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• In high-school calculus, we study functions from reals to reals, 

denoted                .

• Here are some graphs of functions:

► Multivalued Multivariate Functions

• Important subtlety: Here,    and     are variables that depend on each other,

and      are constants, and    is a function that can be applied to a variable 

or a constant. 
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► Multivalued Multivariate Functions

Important examples:

•Linear forms:

•Affine forms: • The Euclidean norm: 

→ represented by a row

vector :

• Another generalization are real-valued multivariate functions, 

i.e.,
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functions, i.e.,                    .
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► Multivalued Multivariate Functions

• Affine maps: 

Important examples: 

• Linear maps:

They can be represented by matrices :
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• Matrices and vectors can be generalized to Tensors

► Tensors

(0-way tensor)

(1-way tensor)
(2-way tensor)

…

(3-way tensor)

…

ro
w

s

columns

Tensors are the ubiquitous way to represent 

data in modern deep learning frameworks
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► Differential Calculus

Generalizing the derivative
• Let                                                 How can we define ?

• Let

• is the linear approx. of       for    infinitesimally small.

• We call this the total derivative of   , or of   , with resp. to   , at     . 

• Since         is a linear map from       to      , it can be represented

• by a matrix,                                        called the Jacobian.

“the variation of    when moving 

by a step     from      .”  

Formulas:
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What does it give for a simple function                    ?

► Differential Calculus

y=6x-9y=-8x-16

• In high-school we learn:

• Ex.

• As a linear map,            can be seen as a 0-way tensor, in          !

• “the variation of    when moving 

to the left or to the right from     .” 

, for    infinitesimally small.

Indeed:
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► Differential Calculus

What about a real-valued multivariate function                      ?

• The total derivative of    at       is the 

linear form that approximates

for     infinitesimally small.

• As a linear form, it can be represented 

by a row vector:

• The transpose of this vector is called 

the gradient of    at       denoted:

• It can be interpreted as the direction 

and rate of fastest increase of    at

• The formula is  
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► Differential Calculus

Note: All of this generalizes naturally to matrix or tensor variables, 

yielding tensor total derivatives.

Domain of Domain of Total Derivative at  
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