
Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

• Multi-valued Multi-variate Functions

• Tensors

• Differential Calculus

• The Chain Rule

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

• How to minimize a function?

• Backpropagation

• Improved Gradient Descent

• The PyTorch Framework

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Ex: a DNN with

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Ex: a DNN with

•Given a training dataset (your legs!),

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Ex: a DNN with

•Given a training dataset (your legs!),

•Given a total loss function that measures the fit of a given

model to the full dataset, for the given task (the smaller the better),

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Ex: a DNN with

•Given a training dataset (your legs!),

•Given a total loss function that measures the fit of a given

model to the full dataset, for the given task (the smaller the better),

→ We want to minimize the loss with respect to the parameters :

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

where

• a jean

• its (width, length)

• the shelves

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

•Given a parameterized family of models == functions

Ex: a DNN with

•Given a training dataset (your legs!),

•Given a total loss function that measures the fit of a given

model to the full dataset, for the given task (the smaller the better),

→ We want to minimize the loss with respect to the parameters :

Recap: the model fitting approach to Machine Learning

III. Fitting a Model

102

► How to minimize a function?

where

• a jean

• its (width, length)

• the shelves

For conciseness we will use

in the next slides.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Domain of the function

III. Fitting a Model

103

► How to minimize a function?

Discrete:

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Domain of the function

III. Fitting a Model

103

1D continuous:

► How to minimize a function?

Discrete:

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Domain of the function

III. Fitting a Model

103

1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Domain of the function

III. Fitting a Model

103

1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:

-D continuous:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Domain of the function

III. Fitting a Model

103

1D continuous:

► How to minimize a function?

Discrete:

global minimum

2D continuous:

-D continuous: Mixed: …

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

1. Brute Force / Random / Grid Search

III. Fitting a Model

104

What is ? What is ? What is ?

• Sometimes best when optimizing on a small discrete set of parameters

• Ex: DNN architectures or hyperparameters

► How to minimize a function?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

2. “Population-Based” Algorithms

III. Fitting a Model

105

• Evolutionary/Genetic algorithms

• Particle Swarms

• Ant Colonies

► How to minimize a function?

What is ? What is ? What is ?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

2. “Population-Based” Algorithms

III. Fitting a Model

105

• Evolutionary/Genetic algorithms

• Particle Swarms

• Ant Colonies

• Principle = Evolve a population.

• Strongly inspired by nature or physics

• Can be powerful and work on very general functions, but heuristic

► How to minimize a function?

What is ? What is ? What is ?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

• Also called stationary points of : the points

where is locally constant, i.e., “flat”.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

• Also called stationary points of : the points

where is locally constant, i.e., “flat”.

• They may correspond to:

local minimum local maximum saddle point

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

• Also called stationary points of : the points

where is locally constant, i.e., “flat”.

• They may correspond to:

local minimum local maximum saddle point

• In case of doubt, it is possible to distinguish between the 3 by looking at the

Hessian of at :

“Second order

derivative of ”

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

• Also called stationary points of : the points

where is locally constant, i.e., “flat”.

• They may correspond to:

local minimum local maximum saddle point

• In case of doubt, it is possible to distinguish between the 3 by looking at the

Hessian of at :

“Second order

derivative of ”

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

106

► How to minimize a function?

• We call zero of the gradient a point such

that .

• Also called stationary points of : the points

where is locally constant, i.e., “flat”.

• They may correspond to:

local minimum local maximum saddle point

• In case of doubt, it is possible to distinguish between the 3 by looking at the

Hessian of at :

Only works if“Second order

derivative of ”

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

where

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

where

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

where

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• Find such that

3. Calculating “zeroes” of the gradient

III. Fitting a Model

107

► How to minimize a function?

Exercise: Fitting an affine model via least squares

• Training set:

• Models:

• Parameters:

• Total Loss:

Hint: we already calculated !

where

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

► How to minimize a function?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

► How to minimize a function?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

► How to minimize a function?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

► How to minimize a function?

Converges, but not

necessarily to the

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

• For scalar: coordinate descent

► How to minimize a function?

Converges, but not

necessarily to the

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

• For scalar: coordinate descent

• Convenient when:

• Variables are mixed discrete / continuous

• There are direct solutions wrt. each variable

► How to minimize a function?

Converges, but not

necessarily to the

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

• For scalar: coordinate descent

• Convenient when:

• Variables are mixed discrete / continuous

• There are direct solutions wrt. each variable

• Sometimes, introducing new variables and then

performing AM yields efficient algorithms, e.g.,

Expectation-Maximization (EM) or ADMM

► How to minimize a function?

Converges, but not

necessarily to the

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

4. Alternated Minimization

III. Fitting a Model

108

… …

• For scalar: coordinate descent

• Convenient when:

• Variables are mixed discrete / continuous

• There are direct solutions wrt. each variable

• Sometimes, introducing new variables and then

performing AM yields efficient algorithms, e.g.,

Expectation-Maximization (EM) or ADMM

• Variant: Alternate between minimization and

projection onto constraints (e.g.:)

► How to minimize a function?

Converges, but not

necessarily to the

global minimum

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Animation by Andrew Ng

• The updates are:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

109

► How to minimize a function?

Intuition:

• Start from an initial parameter vector

• From here, follow the direction of steepest descent

• Stop when things look flat

Animation by Andrew Ng

• The updates are:

• Requires the function to be (almost everywhere) differentiable

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to

find the global

minimum

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to

find the global

minimum

If not, this local

minimum is not

too bad

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to

find the global

minimum

If not, this local

minimum is not

too bad

This one performs poorly

and should be avoided

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to

find the global

minimum

If not, this local

minimum is not

too bad

This one performs poorly

and should be avoided

• Spurious local minima

cannot always be avoided

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

110

► How to minimize a function?

• Local maxima and saddle points are unstable fixed

points, while local minima are stable fixed points

local minimum local maximum saddle point

→ The algorithm converges to local minima under mild assumptions ☺

Ideally, we want to

find the global

minimum

If not, this local

minimum is not

too bad

This one performs poorly

and should be avoided

• Spurious local minima

cannot always be avoided

• Many variants have been

derived to limit them, and to

speed up convergence

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

111

► How to minimize a function?

• The gradient-step , also called learning rate, is a

critical hyper-parameter of the algorithm. Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

111

► How to minimize a function?

• The gradient-step , also called learning rate, is a

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by

Gabriel Peyre

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

111

► How to minimize a function?

• The gradient-step , also called learning rate, is a

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by

Gabriel Peyre

• Choosing a small is always the safest, but might result in slow convergence

Animation by Andrew Ng

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

5. Gradient Descent

III. Fitting a Model

111

► How to minimize a function?

• The gradient-step , also called learning rate, is a

critical hyper-parameter of the algorithm.

Small Large Optimal

Image by

Gabriel Peyre

• Choosing a small is always the safest, but might result in slow convergence

Animation by Andrew Ng

• There exists many variations on gradient descent. We will cover some of them

later in this chapter.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching

among discrete parameters. Quickly explodes in complexity.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

3. Directly finding zeroes of the gradient : Very efficient (not iterative)

but only possible with a limited number of functions.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

3. Directly finding zeroes of the gradient : Very efficient (not iterative)

but only possible with a limited number of functions.

4. Alternate minimization : A very general family of principled

methods. Allows combining multiple techniques. Often no

hyperparameters. Needs to be designed on a case-by-case basis.

Global convergence is generally not guaranteed.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Summary of optimization techniques

III. Fitting a Model

112

► How to minimize a function?

1. Brute Force / Random / Grid Search : Useful when searching

among discrete parameters. Quickly explodes in complexity.

2. Population-Based algorithms : Versatile but heuristic.

3. Directly finding zeroes of the gradient : Very efficient (not iterative)

but only possible with a limited number of functions.

4. Alternate minimization : A very general family of principled

methods. Allows combining multiple techniques. Often no

hyperparameters. Needs to be designed on a case-by-case basis.

Global convergence is generally not guaranteed.

5. Gradient descent : Works on any differentiable functions.

Convergence to local minima. The learning rate is a critical

hyperparameter.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

Remember: A deep feedforward neural network

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

Remember: A deep feedforward neural network

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

Remember: A deep feedforward neural network

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

• We use a total loss of this form: , where is

simply called the loss of the DNN.

Remember: A deep feedforward neural network

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

• We use a total loss of this form: , where is

simply called the loss of the DNN.

Remember: A deep feedforward neural network

For example: , the so called “L2 loss” or “Euclidean loss”.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

• We use a total loss of this form: , where is

simply called the loss of the DNN.

• Losses of the form are called Empirical Risk, where the Risk of the model

is defined as .

Remember: A deep feedforward neural network

For example: , the so called “L2 loss” or “Euclidean loss”.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

• We use a total loss of this form: , where is

simply called the loss of the DNN.

• Losses of the form are called Empirical Risk, where the Risk of the model

is defined as .

• We will focus next on supervised learning, but the approach is more general.

Remember: A deep feedforward neural network

For example: , the so called “L2 loss” or “Euclidean loss”.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to Neural Networks

III. Fitting a Model

113

► Backpropagation

• Neural network models are fitted using variants of gradient descent.

• Given a training dataset of input ↔ output , the general goal

is to adjust so that .

• We use a total loss of this form: , where is

simply called the loss of the DNN.

• Losses of the form are called Empirical Risk, where the Risk of the model

is defined as .

• We will focus next on supervised learning, but the approach is more general.

Remember: A deep feedforward neural network

For example: , the so called “L2 loss” or “Euclidean loss”.

How to compute ?!

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

• The loss can be viewed as another layer, with real output (the “residual”).

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

• The loss can be viewed as another layer, with real output (the “residual”).

• By linearity of the gradient, we have: .

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

• The loss can be viewed as another layer, with real output (the “residual”).

• By linearity of the gradient, we have: .

• Hence, it is enough to calculate the gradient of the loss for one sample ,

• i.e.,

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

• The loss can be viewed as another layer, with real output (the “residual”).

• By linearity of the gradient, we have: .

• Hence, it is enough to calculate the gradient of the loss for one sample ,

• i.e.,

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

• are the pre-activations.

• are the activations.

• The loss can be viewed as another layer, with real output (the “residual”).

• By linearity of the gradient, we have: .

• Hence, it is enough to calculate the gradient of the loss for one sample ,

• i.e.,

• The Backpropagation Algorithm (“Backprop”) is an efficient way to do this.

The Backpropagation Algorithm

III. Fitting a Model

114

► Back Propagation

Let’s start by cleaning a bit the picture:

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

1) Then,

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

1) Then,

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

1) Then,

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

1) Then,

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

115

► Back Propagation

►►

►►

The trick is to recursively calculate the gradient of the loss with respect

to both the parameters and activations, going backwards from the

end, using the chain rule.

0) We start by

For example, for the L2 loss , we have ,

the difference between the network prediction and the target.

1) Then,

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

•

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

116

► Back Propagation

►►

►►

2) Then:

•

•

•

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

And so on…

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…
Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

6)

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

6)

7)

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

6)

7)

8)

Jacobian

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

6)

7)

8)

In Fine:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

117

► Back Propagation

►►

►►

3)

And so on…

4)

5)

6)

7)

8)

In Fine:

Using the parameters’ gradients, we update them via gradient descent.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

118

► Back Propagation

►►

►►

Conclusions

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

118

► Back Propagation

►►

►►

Conclusions

• The idea is very general and can be applied to any feedforward neural

network architecture

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

118

► Back Propagation

►►

►►

Conclusions

• The idea is very general and can be applied to any feedforward neural

network architecture

• There are 4 key ingredients:

• the data (constants)

• the parameters (free variables to optimize)

• the activations / layer outputs (dependent variables)

• the functions / layers (layers are generally compositions of functions)

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

118

► Back Propagation

►►

►►

Conclusions

• The idea is very general and can be applied to any feedforward neural

network architecture

• There are 4 key ingredients:

• the data (constants)

• the parameters (free variables to optimize)

• the activations / layer outputs (dependent variables)

• the functions / layers (layers are generally compositions of functions)

• The data flows forwards while the gradient propagates backwards, a bit like

another neural network, with only vector/matrix multiplications

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The Backpropagation Algorithm

III. Fitting a Model

118

► Back Propagation

►►

►►

Conclusions

• The idea is very general and can be applied to any feedforward neural

network architecture

• There are 4 key ingredients:

• the data (constants)

• the parameters (free variables to optimize)

• the activations / layer outputs (dependent variables)

• the functions / layers (layers are generally compositions of functions)

• The data flows forwards while the gradient propagates backwards, a bit like

another neural network, with only vector/matrix multiplications

• All we need are the forward operators and Jacobians of each module

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to gradient descent

III. Fitting a Model

119

► Improved Gradient Descent

• Remember that we train DNNs using Empirical Risk Minimization:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to gradient descent

III. Fitting a Model

119

► Improved Gradient Descent

• Remember that we train DNNs using Empirical Risk Minimization:

• We compute the gradient of the total loss by summing the gradients

of the loss at individual data samples:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Back to gradient descent

III. Fitting a Model

119

► Improved Gradient Descent

• Remember that we train DNNs using Empirical Risk Minimization:

• We compute the gradient of the total loss by summing the gradients

of the loss at individual data samples:

• But doing so across the entire dataset (e.g.: 1 million images) for

every gradient step would be very expansive.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each is called a minibatch

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each is called a minibatch

• Each pass over the entire dataset is called an epoch

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each is called a minibatch

• Each pass over the entire dataset is called an epoch

Splitting the training set into minibatches:

• Reduces the computation cost of one gradient by a factor of

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each is called a minibatch

• Each pass over the entire dataset is called an epoch

Splitting the training set into minibatches:

• Reduces the computation cost of one gradient by a factor of

• Increases the standard deviation on the gradient estimate by a factor

of only.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

120

► Improved Gradient Descent

• At each iteration , compute the gradient over a random subset

and perform one step of gradient descent:

• At the next iteration, pick another (disjoint) random subset

• When the entire dataset has passed, start over again

• Each is called a minibatch

• Each pass over the entire dataset is called an epoch

Splitting the training set into minibatches:

• Reduces the computation cost of one gradient by a factor of

• Increases the standard deviation on the gradient estimate by a factor

of only. More iterations but fewer epochs

= less total computation

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

121

► Improved Gradient Descent

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

121

► Improved Gradient Descent

• In practice the gradients of all examples are

computed in parallel using a graphical processing unit (GPU) and

summed up within a minibatch

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

121

► Improved Gradient Descent

• In practice the gradients of all examples are

computed in parallel using a graphical processing unit (GPU) and

summed up within a minibatch

• The choice of the minibatch size is governed by these considerations:

• The minibatch data and computations must fit in GPU memory

• Too small minibatches do not exploit well GPU capabilities

• Some kinds of hardware perform better with power-of-2 sizes

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

121

► Improved Gradient Descent

• In practice the gradients of all examples are

computed in parallel using a graphical processing unit (GPU) and

summed up within a minibatch

• The choice of the minibatch size is governed by these considerations:

• The minibatch data and computations must fit in GPU memory

• Too small minibatches do not exploit well GPU capabilities

• Some kinds of hardware perform better with power-of-2 sizes

• Typical minibatch sizes: from 32 to 256.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Stochastic Gradient Descent
(The SGD algorithm)

III. Fitting a Model

121

► Improved Gradient Descent

• In practice the gradients of all examples are

computed in parallel using a graphical processing unit (GPU) and

summed up within a minibatch

• The choice of the minibatch size is governed by these considerations:

• The minibatch data and computations must fit in GPU memory

• Too small minibatches do not exploit well GPU capabilities

• Some kinds of hardware perform better with power-of-2 sizes

• Typical minibatch sizes: from 32 to 256.

• Limit of SGD: Tends to “zigzag” when

descending a “canyon”, which increases

the number of iterations

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector representing the direction and speed at which

the parameters move through parameter space.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector representing the direction and speed at which

the parameters move through parameter space.

• Defined as an exponentially decaying average of the negative

gradient.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector representing the direction and speed at which

the parameters move through parameter space.

• Defined as an exponentially decaying average of the negative

gradient.

• SGD with momentum: initialize ,

then replace each iteration of SGD by:

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector representing the direction and speed at which

the parameters move through parameter space.

• Defined as an exponentially decaying average of the negative

gradient.

• SGD with momentum: initialize ,

then replace each iteration of SGD by:

Converges faster than SGD

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

SGD with Momentum

III. Fitting a Model

122

► Improved Gradient Descent

• Solution: “smooth” the gradient estimates across several iterations.

• Momentum = vector representing the direction and speed at which

the parameters move through parameter space.

• Defined as an exponentially decaying average of the negative

gradient.

• SGD with momentum: initialize ,

then replace each iteration of SGD by:

Converges faster than SGD

• The very popular ADAM optimizer (140k

citations since 2014!) extends this idea by

also averaging squared gradients.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

How many local minima are they? Are they good or bad?

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

How many local minima are they? Are they good or bad?

Neural networks always have multiple local minima because of model

identifiability issues (things that do no change the value of the loss):

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

How many local minima are they? Are they good or bad?

Neural networks always have multiple local minima because of model

identifiability issues (things that do no change the value of the loss):

• Reordering the neurons in each layer (possible orderings for

layers with neurons each!)

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

How many local minima are they? Are they good or bad?

Neural networks always have multiple local minima because of model

identifiability issues (things that do no change the value of the loss):

• Reordering the neurons in each layer (possible orderings for

layers with neurons each!)

• Scaling the incoming weights and biases of a ReLU neuron by

and its outgoing weights by .

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

123

► Improved Gradient Descent

When properly tuned (learning rate not too large nor too small), SGD

converges to a local minimum.

How many local minima are they? Are they good or bad?

Neural networks always have multiple local minima because of model

identifiability issues (things that do no change the value of the loss):

• Reordering the neurons in each layer (possible orderings for

layers with neurons each!)

• Scaling the incoming weights and biases of a ReLU neuron by

and its outgoing weights by .

→ This creates a large or infinite number of local minima, but they are all

equivalent to each other (not a problem).

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

124

► Improved Gradient Descent

For many years, people believed that large neural networks

failed because of poor local minima.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

124

► Improved Gradient Descent

For many years, people believed that large neural networks

failed because of poor local minima.

Recent theoretical and experimental results suggest that,

for sufficiently large neural networks:

• Most stationary points are saddle points corresponding

to a high value of the loss function

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

124

► Improved Gradient Descent

For many years, people believed that large neural networks

failed because of poor local minima.

Recent theoretical and experimental results suggest that,

for sufficiently large neural networks:

• Most stationary points are saddle points corresponding

to a high value of the loss function

• SGD manages to avoid them in practice

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

Local Minima

III. Fitting a Model

124

► Improved Gradient Descent

For many years, people believed that large neural networks

failed because of poor local minima.

Recent theoretical and experimental results suggest that,

for sufficiently large neural networks:

• Most stationary points are saddle points corresponding

to a high value of the loss function

• SGD manages to avoid them in practice

• Most local minima correspond to a low value of the cost

function

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and

test neural networks, initially developed by Facebook (Meta), based on Torch.

Constantly evolving thanks to a broad community

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and

test neural networks, initially developed by Facebook (Meta), based on Torch.

Constantly evolving thanks to a broad community

• It uses the abstractions allowed by Python, and in particular object oriented

programming, in order to seamlessly manipulate all the objects we have

seen: data/constants, variables/parameters, functions, optimizers, loss…

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and

test neural networks, initially developed by Facebook (Meta), based on Torch.

Constantly evolving thanks to a broad community

• It uses the abstractions allowed by Python, and in particular object oriented

programming, in order to seamlessly manipulate all the objects we have

seen: data/constants, variables/parameters, functions, optimizers, loss…

• It uses differential programming, a concept first introduced in Theano. A

module called AutoGrad automatically records every operations done on

variables, so that the gradient of complex functions (such as DNN) can be

automatically calculated using backprop and elementary gradients.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and

test neural networks, initially developed by Facebook (Meta), based on Torch.

Constantly evolving thanks to a broad community

• It uses the abstractions allowed by Python, and in particular object oriented

programming, in order to seamlessly manipulate all the objects we have

seen: data/constants, variables/parameters, functions, optimizers, loss…

• It uses differential programming, a concept first introduced in Theano. A

module called AutoGrad automatically records every operations done on

variables, so that the gradient of complex functions (such as DNN) can be

automatically calculated using backprop and elementary gradients.

• Includes support for GPU and a C++ interface.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

125

► The PyTorch Framework

GOOD NEWS: You (probably) won’t ever need to implement

backpropagation or SGD yourself! ☺

• PyTorch is an opensource Python library designed to easily design, train and

test neural networks, initially developed by Facebook (Meta), based on Torch.

Constantly evolving thanks to a broad community

• It uses the abstractions allowed by Python, and in particular object oriented

programming, in order to seamlessly manipulate all the objects we have

seen: data/constants, variables/parameters, functions, optimizers, loss…

• It uses differential programming, a concept first introduced in Theano. A

module called AutoGrad automatically records every operations done on

variables, so that the gradient of complex functions (such as DNN) can be

automatically calculated using backprop and elementary gradients.

• Includes support for GPU and a C++ interface.

• Competing framework: TensorFlow, initially developed by Google Brain.

≈ TensorFlow → Production / PyTorch → R&D.

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the

value of the box given its children

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the

value of the box given its children

• Call the forward method of each box in left->right order

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:

• Associate each box with a backward method, that computes the

gradient with respect to each child box

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

126

► The PyTorch Framework

Overview of differential Programming

• Model the network as an acyclic computational flow graph

• Associate each box with a forward method, that computes the

value of the box given its children

• Call the forward method of each box in left->right order

Similarly for backpropagation:

• Associate each box with a backward method, that computes the

gradient with respect to each child box

• Call the backward method of each box in reverse, right->left order

►►

►►

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

127

► The PyTorch Framework

• Tensors (Data)

import torch

a = torch.Tensor([[1,2],[3,4]])

print(a)

https://cs230.stanford.edu/blog/pytorch/

1 2

3 4

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

127

► The PyTorch Framework

• Tensors (Data)

import torch

a = torch.Tensor([[1,2],[3,4]])

print(a)

print(a**2)

https://cs230.stanford.edu/blog/pytorch/

1 2

3 4

[torch.FloatTensor of size 2x2]

1 4

9 16

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

128

► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

128

► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

y = torch.sum(a**2) # 1 + 4 + 9 + 16

print(y)

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

Variable containing:

30

[torch.FloatTensor of size 1]

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

128

► The PyTorch Framework

from torch.autograd import Variable

a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)

print(a)

• Variables, Functions and Autograd

y = torch.sum(a**2) # 1 + 4 + 9 + 16

print(y)

y.backward() # compute gradients of y wrt a

print(a.grad) # print dy/da_ij = 2*a_ij for a_11, a_12, a21, a22

https://cs230.stanford.edu/blog/pytorch/

Variable containing:

1 2

3 4

[torch.FloatTensor of size 2x2]

Variable containing:

30

[torch.FloatTensor of size 1]

Variable containing:

2 4

6 8

[torch.FloatTensor of size 2x2]

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

129

► The PyTorch Framework

• Loss

https://cs230.stanford.edu/blog/pytorch/

loss_fn = nn.CrossEntropyLoss()

loss = loss_fn(out, target)

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

129

► The PyTorch Framework

• Loss

https://cs230.stanford.edu/blog/pytorch/

loss_fn = nn.CrossEntropyLoss()

loss = loss_fn(out, target)

def myCrossEntropyLoss(outputs, labels):

batch_size = outputs.size()[0] # batch_size

outputs = F.log_softmax(outputs, dim=1) # compute the log of softmax values

outputs = outputs[(batch_size), labels] # pick the values corresponding to the labels

return -torch.sum(outputs)/num_examples

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

130

► The PyTorch Framework

• Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

import torch.nn as nn

import torch.nn.functional as F

class TwoLayerNet(nn.Module):

def __init__(self, D_in, H, D_out):

""" Constructor. Instantiate two nn.Linear modules and assign them as member variables.

D_in: input dimension, H: dimension of hidden layer, D_out: output dimension

"""

super(TwoLayerNet, self).__init__()

self.linear1 = nn.Linear(D_in, H)

self.linear2 = nn.Linear(H, D_out)

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

130

► The PyTorch Framework

• Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

import torch.nn as nn

import torch.nn.functional as F

class TwoLayerNet(nn.Module):

def __init__(self, D_in, H, D_out):

""" Constructor. Instantiate two nn.Linear modules and assign them as member variables.

D_in: input dimension, H: dimension of hidden layer, D_out: output dimension

"""

super(TwoLayerNet, self).__init__()

self.linear1 = nn.Linear(D_in, H)

self.linear2 = nn.Linear(H, D_out)

def forward(self, x):

""" In the forward function we accept a Variable of input data and we must return a

Variable of output data. We can use Modules defined in the constructor as well as arbitrary

operators on Variables.

"""

h_relu = F.relu(self.linear1(x))

y_pred = self.linear2(h_relu)

return y_pred

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

131

► The PyTorch Framework

• Using Models / Neural Network Modules

https://cs230.stanford.edu/blog/pytorch/

#N is batch size; D_in is input dimension;

#H is the dimension of the hidden layer; D_out is output dimension.

N, D_in, H, D_out = 32, 100, 50, 10

#Create random Tensors to hold inputs and outputs, and wrap them in Variables

x = Variable(torch.randn(N, D_in)) # dim: 32 x 100

#Construct our model by instantiating the class defined above

model = TwoLayerNet(D_in, H, D_out)

#Forward pass: Compute predicted y by passing x to the model

y_pred = model(x) # dim: 32 x 10

https://cs230.stanford.edu/blog/pytorch/

Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

The PyTorch framework

III. Fitting a Model

132

► The PyTorch Framework

• Core Training Step

https://cs230.stanford.edu/blog/pytorch/

output_batch = model(train_batch) # compute model output

loss = loss_fn(output_batch, labels_batch) # calculate loss

#pick an SGD optimizer

optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)

#or pick ADAM

optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)

optimizer.zero_grad() # clear previous gradients

loss.backward() # compute gradients of all variables wrt loss

optimizer.step() # perform updates using calculated gradients

https://cs230.stanford.edu/blog/pytorch/

