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Organisation du module

• Partie IA (A. Deleforge):

• 6 cours intégrés d’1h45:

• 14/03am, 14/03pm, 27/03am, 27/03pm, 28/03pm, 12/04am

• 3 TP de 4h:

• Scindés en groupes A et B, du 29/03 jusqu’au 17/05

• Partie Robotique (L. Cuvillon):

• 2 cours intégrés d’1h45:

• 21/03am, 22/03am

• 5 TP de 4h:

• Scindés en groupes A et B, du 29/03 jusqu’au 17/05

Unité d’Enseignement: IA et Robotique
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Organisation du module

• Evaluation:

• Partie IA: Examen QCM + Compte rendus de TP

• Partie Robotique: contrôle continu en TP
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• Programmation python et orientée objet

• Scalaires, vecteurs, matrices: 

• Probas et statistiques: 

• Calcul différentiel:
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Organisation du module

• Evaluation:

• Partie IA: Examen QCM + Compte rendus de TP

• Partie Robotique: contrôle continu en TP

• Prérequis:

• Programmation python et orientée objet

• Scalaires, vecteurs, matrices: 

• Probas et statistiques: 

• Calcul différentiel:

• Optimisation

• Cette unité d’enseignement est nouvelle à TPS!

Unité d’Enseignement: IA et Robotique
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Retours bienvenus et appréciés

Soyez bienveillants et pro-actifs

Il y aura des rappels
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Unité d’Enseignement: IA et Robotique
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• Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. 

https://www.deeplearningbook.org/

• Hugo Larochelle, Online Course on Neural Network. 

http://info.usherbrooke.ca/hlarochelle/neural_networks/

• Emmanuel Vincent, Neural Network course. Master TAL, Univ. de Lorraine.

• Paul Magron, Neural Network labs. Master TAL, Université de Lorraine.

• Antoine Liutkus, cours Deep Learning et réseaux de neurones, les 

fondamentaux. Inria Sofia.

• https://towardsdatascience.com/

• https://cs230.stanford.edu/blog/pytorch/

Sources

https://www.deeplearningbook.org/
http://info.usherbrooke.ca/hlarochelle/neural_networks/
https://towardsdatascience.com/
https://cs230.stanford.edu/blog/pytorch/
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Mon Parcours
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• Ecole d’ingénieur ENSIMAG (INPG)

• Double diplôme: master recherche graphisme, vision, robotique
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2007-2010:

• Ecole d’ingénieur ENSIMAG (INPG)

• Double diplôme: master recherche graphisme, vision, robotique

2010-2013:

• Thèse à l’Inria de Grenoble, équipe PERCEPTION (ajd: RobotLearn)
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2014-2015:

• Post-doc à l’université Friedrich-Alexander d’Erlangen (Allemagne)

• Projet européen EARS sur l’Audition Robotique.

2016-présent:

• Chargé de recherche Inria

• Equipe PANAMA (Rennes) puis MULTISPEECH (Nancy) puis (bientôt)  

MACARON (Strasbourg)

• Ré-orientation vers l’acoustique des salles
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Et vous?
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Constats:

• Essor des frameworks opensource depuis 2016 (TensorFlow, Pytorch,…)

 Coder un algo de Deep Learning est devenu très accessible, en 

quelques tutos

• Un nouveau papier IA sort toutes les heures sur ArXiv, une nouvelle 

“révolution” toutes les semaines
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Concept du Cours

Se focaliser sur les concepts fondamentaux pour:

• Savoir trier le bon grain de l’ivraie

• Assimiler rapidement de nouvelles architectures et méthodes

• Identifier la meilleure approche pour un cas d’usage

• Acquérir des bonnes pratiques

• Diagnostiquer les problèmes

• Diapos en anglais
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OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

A.I., Machine Learning, Deep Learning: What, How, Why and When

Tensors and Multivariate Calculus

Linear and Polynomial Regression, Over & Underfitting, Tips & Tricks

From K-means and PCA to Deep Clustering and Deep Generative Models

CNNs, U-Net, RNNs, Attention, Transformers

Optimization techniques, Backpropagation, Gradient Descent, PyTorch
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OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

VII. Machine Learning in Robot Audition

• Artificial Intelligence

• Machine Learning

• Neural Network and Deep Learning

• Applications
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► The Big Picture

Artificial Intelligence
Machine Learning
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Deep  Learning



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

I. Introduction

9

► The Big Picture

Machine Learning

Neural Networks

Deep  Learning

Artificial Intelligence



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?

I. Introduction

10

► Artificial Intelligence



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

I. Introduction

10

► Artificial Intelligence



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

I. Introduction

10

► Artificial Intelligence

"A Collection of Definitions of Intelligence“, Shane Legg, Marcus

Hutter, 2007. Frontiers in Artificial Intelligence and applications.

70 definitions!



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

• Ex. of dictionary definition

I. Introduction

10

► Artificial Intelligence

"A Collection of Definitions of Intelligence“, Shane Legg, Marcus

Hutter, 2007. Frontiers in Artificial Intelligence and applications.

70 definitions!

- "The ability to use memory, knowledge, experience, understanding,

reasoning, imagination and judgement in order to solve problems and adapt

to new situations." AllWords Dictionary, 2006



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

• Ex. of dictionary definition

• Ex. of psychologist definitions

I. Introduction

10

► Artificial Intelligence

"A Collection of Definitions of Intelligence“, Shane Legg, Marcus

Hutter, 2007. Frontiers in Artificial Intelligence and applications.

70 definitions!

- "The ability to use memory, knowledge, experience, understanding,

reasoning, imagination and judgement in order to solve problems and adapt

to new situations." AllWords Dictionary, 2006

- "Intelligence is what is measured by intelligence tests." E. Boring, 1923



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

• Ex. of dictionary definition

• Ex. of psychologist definitions

I. Introduction

10

► Artificial Intelligence

"A Collection of Definitions of Intelligence“, Shane Legg, Marcus

Hutter, 2007. Frontiers in Artificial Intelligence and applications.

70 definitions!

- "The ability to use memory, knowledge, experience, understanding,

reasoning, imagination and judgement in order to solve problems and adapt

to new situations." AllWords Dictionary, 2006

- "Intelligence is what is measured by intelligence tests." E. Boring, 1923

- "Fluid intelligence is your ability to process new information, learn, and solve

problems. Crystallized intelligence is your stored knowledge, accumulated

over the years." R. Cattell, 1963



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

What is Intelligence?
• A difficult question, no consensus today

• Ex. of dictionary definition

• Ex. of psychologist definitions

I. Introduction

10

► Artificial Intelligence

"A Collection of Definitions of Intelligence“, Shane Legg, Marcus

Hutter, 2007. Frontiers in Artificial Intelligence and applications.

70 definitions!

- "The ability to use memory, knowledge, experience, understanding,

reasoning, imagination and judgement in order to solve problems and adapt

to new situations." AllWords Dictionary, 2006

- "Intelligence is what is measured by intelligence tests." E. Boring, 1923

- "Fluid intelligence is your ability to process new information, learn, and solve

problems. Crystallized intelligence is your stored knowledge, accumulated

over the years." R. Cattell, 1963

- "Intelligence is not a single, unitary ability, but rather a composite of several

functions. The term denotes that combination of abilities required for survival

and advancement within a particular culture." A. Anastasi, 1992
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► Artificial Intelligence

- "Intelligence is the ability to use optimally limited resources –including time–

to achieve goals." R. Kurzweil, 2000
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What is Intelligence?
• Ex. of AI researchers definitions

I. Introduction

11

► Artificial Intelligence

- "Intelligence is the ability to use optimally limited resources –including time–

to achieve goals." R. Kurzweil, 2000

- "Intelligence measures an agent’s ability to achieve goals in a wide range of

environments." Shane Legg, Marcus Hutter, 2007
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► Artificial Intelligence

Status in 2023

• Have you seen a robot tidying up your appartment?

• Have you seen a machine:

• Win an art contest? (2022)

• Self-learn to play and beat humans at arbitrary games? (2020)

• Hold coherent extended conversations? (2022)

• Rewrite Bohemian Rhapsody, but about a post-doc’s life? (2020)

https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules
https://cajundiscordian.medium.com/is-lamda-sentient-an-interview-ea64d916d917
https://twitter.com/raphaelmilliere/status/1598469100535259136?s=20


Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Artificial Intelligence: an ill-defined term
• A.I. is a « catch-all » word

I. Introduction

15

► Artificial Intelligence



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Artificial Intelligence: an ill-defined term
• A.I. is a « catch-all » word

• Rarely used in scientific publications

I. Introduction

15

► Artificial Intelligence

Occurrence of terms in 12,900 conference paper 

titles published at "Neural Information Processing 

Systems” since 2010         [Source: Google Scholar]
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► Artificial Intelligence

Occurrence of terms in 12,900 conference paper 

titles published at "Neural Information Processing 

Systems” since 2010         [Source: Google Scholar]

Learning: 3,310
Neural: 1,260
Deep: 864
Deep Learning: 291
Neural Network: 151
Machine Learning: 107
Artificial: 10
Intelligence: 3
Artificial Intelligence: 1

• Ex: Is signal processing / statistics / optimization A.I.?

• Understood by the general public = good for science communication

• Understood by decision makers = good for getting funding

Source: DALL-E, openai.com
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The Rise of A.I. 
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No agreement on:

• Is it achievable ?
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• Jürgen Schmidhuber, DM Inst. for AI 

Research (Switz.), LSTM inventor

• Annotated History of Modern AI and 

Deep Learning

• Gary Marcus, NYU Prof. Emeritus, 

book author

• Blog: The Road to AI We Can Trust

• Sam Altman, CEO and co-founder 

at OpenAI

• Planning for AGI and beyond

• Eliezer Yudkowski, researcher and 

co-founder at the MIRI, author of 

more than 300 blogpost + books

• Leading figure in AI alignment

• AGI Ruin: A List of Lethalities

https://agialignment.com/
https://openreview.net/pdf?id=BZ5a1r-kVsf&utm_source=pocket_mylist
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Other worthwhile reads on A.I. Philosophy

• François Chollet’s The Implausibility of Intelligence Explosion (2017)

• David Chalmer’s Could a large Language Model be Concious? (2022)

• Scott Aaronson’s blog, a theoretical quantum computer scientist at the 

University of Texas Austin who took a sabbatical year to work on AI 

alignment at OpenAI.

• Nick Bolstrom’s “Superintelligence, Paths, Dangers, Strategies” (2014)

https://medium.com/@francois.chollet/the-impossibility-of-intelligence-explosion-5be4a9eda6ec
https://philpapers.org/rec/CHACAL-3
https://scottaaronson.blog/?p=6821
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Data

• Gray Area:

Semi-supervised learning, self-supervised learning, weak labels,…
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RL Algo

Policy
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Environment

Observation Action

Reward

Agent
Others

•  Active learning: 

Choose on which 

samples to learn

• Meta Learning:

Learn how to learn, on 

a set of tasks

• Continual Learning:

Also called lifelong 

learning

Data Task=
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correlate poorly with explanatory variables of interest

• Conventional machine learning methods define and compute 

relevant features before processing the raw data

• Example 1:
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raw 

waveform

raw 

waveform

MFCC

MFCC

“Forward” “Backward”

“Turn Right” “Turn Left”
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• The individual pixels of an image or the samples of a waveform 

correlate poorly with explanatory variables of interest

• Conventional machine learning methods define and compute 

relevant features before processing the raw data

• Example 2:

Data

•The goals of features are:

1) Disentangling what’s 

relevant

2) Discarding what isn’t, i.e., 

build invariance

•Manually designing features, aka 

feature engineering, can be hard for 

a given task

raw 

waveform

raw 

waveform

MFCC

MFCC

“Forward” “Backward”

“Turn Right” “Turn Left”
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• its (width, length)
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• Search in the set of all python functions?

• a gigantic combinatorial set

• Simply memorize the data
• “Lazy Learning”

• Ex: k-NN, look-up table, naive Bayes, case-based

• Slow, large storage, non-robust

• Model Fitting:
Find the best model within a parameterized family

How to make the program that makes the programs?
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=
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?

is a function is a prob. distribution

Note: It can be

a mix of both
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•
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• The model is then found by minimizing a total 

loss / cost function over the set of parameters, 

for a given training dataset : 
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• The model is then found by minimizing a total 

loss / cost function over the set of parameters, 

for a given training dataset : 

Algo

Task

Model

Data

?
where

• The loss     is designed based on the task, the data, and the chosen 

family of models. It measures the fit of         for these data and task.

• Most modern machine learning algorithms can be interpreted as 

minimizing a loss. They hence use optimization.

• The choice of an optimization method depends on the nature of the loss

and of the parameter set.

• Optimization is a huge field. We will cover some of it in Chapter III.

How to make the program that makes the programs?
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• Special case: linear regression

Linear classifiers
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•
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•
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► Machine Learning

General approaches to combine models

• Ensemble learning
• Combine several simple models to get a better one

• Bagging (or Bootstrap) = pool the output of several models (avg, vote)

• Boosting = Sequentially train models, focusing on previously

misclassified data

• Stacking = Train a model to aggregate the output of multiple models

• Ex: Random Forests = bagging of decision trees
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• Partition the input data space
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Artificial Intelligence
Machine Learning

Neural Networks

Deep Learning

• Algorithms that build Models (black-box) from Data to 
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Universal Approximation Theorem [Hornik, Stinchcomb, White, 1991]:

“A single hidden layer neural network with any “sigmoid-like”

activation function and with a linear output unit can approximate any

continuous function arbitrarily well, for sufficiently large .”

… But the required      

may be exponential in 

the input dimension     .

Q: what happens if we 

choose     to be linear ?

► is then linear
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Suppose                                                       , 

how many parameters?

Artificial neural networks with 2 or more hidden 

layers are called Deep Neural Networks (DNNs)

•Artificial neurons, as elementary computing units, 

can be combined in many different ways

•No cycle in the graph = Feedforward Neural Networks

•We call a given network of neurons an architecture

•Neural Networks form a very flexible family of parameterized 

families of non-linear functions:             where How to fit a DNN 

model?

Next chapter :-)
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Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 

PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
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Human Brain Artificial Neural Network

* - A chat session with chatGPT mobilizes roughly a full A100. Training GPT-3 is estimated to have taken ~81 years of A100.

- GPT-3 has ~135 billion parameters and roughly ~0.25 billion “neurons”.

~ 86 billion neurons 100k - 1 billion neurons

~ 7,000 synapse connections per 

neuron (~600 trillion connections)
3 - 1,000 connections per neuron

1 million - 1 trillion parameters

Massively parallel (Mostly) sequential

Asynchronous Synchronous

Very plastic architecture (Mostly) fixed architecture

12 W of power Nvidia A100 GPU : 300 W*

Biological neuron = extremely 

complex** and not fully understood

Artificial Neuron = a weighted sum 

and a threshold.

Inherited from 3.7B year of evolution Programmed & designed by an engineer

** [Beniagev et al. 2021]: a single bio-neuron is well approximated by a 1000-neuron ANN of depth 5-8 
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[Strubell et Al. (2019)], chart by Oslo University

Training one

instance of GPT-3: 

≈ 167 klbs CO2e

Operating chatGPT

in Feb. 2023:

≈ 2046 klbs CO2e 

* 213M parameters NLP Transformer 

with neural architecture search.

*



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

45

► Neural Networks and Deep Learning



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

45

► Neural Networks and Deep Learning

• For many tasks, manually defining relevant features is hard



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

45

► Neural Networks and Deep Learning

• For many tasks, manually defining relevant features is hard

• Examples of data variability from the ImageNet dataset:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

46

► Neural Networks and Deep Learning

• For many tasks, manually defining relevant features is hard

• Examples of data variability from the ImageNet dataset:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

47

► Neural Networks and Deep Learning

• The early successes of deep learning (1998, 2012) were in image

classification, because they proved to be very efficient at representation

learning.



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Why Deep?
2) Bypassing feature engineering

I. Introduction

47

► Neural Networks and Deep Learning

• The early successes of deep learning (1998, 2012) were in image

classification, because they proved to be very efficient at representation

learning.

• Starting from raw pixel values in color

channels, the layers of a deep convolutional

network, seem to learn more and more

elaborate features as the depth increase

(more explanations on this figure later!)
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https://www.deeplearningbook.org/

https://www.deeplearningbook.org/
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• ReLU activation:

• For a 2D input:
y

Theorem [G. Montufar et al., 2014]: the max. number of linear regions

modeled by a piecewise linear network (i.e., a network with ReLU neurons)

with D inputs, L layers, and N units per layer is in the order of

, i.e., the model capacity is exponential in the depth L,

i.e., in the model size (recall it is O(LN2) )
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• 1957-1969: big bang and first excitement

1957 : The Perceptron: a probabilistic model for information 

storage and organization in the brain. Frank Rosenblatt

• One layer
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► Neural Networks and Deep Learning

• 1957-1969: big bang and first excitement

1957 : The Perceptron: a probabilistic model for information 

storage and organization in the brain. Frank Rosenblatt

• One layer

• Good luck to train it !  =>

https://www.skynettoday.com/overviews/neural-net-history

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1957-1969: big bang and first excitement

“The Navy revealed the embryo of an electronic computer today that it expects will be able to

walk, talk, see, write, reproduce itself an be conscious of its existence… Dr. Frank Rosenblatt, a

research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be

fired to the planets as mechanical space explorers”

NY Times, 8 Juillet 1958

https://www.skynettoday.com/overviews/neural-net-history

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1970-1980: The first AI Winter

1969 : Perceptrons

Marvin Minsky (MIT AI lab founder)

The book mentions that perceptron cannot

model functions that are not linearly

separable (and known learning

procedures do not allow to chain

perceptrons)

https://www.skynettoday.com/overviews/neural-net-history

YEP YEP Nope!

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1970-1980: The first AI Winter

1969 : Perceptrons

Marvin Minsky (MIT AI lab founder)

The book mentions that perceptron cannot

model functions that are not linearly

separable (and known learning

procedures do not allow to chain

perceptrons)

AI Funding drops 

for 10 years

https://www.skynettoday.com/overviews/neural-net-history

YEP YEP Nope!

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1985-1995: The second (slow) take off

1986: Learning representations by back-propagating errors. 

Rumelhart, Hinton, Williams. (Nature)

1989: Multilayer feedforward networks are universal approximators. 

Hornik, Stinchcombe, White

https://www.skynettoday.com/overviews/neural-net-history

(today’s head of Google AI research)

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1985-1995: The second (slow) take off

1986: Learning representations by back-propagating errors. 

Rumelhart, Hinton, Williams. (Nature)

1989: Multilayer feedforward networks are universal approximators. 

Hornik, Stinchcombe, White

https://www.skynettoday.com/overviews/neural-net-history

(today’s head of Google AI research)

We have all the theoretical bases for Deep Learning

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1985-1995: The second (slow) take off

https://www.skynettoday.com/overviews/neural-net-history

1989: Backpropagation
Applied to Handwritten Zip 
Code Recognition. Le Cun et al.

(head of Facebook AI research)

The most famous first application of 

deep learning

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1985-1995: The second (slow) take off

https://www.skynettoday.com/overviews/neural-net-history

1994: Reinforcement learning for robots 

using neural networks . Lin

1989: Learning to control an 
inverted pendulum using 
neural networks. Anderson

Deep learning is 

exciting again!

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1995-2005: The second AI winter

https://www.skynettoday.com/overviews/neural-net-history

1994 : Bayesian Learning for neural networks

Shows that a perceptron of infinite size is a 
Gaussian Processing.

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1995-2005: The second AI winter

https://www.skynettoday.com/overviews/neural-net-history

1994 : Bayesian Learning for neural networks

Shows that a perceptron of infinite size is a 
Gaussian Processing.

Support vector machines and 

kernel-based methods beat 

neural networks.

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1995-2005: The second AI winter

https://www.skynettoday.com/overviews/neural-net-history

1994 : Bayesian Learning for neural networks

Shows that a perceptron of infinite size is a 
Gaussian Processing.

Support vector machines and 

kernel-based methods beat 

neural networks.

AI funding drops 

again for 10 years !

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 1995-2005: The second AI winter

https://www.skynettoday.com/overviews/neural-net-history

The fundamental issue of “vanishing gradient”
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. 

Hochreiter et al. (2001)

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 2005-2012: Hardware and Big Data to the rescue 

https://www.skynettoday.com/overviews/neural-net-history

https://www.skynettoday.com/overviews/neural-net-history
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• 2005-2012: Hardware and Big Data to the rescue 

https://www.skynettoday.com/overviews/neural-net-history

• 2009 Large-scale deep unsupervised 

learning using graphics processors.

Raina et al.
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Ciresan et al.  (99.51% on MNIST w/ MLP)

https://www.skynettoday.com/overviews/neural-net-history


Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The History of Deep Learning

I. Introduction

61
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• 2005-2012: Hardware and Big Data to the rescue 
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• 2009 Large-scale deep unsupervised 

learning using graphics processors.

Raina et al.

• 2010 Deep, big, simple neural nets 

excel on handwritten digit recognition.

Ciresan et al.  (99.51% on MNIST w/ MLP)

• 2012 Deep neural networks for 

acoustic modeling in speech 

recognition: The shared views of four 

research group. Hinton et al.
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► Neural Networks and Deep Learning

• 2005-2012: Hardware and Big Data to the rescue 

https://www.skynettoday.com/overviews/neural-net-history

• 2009 Large-scale deep unsupervised 

learning using graphics processors.

Raina et al.

• 2010 Deep, big, simple neural nets 

excel on handwritten digit recognition.

Ciresan et al.  (99.51% on MNIST w/ MLP)

• 2012 Deep neural networks for 

acoustic modeling in speech 

recognition: The shared views of four 

research group. Hinton et al.

• 2012 ImageNet classification with 

deep convolutional neural networks. 

Krishevsky et al.

https://www.skynettoday.com/overviews/neural-net-history
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• 2009 Large-scale deep unsupervised 

learning using graphics processors.

Raina et al.

• 2010 Deep, big, simple neural nets 

excel on handwritten digit recognition.

Ciresan et al.  (99.51% on MNIST w/ MLP)

• 2012 Deep neural networks for 

acoustic modeling in speech 

recognition: The shared views of four 

research group. Hinton et al.

• 2012 ImageNet classification with 

deep convolutional neural networks. 

Krishevsky et al.
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► Neural Networks and Deep Learning

• 2012-2016: Accessibility and Explosion

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 2012-2016: Accessibility and Explosion

https://www.skynettoday.com/overviews/neural-net-history

• 2012 Several frameworks appear that make GPU-based deep learning more 

accessible to practitioners 
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• 2012-2016: Accessibility and Explosion

https://www.skynettoday.com/overviews/neural-net-history

• 2012 Several frameworks appear that make GPU-based deep learning more 

accessible to practitioners 

• 2014 Nearly all domains of science observe a Tsunami in Deep Learning
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► Neural Networks and Deep Learning

• 2012-2016: Accessibility and Explosion

https://www.skynettoday.com/overviews/neural-net-history

• 2012 Several frameworks appear that make GPU-based deep learning more 

accessible to practitioners 

• 2014 Nearly all domains of science observe a Tsunami in Deep Learning

• 2014 Prodigious investments by Google and Facebook on AI researchers
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► Neural Networks and Deep Learning

• 2012-2016: Accessibility and Explosion

https://www.skynettoday.com/overviews/neural-net-history

• 2012 Several frameworks appear that make GPU-based deep learning more 

accessible to practitioners 

• 2014 Nearly all domains of science observe a Tsunami in Deep Learning

• 2014 Prodigious investments by Google and Facebook on AI researchers

• 2015 46% of data processing at Google is DNN-based: translation, speech 

transcription, recommandation, etc.

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

• 2014 - Today: Industrial beginnings, wide audience visibility

https://www.skynettoday.com/overviews/neural-net-history

2014 Start of Deep Learning processors (ex: TPU)
2016 Deepmind’s AlphaGo beats Lee Sedol 4-1, 9th dan in go

https://www.skynettoday.com/overviews/neural-net-history


Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The History of Deep Learning

I. Introduction

64

► Neural Networks and Deep Learning
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► Neural Networks and Deep Learning

Conclusion

https://www.skynettoday.com/overviews/neural-net-history

Geoff Hinton

Turing award 2018

• Our labeled datasets were thousands of 

times too small.

• Our computers were millions of times too 

slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity.

https://www.skynettoday.com/overviews/neural-net-history
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► Neural Networks and Deep Learning

Conclusion

https://www.skynettoday.com/overviews/neural-net-history

Geoff Hinton

Turing award 2018

• Our labeled datasets were thousands of 

times too small.

• Our computers were millions of times too 

slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity.

For an interesting alternative take on the history of deep

learning by another pioneer, Jürgen Schmidhuber

https://people.idsia.ch/~juergen/scientific-integrity-turing-

award-deep-learning.html

https://www.skynettoday.com/overviews/neural-net-history
https://people.idsia.ch/~juergen/scientific-integrity-turing-award-deep-learning.html
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► The Big Picture

Artificial Intelligence
Machine Learning

Neural Networks & Deep Learning

• A versatile family of parameterized families of 

nonlinear functions that can extract complex 

features from data

• Inspired (but far from matching!) biological brains

• Once we got there in terms of computation 

capabilities and scale, they sparked a revolution

that is still ongoing today
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Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement
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-Time series, graph
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► Applications of Deep Learning

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

1) ImageNet Classification
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► Applications of Deep Learning

2) Object Detection

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

3) ChatGPT [OpenAI 2022]

https://chat.openai.com/chat

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

https://chat.openai.com/chat
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► Applications of Deep Learning

4) This Person Does Not Exist

https://this-person-does-not-exist.com/

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

https://this-person-does-not-exist.com/
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► Applications of Deep Learning

5) Text-to-Image Generation [DALL-E 2, Midjourney, Stable Diffusion, Parti, Imagen 2022])

A medieval 

painting of 

the WIFI not 

working

an astronaut 

riding a horse

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

6) MuZero: Mastering Go, chess, shogi and Atari without rules [DeepMind 2020] 

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

7) Solving Rubik’s Cube with a robot hand [OpenAI 2019]

https://openai.com/research/solving-rubiks-cube

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

https://openai.com/research/solving-rubiks-cube
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8) Deep Nostalgia: Make the Elders Move [MyHeritage]

https://www.myheritage.fr/deep-nostalgia

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

► Applications of Deep Learning

https://www.myheritage.fr/deep-nostalgia
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► Applications of Deep Learning

9) Image StyleTransfer

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

10) Human Pose Estimation

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

11) Sound Event Recognition

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

12) NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality

[Microsoft Research 2022]

https://speechresearch.github.io/naturalspeech/

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

https://speechresearch.github.io/naturalspeech/
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► Applications of Deep Learning

13) DeepL

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

14) Speech recognition

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph
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► Applications of Deep Learning

15) RT-1: Robotics Transformer for real-world control at scale

[Google Research 2022]

https://ai.googleblog.com/2022/12/rt-1-robotics-transformer-for-real.html

Type of ML? What are the data?

-Supervised

-Unsupervised

-Mixed

-Reinforcement

-Continuous

-Categorical

-Text, Table

-Time series, graph

https://ai.googleblog.com/2022/12/rt-1-robotics-transformer-for-real.html
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► SUMMARY

Artificial Intelligence
Machine Learning

Neural Networks & Deep Learning

• Strongly embedded in 

collective imagination

• A catch-all term

• Used more in 

marketing/communica-

tion than in actual 
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