n < 2 \]

- Abstract e.g. arithmetic properties

 See [Cortier et. al. - CCS’21]

- ...

How does it work?
(simplified)

\[\mathbb{C} \cup \{ R = H \rightarrow C \} \quad (\land_{i=1}^{n} F_i \Rightarrow \psi) \in \mathcal{R} \quad \text{For all } i, F_i \sigma \in H \]

\[\frac{\mathbb{C} \cup \{ R = H \land \psi \sigma \rightarrow C \}}{\text{ }} \]
How does it work?
(simplified)

\[\mathbb{C} \cup \{ R = H \rightarrow C \} \quad (\land_{i=1}^{n} F_i \Rightarrow \psi) \in \mathcal{R} \quad \text{For all } i, F_i \sigma \in H \]

\[\mathbb{C} \cup \{ R = H \land \psi \sigma \rightarrow C \} \]

It is just a matching!

If the clause is not instantiated enough (e.g. noselect) the restriction will not be applied!
Usual issues

Given the process $P := \text{event}(E_1); \text{event}(E_2); \text{event}(E_3)$
and the restriction $\rho := \text{event}(E_1) \Rightarrow \text{event}(E_2)$, is $\text{event}(E_3)$ reachable?
Usual issues

Given the process $P := \text{event}(E1); \text{event}(E2); \text{event}(E3)$
and the restriction $\rho := \text{event}(E1) \Rightarrow \text{event}(E2)$, is $\text{event}(E3)$ reachable?

No!
Restrictions have the same semantics as queries
Usual issues

Given the process $P := \text{event}(E1); \text{event}(E2); \text{event}(E3)$
and the restriction $\rho := \text{event}(E1) \Rightarrow \text{event}(E2)$, is \text{event}(E3) reachable?

No!
Restrictions have the same semantics as queries

Given the process $P := (\text{event}(E1); \text{event}(E2)) \mid \text{event}(E3)$
and the restriction $\rho := \text{event}(E3) \Rightarrow \text{event}(E2)$,
is ProVerif able to prove $\rho' := \text{event}(E3) \Rightarrow \text{event}(E1)$?
adebant@macbook-pro-de-alexandre-2 proverif-examples % proverif example4.pv

Process θ (that is, the initial process):

\[
\begin{array}{l}
\{1\}\text{event } E_1; \\
\{2\}\text{event } E_2 \\
\{3\}\text{event } E_3 \\
\end{array}
\]

--- Restriction \text{event}(E_3) \implies \text{event}(E_2) in process \theta.
--- Query \text{event}(E_3) \implies \text{event}(E_1) in process \theta.

Translating the process into Horn clauses...
Completing...
Starting query \text{event}(E_3) \implies \text{event}(E_1)
goal reachable: b\!\!-\!\!\text{event}(E_2) \rightarrow \text{event}(E_3)

Derivation:
1. Event \text{event}(E_3) may be executed at \{3\).
 \text{event}(E_3).
2. By 1, \text{event}(E_3).
The goal is reached, represented in the following fact:
 \text{event}(E_3).

A more detailed output of the traces is available with
 set traceDisplay = long.

\text{event } E_3 at \{3\} (goal)

The event \text{event}(E_3) is executed at \{3\).
A trace has been found.

The attack trace does not satisfy the following restriction, declared at File "example4.pv", line 16, characters 13-35:
\text{event}(E_3) \implies \text{event}(E_2)
RESULT \text{event}(E_3) \implies \text{event}(E_1) cannot be proved.
Usual issues

Given the process $P := \text{event}(E_1); \text{event}(E_2); \text{event}(E_3)$
and the restriction $\rho := \text{event}(E_1) \Rightarrow \text{event}(E_2)$, is $\text{event}(E_3)$ reachable?

No!
Restrictions have the same semantics as queries

Given the process $P := (\text{event}(E_1); \text{event}(E_2)) \mid \text{event}(E_3)$
and the restriction $\rho := \text{event}(E_3) \Rightarrow \text{event}(E_2)$,
is ProVerif able to prove $\rho' := \text{event}(E_3) \Rightarrow \text{event}(E_1)$?

No...
$\Rightarrow \text{event}(E_3)$ apply ρ \Rightarrow $\text{event}(E_2) \Rightarrow \text{event}(E_3)$
Not enough to conclude... 😞
Usual issues

Given the process $P := \text{event}(E1); \text{event}(E2); \text{event}(E3)$
and the restriction $\rho := \text{event}(E1) \Rightarrow \text{event}(E2)$, is $\text{event}(E3)$ reachable?

No!
Restrictions have the same semantics as queries

Given the process $P := (\text{event}(E1); \text{event}(E2)) \mid \text{event}(E3)$
and the restriction $\rho := \text{event}(E3) \Rightarrow \text{event}(E2)$,
is ProVerif able to prove $\rho' := \text{event}(E3) \Rightarrow \text{event}(E1)$?

No...
⇒ $\text{event}(E3)$
apply ρ
⇒ $\text{event}(E2) \Rightarrow \text{event}(E3)$
Not enough to conclude... 😞

You can use the development branch `improve-scope-lemma` to make it prove
What about equivalence properties?
"A biprocess P is in diff-equivalence if $\text{traces}(P) \uparrow \downarrow$ i.e., for all traces of P, the first and the second projections progress in the same way."
· ProVerif proves equivalence of processes that differ only by terms

· ProVerif internally proves diff-equivalence

Definition - “A biprocess P is in diff-equivalence if $\text{traces}(P) \updownarrow$ i.e., for all traces of P, the first and the second projections progress in the same way.”

$$P[a_1, \ldots, a_n] \approx P[b_1, \ldots, b_n]$$

\[\downarrow \]

$$P[\text{diff}[a_1, b_1], \ldots, \text{diff}[a_n, b_n]] \uparrow \downarrow$$

$$(\text{let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} \longrightarrow P\{x \mapsto \text{diff}[M^L, M^R]\} \mid \mathcal{P} \quad \text{if } \text{fst}(v) \downarrow = M^L \text{ and } \text{snd}(v) \downarrow = M^R$$
Reminder

- ProVerif proves equivalence of processes that differ only by terms
- ProVerif internally proves diff-equivalence

Definition - “A biprocess P is in diff-equivalence if $\text{traces}(P) \uparrow \downarrow$ i.e., for all traces of P, the first and the second projections progress in the same way.”

\[
\begin{align*}
\text{(let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} & \rightarrow P\{x \mapsto \text{diff}[M^L, M^R]\} \mid \mathcal{P} & \quad \text{if } \text{fst}(v) \downarrow = M^L \text{ and } \text{snd}(v) \downarrow = M^R \\
\text{(let } x = v \text{ in } P \text{ else } Q) \mid \mathcal{P} & \rightarrow Q \mid \mathcal{P} & \quad \text{if } \text{fst}(v) \downarrow = \text{fail} \text{ and } \text{snd}(v) \downarrow = \text{fail}
\end{align*}
\]

\[
P[a_1, \ldots, a_n] \approx P[b_1, \ldots, b_n]
\]

\[
P[\text{diff}[a_1, b_1], \ldots, \text{diff}[a_n, b_n]] \uparrow \downarrow
\]
Reminder

- ProVerif proves equivalence of processes that differ only by terms
- ProVerif internally proves diff-equivalence

Definition - “A biprocess P is in diff-equivalence if $\text{traces}(P) \downarrow \uparrow$ i.e., for all traces of P, the first and the second projections progress in the same way.”

\[
\begin{align*}
\text{(let } x = v \text{ in } P \text{ else } Q) \mid & \mathcal{P} \rightarrow P\{x \mapsto \text{diff}[M^L, M^R]\} \mid \mathcal{P} & \text{ if } \text{fst}(v) \downarrow = M^L \text{ and } \text{snd}(v) \downarrow = M^R \\
\text{(let } x = v \text{ in } P \text{ else } Q) \mid & \mathcal{P} \rightarrow Q \mid \mathcal{P} & \text{ if } \text{fst}(v) \downarrow = \text{fail} \text{ and } \text{snd}(v) \downarrow = \text{fail} \\
\text{(in}(c, x); \ P) \mid \text{(out}(c', u); \ Q) \mid & \mathcal{P} \rightarrow P\{x \mapsto u\} \mid Q \mid \mathcal{P} & \text{ if } \text{fst}(c) = \text{fst}(c') \text{ and } \text{snd}(c) = \text{snd}(c') \\
\ldots
\end{align*}
\]

\[
P[a_1, \ldots, a_n] \approx P[b_1, \ldots, b_n]
\]

\[
P[\text{diff}[a_1, b_1], \ldots, \text{diff}[a_n, b_n]] \uparrow \downarrow
\]
Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess P, $\text{traces}(P) \downarrow \uparrow \Rightarrow \text{fst}(P) \approx \text{snd}(P)$

where \approx denotes the observational equivalence relation.
Reminder

Theorem [Blanchet et. al. 2006]

Given a biprocess \(P \), \(\text{traces}(P) \downarrow \uparrow \Rightarrow \text{fst}(P) \approx \text{snd}(P) \)

where \(\approx \) denotes the observational equivalence relation.
Equivalence with restrictions

- We can write restrictions, e.g.

\[
\rho := \text{event}(E(\text{diff}[^x_L,^x_R], \text{diff}[^y_L,^y_R])) \Rightarrow ^x_L = ^y_L \land ^x_R = ^y_R
\]
Equivalence with restrictions

We can write restrictions, e.g.

\[\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^L = y^L \land x^R = y^R \]

\[\rho' := \text{event}(E(x, y)) \Rightarrow x = y \neq \rho \]

\[\rho' := \text{event}(E(x, y)) \Rightarrow x = y \equiv \text{event}(E(\text{diff}[x, x], \text{diff}[y, y])) \Rightarrow x = y \]
Equivalence with restrictions

- We can write restrictions, e.g.

\[\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^L = y^L \land x^R = y^R \]

\[\rho' := \text{event}(E(x, y)) \Rightarrow x = y \]

Always define restrictions with explicit \text{diff}[\cdot, \cdot] operators!
Equivalence with restrictions

- We can write restrictions, e.g.

\[\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^L = y^L \land x^R = y^R \]

\[\rho' := \text{event}(E(x, y)) \Rightarrow x = y = \text{event}(E(\text{diff}[x, x], \text{diff}[y, y])) \Rightarrow x = y \]

\[\rho' := \text{event}(E(x, y)) \Rightarrow x = y = \text{event}(E(\text{diff}[x, x], \text{diff}[y, y])) \Rightarrow x = y \]

Definition - A biprocess \(P \) is in diff-equivalence for the restrictions \(\mathcal{R} \), if \(\text{traces}_{|\mathcal{R}}(P) \uparrow \) i.e., for all traces \(\text{tr} \) of \(P \) that satisfy \(\mathcal{R} \), \(\forall \rho \in \mathcal{R}, \text{tr} \vdash \rho \) the first and the second projections progress in the same way.
Relation with observational equivalence

Definition - Let P^L, P^R be two processes and \mathcal{R}^L, \mathcal{R}^R be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions 😇) and denoted $(P^L, \mathcal{R}^L) \approx (P^R, \mathcal{R}^R)$.
Relation with observational equivalence

Definition - Let P^L, P^R be two processes and \mathcal{R}^L, \mathcal{R}^R be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions 😊) and denoted $(P^L, \mathcal{R}^L) \approx (P^R, \mathcal{R}^R)$.

New-theorem?

Given a biprocess P, and a set of restrictions \mathcal{R},

\[
\text{traces}_{\mathcal{R}}(P) \downarrow \Rightarrow (\text{fst}(P), \text{fst}(\mathcal{R})) \approx (\text{snd}(P), \text{snd}(\mathcal{R})).
\]
Relation with observational equivalence

Definition - Let P^L, P^R be two processes and R^L, R^R be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions 😊) and denoted $(P^L, R^L) \approx (P^R, R^R)$

New-theorem?

Given a biprocess P, and a set of restrictions R,

$$\text{traces}_{\uparrow\downarrow}(P) \Rightarrow (\text{fst}(P), \text{fst}(R)) \approx (\text{snd}(P), \text{snd}(R)).$$
Definition - Let P^L, P^R be two processes and \mathcal{R}^L, \mathcal{R}^R be two sets of restrictions. Observational equivalence is extended with restrictions as expected (i.e. considering only traces that satisfy restrictions 😊) and denoted $(P^L, \mathcal{R}^L) \approx (P^R, \mathcal{R}^R)$.
Why is it false?
Strange restrictions

\[\rho := \text{event}(E(\text{diff}[x^L, x^R])) \Rightarrow x^L = x^R \]
Strange restrictions

\[\rho := \text{event}(E(\text{diff}[x^L, x^R])) \Rightarrow x^L = x^R \]

\[\times \text{ fst}(\rho) \text{ is not properly defined!} \]
Why is it false?

Strange restrictions

\[\rho := \text{event}(E(\text{diff}[x^L, x^R])) \Rightarrow x^L = x^R \]

\[\text{fst}(\rho) \text{ is not properly defined!} \]

A bi-restriction impact both sides of the equivalence
Why is it false?

Strange restrictions

\[\rho := \text{event}(E(\text{diff}[x^L, x^R]))) \Rightarrow x^L = x^R \]

\[\text{∀} \quad \text{fst}(\rho) \text{ is not properly defined!} \]

A bi-restriction impact both sides of the equivalence

\[
P = (\text{new } n; \text{ new } m; \text{ out}(\text{cpriv1}, \text{diff}[n, n]); \text{ out}(\text{cpriv2}, \text{diff}[n, m]);) \mid (\text{in}(\text{cpriv1}, x); \text{ in}(\text{cpriv}, y); \text{ event } E(x, y); \text{ out}(\text{cpub}, \text{ok}))
\]

Restriction: \[\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^R = y^R \]
Why is it false?

Strange restrictions

\[\rho := \text{event}(E(\text{diff}[x^L, x^R])) \Rightarrow x^L = x^R \]

\[\times \] \(\text{fst}(\rho)\) is not properly defined!

A bi-restriction impact both sides of the equivalence

\[
P = (\begin{align*}
\text{new } n; \text{ new } m; \\
\text{out}(cpriv1, \text{diff}[n, n]); \\
\text{out}(cpriv2, \text{diff}[n, m]); \\
) | (\begin{align*}
\text{in}(cpriv1, x); \\
\text{in}(cpriv, y); \\
\text{event } E(x, y); \\
\text{out}(cpub, ok) \\
) \end{align*})
\]

\[T := \text{out}(cpriv1, n) . \text{in}(cpriv1, n) . \\
\text{out}(cpriv2, n) . \text{in}(cpriv2, n) . \\
\text{event}(E(n, n)) . \text{out}(cpub, ok) \]

\[T \in \text{traces(fst}(P)) \text{ and } T \vdash \text{true} = \text{fst}(\rho) \]

But \(\text{event}(E(n, m))\) cannot be executed in \(\text{snd}(P)\) while satisfying \(\text{snd}(\rho)\)

Restriction: \(\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^R = y^R\)
Why is it false?

Strange restrictions
\[\rho := \text{event}(E(\text{diff}[x^L, x^R])) \Rightarrow x^L = x^R \]
\[\times \] \text{fst(}\rho\text{) is not properly defined!}

A bi-restriction impact both sides of the equivalence

\[P = (\]
\[\text{new } n; \text{ new } m; \]
\[\text{out(cpriv1,}\text{diff}[n,n]); \]
\[\text{out(cpriv2,}\text{diff}[n,m]); \]
\[) \mid (\]
\[\text{in(cpriv1,}x\text{);} \]
\[\text{in(cpriv,}y\text{);} \]
\[\text{event } E(x,y); \]
\[\text{out(pub,}ok\text{)} \]
\[) \]

\text{Restriction: } \rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^R = y^R

\[T := \text{out(cpriv1,}n\text{).in(cpriv1,}n\text{).} \]
\[\text{out(cpriv2,}n\text{).in(cpriv2,}n\text{).} \]
\[\text{event(E(n,}m\text{)).out(cpriv,}ok\text{)).} \]
\[T \in t\text{race}(\rho) \]

\text{But event(}E(n, m)\text{) cannot be executed in } \text{snd(}P\text{)} \text{ while satisfying } \text{snd(}\rho\text{)} \]
Why is it false?

Strange restrictions $\rho = \mathbb{A} \mathbb{I} \mathbb{A} \mathbb{I}$ ((E(diff$[x^L, x^R], \text{diff}[y^L, y^R]) \Rightarrow x^R = y^R$)

Restriction: $\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R]) \Rightarrow x^R = y^R$)
What can I do now…?
I don’t know what I’m proving… 😕
Solution 1

Trust yourself ✌️

It’s the most often used technique... 🦔
Solution 2

Do a paper proof to justify each restriction…
Solution 3

Let ProVerif do the proof for you
Solution 3

Let ProVerif do the proof for you

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \& \& \ldots \& \& F_n \Rightarrow H^L \& \& H^R$ such that:
- $\text{vars}(H^L) \subseteq \text{vars}(\text{fst}(\rho))$ and $\text{vars}(H^R) \subseteq \text{vars}(\text{snd}(\rho))$
- $\text{vars}(\text{fst}(\rho)) \cap \text{vars}(\text{snd}(\rho)) = \emptyset$

Let ProVerif prove that: for all $tr \in \text{traces}(P)$, $tr \vdash \overline{\text{fst}(\rho)}$ implies $tr \vdash \overline{\text{snd}(\rho)}$ and conversely.
Let ProVerif do the proof for you

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \&\& \ldots \&\& F_n \Rightarrow H_L \&\& H_R$ such that:

- $\text{vars}(H_L) \subseteq \text{vars}(\text{fst}(\rho))$ and $\text{vars}(H_R) \subseteq \text{vars}(\text{snd}(\rho))$
- $\text{vars}(\text{fst}(\rho)) \cap \text{vars}(\text{snd}(\rho)) = \emptyset$

Let ProVerif prove that: for all $tr \in \text{traces}(P)$, $tr \vdash \text{fst}(\rho)$ implies $tr \vdash \text{snd}(\rho)$ and conversely.

Add $\text{diff}[\cdot,\cdot]$ each time it is necessary with fresh variables on the right side.
Solution 3

Let ProVerif do the proof for you

Methodology - Given a biprocess P, and a restriction $\rho := F_1 \land \ldots \land F_n \Rightarrow H^L \land H^R$ such that:

- $\text{vars}(H^L) \subseteq \text{vars}(\text{fst}(\rho))$ and $\text{vars}(H^R) \subseteq \text{vars}(\text{snd}(\rho))$
- $\text{vars}(\text{fst}(\rho)) \cap \text{vars}(\text{snd}(\rho)) = \emptyset$

Let ProVerif prove that: for all $tr \in \text{traces}(P)$, $tr \vdash \text{fst}(\rho)$ implies $tr \vdash \text{snd}(\rho)$ and conversely.

Add $\text{diff}[\cdot, \cdot]$ each time it is necessary with fresh variables on the right side.

Example: $\rho := \text{event}(E(\text{diff}[x^L, x^R], \text{diff}[y^L, y^R])) \Rightarrow x^L = y^L \land x^R = y^R$

$\overline{\text{fst}(\rho)} := \text{event}(E(\text{diff}[x^L, x_1], \text{diff}[y^L, x_2])) \Rightarrow x^L = y^L$

$\overline{\text{snd}(\rho)} := \text{event}(E(\text{diff}[x_1, x^R], \text{diff}[x_2, y^R])) \Rightarrow x^R = y^R$
Solution 3…
is not always possible…

The lemma talks about a unique trace… in many cases you want to match the first side of a trace with the second side of another trace
Solution 3…
is not always possible…

The lemma talks about a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

\[P := !Reader \mid !\text{new} \; k; \; !\text{new} \; kk; \; \text{insert} \; DB(\text{diff}[k, kk]); \; Tag(\text{diff}[k, kk]) \]
Solution 3… is not always possible…

The lemma talks about a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace.

$P := !Reader | !new k; !new kk; \text{ insert } DB(\text{diff}[k, kk]); Tag(\text{diff}[k, kk])$

Problem: the key k appears in many entries in $DB(\cdot)$, \Rightarrow diff-equivalence does not hold…
Solution 3...

is not always possible...

The lemma talks about a unique trace.... in many cases you want to match the first side of a trace with the second side of another trace.

$$P := !\text{Reader} \mid !\text{new } k; \text{!new } kk; \text{ insert } DB(dif[k, kk]); \text{ Tag(dif}[k, kk])$$

Problem: the key k appears in many entries in $DB(\cdot)$, \Rightarrow diff-equivalence does not hold...

Solution: add a restriction to read the “good” entry when it exists.

Basic Hash protocol
Solution 3…
is not always possible…

The lemma talks about a unique trace…. in many cases you want to match the first side of a trace with the second side of another trace

Problem: the key \(k \) appears in many entries in \(DB(\cdot) \),

\[\Rightarrow \text{diff-equivalence does not hold…} \]

Solution: add a restriction to read the “good” entry when it exists

The previous lemma does not hold for traces using the “bad” entries

\[P := !Reader \ | \ !\text{new } k; \ !\text{new } kk; \ \text{insert } DB(\text{diff}[k,kk]); \ Tag(\text{diff}[k,kk]) \]

Basic Hash protocol
Solution 4
(ongoing work with Vincent and Itsaka)

Methodology
1. reinforce diff-equivalence to make it even stronger
2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks
Solution 4
(ongoing work with Vincent and Itsaka)

Methodology
1. reinforce diff-equivalence to make it even stronger
2. adapt ProVerif procedure to make it sound w.r.t. this new definition
3. build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

1. **Reinforce diff-equivalence**

Given a trace T and a well-formed restriction ρ, $T \downarrow \rho$ if $T \downarrow$ and for all $T \rightarrow P$ we have:

$$(T \rightarrow P) \vdash \text{fst}(\rho) \text{ if and only if } (T \rightarrow P) \vdash \text{snd}(\rho)$$
Solution 4
(ongoing work with Vincent and Itsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note $C(P)$ the initial set of clauses generated by ProVerif.

Given a well-formed restriction $\rho := F_1 \&\& \ldots \&\& F_n \Rightarrow H^L \&\& H^R$, we define:

- $C^L_\rho = F_1 \&\& \ldots \&\& F_n \&\& H^L \&\& \neg H^R \Rightarrow \text{bad}$
- $C^R_\rho = F_1 \&\& \ldots \&\& F_n \&\& H^R \&\& \neg H^L \Rightarrow \text{bad}$

We define $C_\mathcal{R} = \{ C^X_\rho \mid \rho \in \mathcal{R}, X \in \{L, R\} \}$
Solution 4
(ongoing work with Vincent and Itsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note $\mathcal{C}(P)$ the initial set of clauses generated by ProVerif.

Given a well-formed restriction $\rho := F_1 \land \ldots \land F_n \Rightarrow H_L \land H_R$, we define:

- $C^L_\rho = F_1 \land \ldots \land F_n \land H_L \land \neg H_R \Rightarrow \text{bad}$
- $C^R_\rho = F_1 \land \ldots \land F_n \land H_R \land \neg H_L \Rightarrow \text{bad}$

We define $\mathcal{C}_\mathcal{R} = \{C^X_\rho \mid \rho \in \mathcal{R}, X \in \{L, R\}\}$

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions \mathcal{R}, if $\neg P \uparrow \mathcal{R}$ then bad is derivable from $\mathcal{C}(P) \cup \mathcal{C}_\mathcal{R}$.
Solution 4
(ongoing work with Vincent and Itsaka)

2. Adapt ProVerif procedure - translation in “Horn” clauses

Given a process P, we note $\mathcal{C}(P)$ the initial set of clauses generated by ProVerif.

Given a well-formed restriction $\rho := F_1 \& \& \ldots \& \& F_n \Rightarrow H^L \& \& H^R$, we define:

- $C^L_\rho = F_1 \& \& \ldots \& \& F_n \& \& H^L \& \& \neg H^R \Rightarrow \text{bad}$
- $C^R_\rho = F_1 \& \& \ldots \& \& F_n \& \& H^R \& \& \neg H^L \Rightarrow \text{bad}$

We define $\mathcal{C}_\mathcal{R} = \{ C^X_\rho \mid \rho \in \mathcal{R}, X \in \{ L, R \} \}$

Lemma [soundness of the set of initial clauses]

Given a process P and a set of well-formed restrictions \mathcal{R}, if $\neg P \uparrow_\mathcal{R}$ then bad is derivable from $\mathcal{C}(P) \cup \mathcal{C}_\mathcal{R}$.

Once this lemma is proved, the saturation is (almost) let unchanged, and thus its soundness proof too 😊
Solution 4
(ongoing work with Vincent and Itsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:
- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are unnecessary to prove session equivalence
 ➡ Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable
Solution 4
(ongoing work with Vincent and Itsaka)

3. Build upon Vincent and Itsaka’s approach [CSF’23] to discard false attacks

[Cheval & Rakotonirina - CSF’23] ==> ProVerif extension to (almost) prove session equivalence

Intuition:
- either the restriction is defined to discard some matchings (e.g. Basic Hash) and they are unnecessary to prove session equivalence
 ➡ Vincent&Itsaka extension will remove the newly reachable bad
- they are safe and bad should not be reachable

TODO
- adapt Vincent&Itsaka extension (i.e. adapt all the proofs…)
- extend ProVerif (or find tricks) to support ¬H^X in premise of a clause for any fact H^X
Conclusion

Be careful when you are using restrictions with equivalence queries…

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side.
Conclusion

Be careful when you are using restrictions with equivalence queries...

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side.

The manual of ProVerif and the long version of S&P’21 paper describe all the theory.

Everything is well-documented. Do not hesitate to open them when you’re not sure about what you’re proving.
Conclusion

Be careful when you are using restrictions with equivalence queries…

It is not possible to think a bi-restriction as a restriction on the left side and a restriction on the right side

The manual of ProVerif and the long version of S&P’21 paper describe all the theory

Everything is well-documented. Do not hesitate to open them when you’re not sure about what you’re proving.

The improve-scope-lemma branch brings many new features

But part of them are under-documented…