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Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves
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► How to minimize a function?

where

• a jean

• its (width, length)

• the shelves

For conciseness we will use

in the next slides.
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► How to minimize a function?

Discrete:

global minimum
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1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:
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1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:

-D continuous:
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1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:

-D continuous: Mixed: …
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1. Brute Force / Random / Grid Search

III. Fitting a Model
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What is    ? What is    ? What is     ?

• Sometimes best when optimizing on a small discrete set of parameters

• Ex: DNN architectures or hyperparameters

► How to minimize a function?
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2. “Population-Based” Algorithms
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• Evolutionary/Genetic algorithms

• Particle Swarms

• Ant Colonies

► How to minimize a function?

What is    ? What is    ? What is     ?
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2. “Population-Based” Algorithms
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• Evolutionary/Genetic algorithms

• Particle Swarms

• Ant Colonies

• Principle = Evolve a population.

• Strongly inspired by nature or physics

• Can be powerful and work on very general functions, but heuristic

► How to minimize a function?

What is    ? What is    ? What is     ?
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3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point               such 

that                       .
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• Also called stationary points of    : the points 

where    is locally constant, i.e., “flat”. 
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► How to minimize a function?

• We call zero of the gradient a point               such 

that                       .

• Also called stationary points of    : the points 

where    is locally constant, i.e., “flat”. 

• They may correspond to:

local minimum local maximum saddle point

• In case of doubt, it is possible to distinguish between the 3 by looking at the 

Hessian of     at      :

Only works if“Second order 

derivative of    ”
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3. Calculating “zeroes” of the gradient
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► How to minimize a function?

Exercise: Fitting an affine model via least squares
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► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:
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► How to minimize a function?

Converges, but not 

necessarily to the 

global minimum
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… …

• For      scalar: coordinate descent

• Convenient when:

• Variables are mixed discrete / continuous

• There are direct solutions wrt. each variable

• Sometimes, introducing new variables and then

performing AM yields efficient algorithms, e.g., 

Expectation-Maximization (EM) or ADMM

• Variant: Alternate between minimization and 

projection onto constraints (e.g.:          )

► How to minimize a function?

Converges, but not 

necessarily to the 

global minimum
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5. Gradient Descent
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► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat
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► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Animation by Andrew Ng

• The updates are:

• Requires the function to be (almost everywhere) differentiable
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► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to 

find the global 

minimum

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to 

find the global 

minimum

If not, this local 

minimum is not 

too bad

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to 

find the global 

minimum

If not, this local 

minimum is not 

too bad

This one performs poorly 

and should be avoided

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to 

find the global 

minimum

If not, this local 

minimum is not 

too bad

This one performs poorly 

and should be avoided

• Spurious local minima 

cannot always be avoided

Animation by Andrew Ng



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed 

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to 

find the global 

minimum

If not, this local 

minimum is not 

too bad

This one performs poorly 

and should be avoided

• Spurious local minima 

cannot always be avoided

• Many variants have been 

derived to limit them, and to 

speed up convergence

Animation by Andrew Ng
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► How to minimize a function?

• The gradient-step , also called learning rate, is a 

critical hyper-parameter of the algorithm. Animation by Andrew Ng
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► How to minimize a function?

• The gradient-step , also called learning rate, is a 

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by 

Gabriel Peyre

Animation by Andrew Ng
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► How to minimize a function?

• The gradient-step , also called learning rate, is a 

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by 

Gabriel Peyre

• Choosing a small    is always the safest, but might result in slow convergence 

Animation by Andrew Ng
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► How to minimize a function?

• The gradient-step , also called learning rate, is a 

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by 

Gabriel Peyre

• Choosing a small    is always the safest, but might result in slow convergence 

Animation by Andrew Ng

• There exists many variations on gradient descent. We will cover some of them 

later in this chapter.
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► How to minimize a function?
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► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching 

among discrete parameters. Quickly explodes in complexity.
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1. Brute Force / Random / Grid Search : Useful when searching 

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.
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1. Brute Force / Random / Grid Search : Useful when searching 

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

3. Directly finding zeroes of the gradient : Very efficient (not iterative) 

but only possible with a limited number of functions.

4. Alternate minimization : A very general family of principled 

methods. Allows combining multiple techniques. Often no 

hyperparameters. Needs to be designed on a case-by-case basis. 

Global convergence is generally not guaranteed.
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► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching 

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

3. Directly finding zeroes of the gradient : Very efficient (not iterative) 

but only possible with a limited number of functions.

4. Alternate minimization : A very general family of principled 

methods. Allows combining multiple techniques. Often no 

hyperparameters. Needs to be designed on a case-by-case basis. 

Global convergence is generally not guaranteed.

5. Gradient descent : Works on any differentiable functions. 

Convergence to local minima. The learning rate is a critical 

hyperparameter.
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• Neural network models are fitted using variants of gradient descent.
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simply called the loss of the DNN.
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► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal 

is to adjust     so that                         .

• We use a total loss of this form:                                                       , where   is 

simply called the loss of the DNN.

• Losses of the form     are called Empirical Risk, where the Risk of the model 

is defined as                                                                           .

• We will focus next on supervised learning, but the approach is more general.

Remember: A deep feedforward neural network

For example:                                  , the so called “L2 loss” or “Euclidean loss”.  

How to compute                       ?!
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• The loss can be viewed as another layer, with real output (the “residual”).

• By linearity of the gradient, we have:                                                                .

• Hence, it is enough to calculate the gradient of the loss for one sample             ,

• i.e.,

• The Backpropagation Algorithm (“Backprop”) is an efficient way to do this.
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to both the parameters and activations, going backwards from the 

end, using the chain rule.



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.

1)  Then, 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.

1)  Then, 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.

1)  Then, 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.

1)  Then, 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect 

to both the parameters and activations, going backwards from the 

end, using the chain rule.

0)  We start by 

For example, for the L2 loss                                    , we have                               , 

the difference between the network prediction and the target.

1)  Then, 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

•



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

•



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

•



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

•

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2)  Then:

• 

• 

•

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

And so on…



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…
Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

6)

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

6)

7)   

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

6)

7)   

8)

Jacobian



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

6)

7)   

8)

In Fine:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)   

And so on…

4)

5)   

6)

7)   

8)

In Fine:

Using the parameters’ gradients, we update them via gradient descent.
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Conclusions

• The idea is very general and can be applied to any feedforward neural 

network architecture

• There are 4 key ingredients:

• the data (constants)

• the parameters (free variables to optimize)

• the activations / layer outputs (dependent variables)

• the functions / layers (layers are generally compositions of functions)

• The data flows forwards while the gradient propagates backwards, a bit like 

another neural network, with only vector/matrix multiplications

• All we need are the forward operators and Jacobians of each module
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► Improved Gradient Descent

• Remember that we train DNNs using Empirical Risk Minimization: 

• We compute the gradient of the total loss by summing the gradients 

of the loss at individual data samples:

• But doing so across the entire dataset (e.g.: 1 million images) for 

every gradient step would be very expansive.
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► Improved Gradient Descent

• At each iteration     , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each       is called a minibatch

• Each pass over the entire dataset is called an epoch

Splitting the training set into     minibatches:

• Reduces the computation cost of one gradient by a factor of 

• Increases the standard deviation on the gradient estimate by a factor 

of        only. More iterations but fewer epochs 

= less total computation
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• Some kinds of hardware perform better with power-of-2 sizes
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► Improved Gradient Descent

• In practice the gradients                          of all examples              are 

computed in parallel using a graphical processing unit (GPU) and 

summed up within a minibatch 

• The choice of the minibatch size is governed by these considerations:

• The minibatch data and computations must fit in GPU memory

• Too small minibatches do not exploit well GPU capabilities

• Some kinds of hardware perform better with power-of-2 sizes

• Typical minibatch sizes: from 32 to 256.

• Limit of SGD: Tends to “zigzag” when 

descending a “canyon”, which increases 

the number of iterations
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• Solution: “smooth” the gradient estimates across several iterations.
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• Momentum = vector    representing the direction and speed at which 

the parameters move through parameter space.
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► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector    representing the direction and speed at which 

the parameters move through parameter space.

• Defined as an exponentially decaying average of the negative 

gradient.

• SGD with momentum: initialize                , 

then replace each iteration of SGD by:

Converges faster than SGD

• The very popular ADAM optimizer (140k

citations since 2014!) extends this idea by 

also averaging squared gradients.
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► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD 

converges to a local minimum.

How many local minima are they? Are they good or bad?

Neural networks always have multiple local minima because of model 

identifiability issues (things that do no change the value of the loss):

• Reordering the neurons in each layer (        possible orderings for

layers with     neurons each!)

• Scaling the incoming weights and biases of a ReLU neuron by           

and its outgoing weights by        .

→ This creates a large or infinite number of local minima, but they are all 

equivalent to each other (not a problem).
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► Improved Gradient Descent

For many years, people believed that large neural networks 

failed because of poor local minima.
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► Improved Gradient Descent

For many years, people believed that large neural networks 

failed because of poor local minima.

Recent theoretical and experimental results suggest that, 

for sufficiently large neural networks:

• Most stationary points are saddle points corresponding 

to a high value of the loss function

• SGD manages to avoid them in practice

• Most local minima correspond to a low value of the cost 

function
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► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement 

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and 

test neural networks, initially developed by Facebook (Meta), based on Torch. 

Constantly evolving thanks to a broad community

• It uses the abstractions allowed by Python, and in particular object oriented 

programming, in order to seamlessly manipulate all the objects we have 

seen: data/constants, variables/parameters, functions, optimizers, loss…

• It uses differential programming, a concept first introduced in Theano. A 

module called AutoGrad automatically records every operations done on 

variables, so that the gradient of complex functions (such as DNN) can be 

automatically calculated using backprop and elementary gradients.

• Includes support for GPU and a C++ interface.

• Competing framework: TensorFlow, initially developed by Google Brain.

≈  TensorFlow → Production  /   PyTorch → R&D.
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Overview of differential Programming

►►

►►
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Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the 

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:
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• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the 

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:
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► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the 

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:

• Associate each box with a backward method, that computes the 

gradient with respect to each child box

• Call the backward method of each box in reverse, right->left order

►►

►►
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► The PyTorch Framework

• Tensors (Data)

import torch

a = torch.Tensor([[1,2],[3,4]])

print(a)

https://cs230.stanford.edu/blog/pytorch/

1 2

3 4

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Tensors (Data)

import torch

a = torch.Tensor([[1,2],[3,4]])

print(a)

print(a**2)

https://cs230.stanford.edu/blog/pytorch/

1 2

3 4

[torch.FloatTensor of size 2x2]

1 4

9 16

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

y = torch.sum(a**2) # 1 + 4 + 9 + 16

print(y)

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

Variable containing:

30

[torch.FloatTensor of size 1]

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

y = torch.sum(a**2) # 1 + 4 + 9 + 16

print(y)

y.backward() # compute gradients of y wrt a

print(a.grad) # print dy/da_ij = 2*a_ij for a_11, a_12, a21, a22

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

Variable containing:

30

[torch.FloatTensor of size 1]

Variable containing:

2 4

6 8

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/


Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

129

► The PyTorch Framework

• Loss

https://cs230.stanford.edu/blog/pytorch/

loss_fn = nn.CrossEntropyLoss()

loss = loss_fn(out, target)

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Loss

https://cs230.stanford.edu/blog/pytorch/

loss_fn = nn.CrossEntropyLoss()

loss = loss_fn(out, target)

def myCrossEntropyLoss(outputs, labels):

batch_size = outputs.size()[0] # batch_size

outputs = F.log_softmax(outputs, dim=1) # compute the log of softmax values

outputs = outputs[(batch_size), labels] # pick the values corresponding to the labels

return -torch.sum(outputs)/num_examples

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

import torch.nn as nn

import torch.nn.functional as F

class TwoLayerNet(nn.Module):

def __init__(self, D_in, H, D_out):

""" Constructor. Instantiate two nn.Linear modules and assign them as member variables.

D_in: input dimension,  H: dimension of hidden layer,   D_out: output dimension

"""

super(TwoLayerNet, self).__init__()

self.linear1 = nn.Linear(D_in, H)

self.linear2 = nn.Linear(H, D_out)

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

import torch.nn as nn

import torch.nn.functional as F

class TwoLayerNet(nn.Module):

def __init__(self, D_in, H, D_out):

""" Constructor. Instantiate two nn.Linear modules and assign them as member variables.

D_in: input dimension,  H: dimension of hidden layer,   D_out: output dimension

"""

super(TwoLayerNet, self).__init__()

self.linear1 = nn.Linear(D_in, H)

self.linear2 = nn.Linear(H, D_out)

def forward(self, x):

""" In the forward function we accept a Variable of input data and we must return a

Variable of output data. We can use Modules defined in the constructor as well as arbitrary

operators on Variables.

"""

h_relu = F.relu(self.linear1(x))

y_pred = self.linear2(h_relu)

return y_pred

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Using Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

#N is batch size; D_in is input dimension;

#H is the dimension of the hidden layer; D_out is output dimension.

N, D_in, H, D_out = 32, 100, 50, 10

#Create random Tensors to hold inputs and outputs, and wrap them in Variables

x = Variable(torch.randn(N, D_in)) # dim: 32 x 100

#Construct our model by instantiating the class defined above

model = TwoLayerNet(D_in, H, D_out)

#Forward pass: Compute predicted y by passing x to the model

y_pred = model(x) # dim: 32 x 10

https://cs230.stanford.edu/blog/pytorch/
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► The PyTorch Framework

• Core Training Step

https://cs230.stanford.edu/blog/pytorch/

output_batch = model(train_batch) # compute model output

loss = loss_fn(output_batch, labels_batch) # calculate loss

#pick an SGD optimizer

optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)

#or pick ADAM

optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)

optimizer.zero_grad() # clear previous gradients

loss.backward() # compute gradients of all variables wrt loss

optimizer.step() # perform updates using calculated gradients

https://cs230.stanford.edu/blog/pytorch/

