OUTLINE

I. Introduction
II. Background

III. Fitting a Model
 • How to minimize a function?
 • Backpropagation
 • Improved Gradient Descent
 • The PyTorch Framework

IV. Supervised Learning
V. Unsupervised Learning
VI. Fantastic DNNs: How to choose them, how to train them
OUTLINE

I. Introduction
II. Background
III. Fitting a Model
IV. Supervised Learning
V. Unsupervised Learning
VI. Fantastic DNNs: How to choose them, how to train them
OUTLINE

I. Introduction
II. Background
III. Fitting a Model
IV. Supervised Learning
 • Regression
 • How to Choose the Loss?
 • Detection & Classification
 • Over and Underfitting
V. Unsupervised Learning
VI. Fantastic DNNs: How to choose them, how to train them
IV. Supervised Learning

Supervised Learning

Labeled training data

\[\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{T} \]

Input \rightarrow Labels/Targets

\[[x_1, x_2, \ldots, x_T] \rightarrow [y_1, y_2, \ldots, y_T] \]
IV. Supervised Learning

Supervised Learning

Labeled training data

\[\mathcal{T} = \{ (x_t, y_t) \}_{t=1}^{T} \]

Input

\[[x_1, x_2, \ldots, x_T] \]

Labels/Targets

\[[y_1, y_2, \ldots, y_T] \]

Training

Learned Model

\[f_\theta \]
IV. Supervised Learning

Overview

Supervised Learning

- **Labeled training data**
 \[\mathcal{T} = \{ (x_t, y_t) \}_{t=1}^{T} \]
 - Input: \([x_1, x_2, \ldots, x_T]\)
 - Labels/Targets: \([y_1, y_2, \ldots, y_T]\)

- **Training**
 - Test: \(\tilde{x}\)

- **Learned Model**
 \(f_\theta\)

- **Estimate**
 \(\tilde{y}\)
IV. Supervised Learning

Overview

Supervised Learning

Labeled training data

\[T = \{(x_t, y_t)\}_{t=1}^{T} \]

- **Input**
- **Labels/Targets**

Training

- **Test**
- **Estimate**

1. **Discrete case**: («one-hot»)
 - Classification
 - Ex. application: *dog breed*
 - Example: *German Shepherd*

\[y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]
IV. Supervised Learning

Supervised Learning

Labeled training data

\[\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T \]

Input

Labels/Targets

Test

\[\tilde{x} \]

Training

Learned Model

\[f_\theta \]

Estimate

\[\tilde{y} \]

1. **Discrete case**: («one-hot»)
 - Classification
 - Ex. application: *dog breed*

 \[y = \begin{pmatrix} 1 \end{pmatrix} \]

 ![German Shepherd](image)

2. **Continuous case**:
 - Regression
 - Ex. application: *head pose*

 ![Head Pose](image)
IV. Supervised Learning

Supervised Learning

Labeled training data

\[\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T \]

- **Input**
- **Labels/Targets**

Test

\[\tilde{x} \]

Training

Learned Model

\[f_\theta \]

Estimate

\[\tilde{y} \]

1. **Discrete case**: («one-hot»)
 - Classification
 - Ex. application: *dog breed*
 - \[y = \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \]
 - 13: German Shepherd

2. **Continuous case**:
 - Regression
 - Ex. application: *head pose*
 - \[y = \begin{bmatrix} 0.1 \\ 0.6 \\ 0.3 \end{bmatrix} \]

3. **Sparse case**:
 - Multi-label classification
 - Ex. application: *image labelling*
 - \[y = \begin{bmatrix} 0.1 \\ 0.6 \\ 0.3 \end{bmatrix} \]
 - man
 - palm tree
 - phone
IV. Supervised Learning ▶ Regression

Generalizing linear regression

- Training set: \(\mathcal{T} = \{ (x_t, y_t) \}_{t=1}^{T} \)
- Models: \(f_{\theta}(x) = ax + b \)
- Parameters: \(\theta = [a, b]^T \in \mathbb{R}^2 \)
- Total Loss: \(g(\theta) = L(f_{\theta}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\theta}(x_t) - y_t)^2 \)
IV. Supervised Learning

Regression

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{T}$
- Models: $f_\theta(x) = ax + b$
- Parameters: $\theta = [a, b]^\top \in \mathbb{R}^2$
- Total Loss: $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_\theta(x_t) - y_t)^2$
Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_\theta(x) = ax + b$
- Parameters: $\theta = [a, b]^T \in \mathbb{R}^2$
- Total Loss: $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2$
Generalizing linear regression

- **Training set:** $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- **Models:** $f_\theta(x) = ax + b$
- **Parameters:** $\theta = [a, b]^\top \in \mathbb{R}^2$
- **Total Loss:**
 $$g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2$$

$$y = a_0 x + b_0$$
IV. Supervised Learning

Generalizing linear regression

\[y = a_0 x + b_0 \]

- Training set: \(\mathcal{T} = \{ (x_t, y_t) \}_{t=1}^{T} \)
- Models: \(f_{\theta}(x) = ax + b \)
- Parameters: \(\theta = [a, b]^T \in \mathbb{R}^2 \)
- Total Loss:
 \[
 g(\theta) = L(f_{\theta}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\theta}(x_t) - y_t)^2
 \]

\[
 g(\theta) = \frac{1}{T} \sum_{t=1}^{T} \left([x_t, 1]^T \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| W\theta - y \|_2^2, \quad \nabla_\theta g(\theta_0) = 0 \Rightarrow \theta_0 = (W^T W)^{-1} W^T y
\]
IV. Supervised Learning ▶ Regression

Generalizing linear regression

\[y = a_0 x + b_0 \]

- Training set: \(\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T \)
- Models: \(f_\theta(x) = ax + b \)
- Parameters: \(\theta = [a, b]^\top \in \mathbb{R}^2 \)
- Total Loss: \(g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2 \)

\[
g(\theta) = \frac{1}{T} \sum_{t=1}^T \left(\begin{bmatrix} x_t, 1 \end{bmatrix}^\top \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| W_\theta - y \|_2^2, \quad \nabla_\theta g(\theta_0) = 0 \Rightarrow \theta_0 = (W^\top W)^{-1} W^\top y
\]

\[\rightarrow \text{This generalizes to } y = f_\theta(x) = Ax + b, \quad \theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^N : \]
IV. Supervised Learning

Regression

Generalizing linear regression

\[y = a_0 x + b_0 \]

- Training set: \(\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T \)
- Models: \(f_\theta(x) = ax + b \)
- Parameters: \(\theta = [a, b]^T \in \mathbb{R}^2 \)
- Total Loss: \(g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2 \)

\[g(\theta) = \frac{1}{T} \sum_{t=1}^T \left([x_t, 1] \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \|W\theta - y\|_2^2, \quad \nabla_\theta g(\theta_0) = 0 \Rightarrow \theta_0 = (W^T W)^{-1} W^T y \]

→ This generalizes to \(y = f_\theta(x) = Ax + b, \quad \theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^N \):

\[g(\theta) = \frac{1}{T} \sum_{t=1}^T \|Ax_t + b - y_t\|_2^2, \]
IV. Supervised Learning

Regression

Generalizing linear regression

\[y = a_0 x + b_0 \]

- Training set: \(T = \{ (x_t, y_t) \}_{t=1}^T \)
- Models: \(f_\theta(x) = ax + b \)
- Parameters: \(\theta = [a, b]^T \in \mathbb{R}^2 \)
- Total Loss: \(g(\theta) = L(f_\theta, T) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2 \)

\[
g(\theta) = \frac{1}{T} \sum_{t=1}^T \left(\begin{bmatrix} x_t \ 1 \end{bmatrix}^T \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| W\theta - y \|_2^2, \quad \nabla_\theta g(\theta_0) = 0 \Rightarrow \theta_0 = (W^T W)^{-1} W^T y
\]

→ This generalizes to \(y = f_\theta(x) = Ax + b, \quad \theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^N \):

\[
g(\theta) = \frac{1}{T} \sum_{t=1}^T \| Ax_t + b - y_t \|_2^2, \quad \nabla_\theta g(\theta_0) = 0 \Rightarrow \begin{bmatrix} \hat{a}_{n,0} \\ b_{n,0} \end{bmatrix} = (W^T W)^{-1} W^T y_n, \quad \forall n
\]

\[
\begin{bmatrix} x_1^T, 1 \\ \vdots \\ x_T^T, 1 \end{bmatrix} \in \mathbb{R}^{T \times (D+1)}
\]
Generalizing linear regression

- **Training set:** $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- **Models:** $f_\theta(x) = a_2 x^2 + a_1 x + a_0$
- **Parameters:** $\theta = [a_0, a_1, a_2]^T \in \mathbb{R}^3$
- **Total Loss:** $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_\theta(x_t) - y_t)^2$

→ What about polynomial regression?
Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_\theta(x) = a_2 x^2 + a_1 x + a_0$
- Parameters: $\theta = [a_0, a_1, a_2]^\top \in \mathbb{R}^3$
- Total Loss: $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2$

→ What about polynomial regression?
- Convertible to the same problem using the lifting: $y = [a_0, a_1, a_2] \times \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$
Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_\theta(x) = a_2x^2 + a_1x + a_0$
- Parameters: $\theta = [a_0, a_1, a_2]^\top \in \mathbb{R}^3$
- Total Loss: $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2$

→ What about polynomial regression?
- Convertible to the same problem using the lifting: $y = [a_0, a_1, a_2] \times \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$
- More generally, 2nd degree multivariate polynomial regression ($y \in \mathbb{R}^N$, $x \in \mathbb{R}^D$):

$$y_n = \sum_{i=1}^D \sum_{j=i}^D a_{ij}^{(n)} x_i x_j + \sum_{i=1}^D a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \ldots, a_{11}^{(n)}, a_{12}^{(n)} \ldots, a_{DD}^{(n)}] \times \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_1^2 \\ \vdots \\ x_D^2 \end{bmatrix}$$
IV. Supervised Learning

Regression

Generalizing linear regression

$y = a_2 x^2 + a_1 x + a_0$?

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_\theta(x) = a_2 x^2 + a_1 x + a_0$
- Parameters: $\theta = [a_0, a_1, a_2]^T \in \mathbb{R}^3$
- Total Loss: $g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^T (f_\theta(x_t) - y_t)^2$

→ What about polynomial regression?
- Convertible to the same problem using the lifting: $y = [a_0, a_1, a_2] \times \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$
- More generally, 2nd degree multivariate polynomial regression $(y \in \mathbb{R}^N, x \in \mathbb{R}^D)$:

$$y_n = \sum_{i=1}^D \sum_{j=i}^D a_{ij}^{(n)} x_i x_j + \sum_{i=1}^D a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \ldots, a_{11}^{(n)}, a_{12}^{(n)}, \ldots, a_{DD}^{(n)}] \times \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_1^2 \\ \vdots \\ x_2^2 \end{bmatrix}$$

→ How many parameters?
IV. Supervised Learning

Regression

Generalizing linear regression

\[y = a_2 x^2 + a_1 x + a_0 ? \]

- Training set: \(\mathcal{T} = \{(x_t, y_t)\}^T_{t=1} \)
- Models: \(f_\theta(x) = a_2 x^2 + a_1 x + a_0 \)
- Parameters: \(\theta = [a_0, a_1, a_2]^T \in \mathbb{R}^3 \)
- Total Loss: \(g(\theta) = L(f_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_\theta(x_t) - y_t)^2 \)

→ What about polynomial regression?
- Convertible to the same problem using the lifting: \(y = [a_0, a_1, a_2] \times \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} \)
- More generally, 2\text{nd} degree multivariate polynomial regression \((y \in \mathbb{R}^N, x \in \mathbb{R}^D) \):

\[
y_n = \sum_{i=1}^{D} \sum_{j=i}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \ldots, a_{11}^{(n)}, a_{12}^{(n)}, \ldots, a_{DD}^{(n)}] \times \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_1^2 \\ \vdots \\ x_D^2 \end{bmatrix}
\]
→ How many parameters? \(O(ND^2) \)
Generalizing linear regression

- K^{th} degree multivariate polynomial regression:

$$y_n = \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} \cdots \sum_{i_K=i_{K-1}}^{D} a_{i_1i_2\ldots i_K}^{(n)} x_{i_1} x_{i_2} \cdots x_{i_K} + \cdots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \sum_{i_1=1}^{D} a_{i_1}^{(n)} x_{i_1} + a_0^{(n)}$$

\rightarrow How many parameters? $\mathcal{O}(ND^K)$
IV. Supervised Learning ▶ Regression

Generalizing linear regression

- K^{th} degree multivariate polynomial regression:

$$y_n = \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} \cdots \sum_{i_K=i_{K-1}}^{D} a_{i_1i_2\ldots i_K}^{(n)} x_{i_1} x_{i_2} \cdots x_{i_K} + \cdots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \sum_{i_1=1}^{D} a_{i_1}^{(n)} x_{i_1} + a_0^{(n)}$$

→ How many parameters? $O(ND^K)$

- In contrast:

![Diagram of a neural network with K layers](image)

→ How many parameters?
Generalizing linear regression

- K^{th} degree multivariate polynomial regression:

$$y_n = \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} \cdots \sum_{i_K=i_{K-1}}^{D} a_{i_1i_2\ldots i_K}^{(n)} x_{i_1} x_{i_2} \cdots x_{i_K} + \cdots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \sum_{i_1=1}^{D} a_{i_1}^{(n)} x_{i_1} + a_0^{(n)}$$

→How many parameters? $\mathcal{O}(ND^K)$

- In contrast:

K layers

$\begin{align*}
\mathbf{x} & \in \mathbb{R}^D \\
& \vdots \\
& N \quad N \quad N \quad N \\
\mathbf{y} & \in \mathbb{R}^N
\end{align*}$

→How many parameters? $\mathcal{O}(DN + (K - 1)N^2)$
How to choose the loss?

IV. Supervised Learning

► How to Choose the Loss?

How to choose the loss?

W^1, b^1 W^2, b^2 W^K, b^K

σ

\mathbf{a}

x^1 x^2 x^K

\mathbf{x}_t

y_t

y (age, height) $\in \mathbb{R}^2$

\mathbf{l}
How to choose the loss?

A general principled approach is to use the network to model $p(y|x)$.
IV. Supervised Learning

How to choose the loss?

A general principled approach is to use the network to model $p(y|x)$.

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of y and x^K, i.e., $\mathcal{P} = \{\tilde{p}_\lambda(y)\}_{\lambda \in \Lambda}$.
How to choose the loss?

A general principled approach is to use the network to model $p(y|x)$.

1) Choose a **simple** family of parameterized probabilistic distributions over the domain of y and x^K, i.e., $\mathcal{P} = \{\tilde{p}_\lambda(y)\}_{\lambda \in \Lambda}$.

Ex: $\tilde{p}_\mu(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|y - \mu\|_2^2}{2}\right)$, $\tilde{p}_b(y) = \begin{cases} b \in [0, 1] & \text{for } y = 1 \\ 1 - b & \text{for } y = 0 \end{cases}$

(Gaussian) (Bernouilli)
How to choose the loss?

A general principled approach is to use the network to model $p(y|x)$.

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of y and x^K, i.e., $\mathcal{P} = \{\tilde{p}_\lambda(y)\}_{\lambda \in \Lambda}$.

 \[
 \text{Ex: } \tilde{p}_\mu(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|y - \mu\|_2^2}{2}\right), \quad \tilde{p}_b(y) = \begin{cases}
 b \in [0, 1] & \text{for } y = 1 \\
 1 - b & \text{for } y = 0
 \end{cases}
 \]

 (Gaussian) (Bernoulli)

2) We then model the conditional probability as: $p_\theta(y|x) = \tilde{p}_{\lambda = \text{dnn}_\theta(x)}(y)$
How to choose the loss?

A general principled approach is to use the network to model \(p(y|x) \).

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of \(y \) and \(x^K \), i.e., \(\mathcal{P} = \{ \tilde{p}_\lambda(y) \}_{\lambda \in \Lambda} \).

 \[
 \text{Ex: } \tilde{p}_\mu(y) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\|y - \mu\|^2_2}{2} \right), \quad \tilde{p}_b(y) = \begin{cases}
 b \in [0, 1] & \text{for } y = 1 \\
 1 - b & \text{for } y = 0
 \end{cases}
 \]

 (Gaussian) (Bernouilli)

2) We then model the conditional probability as: \(p_\theta(y|x) = \tilde{p}_{\text{dnn}_\theta(x)}(y) \)

3) We want to find \(\theta \) that maximizes the **likelihood** over the training set:

 \[
 \hat{\theta} = \arg\max_\theta \prod_{t=1}^T p_\theta(y_t|x_t)
 \]
How to choose the loss?

A general principled approach is to use the network to model $p(y|x)$.

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of y and x^K, i.e., $\mathcal{P} = \{\tilde{p}_\lambda(y)\}_{\lambda \in \Lambda}$.

 $$Ex: \quad \tilde{p}_\mu(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|y - \mu\|_2^2}{2}\right), \quad \tilde{p}_b(y) = \begin{cases} b \in [0, 1] & \text{for } y = 1 \\ 1 - b & \text{for } y = 0 \end{cases}$$

 (Gaussian)
 (Bernoulli)

2) We then model the conditional probability as: $p_\theta(y|x) = \tilde{p}_\lambda = \text{dnn}_\theta(x)(y)$

3) We want to find θ that maximizes the **likelihood** over the training set:

 $$\hat{\theta} = \arg\max_\theta \prod_{t=1}^T p_\theta(y_t|x_t)$$

Note: we assume the training set examples are **independent**.
IV. Supervised Learning

How to choose the loss?

4) Usually, we define the **total loss** as the **negative log-likelihood**:

\[
L(dnn_\theta, \mathcal{T}) = -\log \prod_{t=1}^{T} p_\theta(y_t|x_t)
\]
How to choose the loss?

4) Usually, we define the **total loss** as the **negative log-likelihood**:

\[
L(dnn_\theta, \mathcal{T}) = -\log \prod_{t=1}^{T} p_\theta(y_t|x_t) = \sum_{t=1}^{T} -\log p_\theta(y_t|x_t)
\]
IV. Supervised Learning

How to choose the loss?

4) Usually, we define the **total loss** as the **negative log-likelihood**:

\[
L(\text{dnn}_\theta, \mathcal{T}) = - \log \prod_{t=1}^{T} p_\theta(y_t | x_t) = \sum_{t=1}^{T} - \log p_\theta(y_t | x_t)
\]

\[
= \sum_{t=1}^{T} - \log \tilde{p}_{\text{dnn}_\theta}(x_t)(y_t)
\]
How to choose the loss?

4) Usually, we define the total loss as the negative log-likelihood:

\[
L(dnn_{\theta}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\theta}(y_t|x_t) = \sum_{t=1}^{T} -\log p_{\theta}(y_t|x_t)
\]

\[
= \sum_{t=1}^{T} -\log \tilde{p}_{dnn_{\theta}}(x_t)(y_t) = \sum_{t=1}^{T} -\log \tilde{p}_{x^K}(y_t)
\]
IV. Supervised Learning

How to choose the loss?

4) Usually, we define the total loss as the negative log-likelihood:

\[
L(dnn_\theta, T) = -\log \prod_{t=1}^{T} p_\theta(y_t|x_t) = \sum_{t=1}^{T} - \log p_\theta(y_t|x_t)
\]

\[
= \sum_{t=1}^{T} - \log \tilde{p}_{dnn_\theta}(x_t)(y_t) = \sum_{t=1}^{T} - \log \tilde{p}_{x^K_t}(y_t)
\]

Example with the Gaussian distribution:

\[
\ell(x^K_t, y_t) = - \log \tilde{p}_{x^K_t}(y_t) = - \log \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{||x^K_t - y_t||^2}{2} \right)
\]
How to choose the loss?

4) Usually, we define the **total loss** as the **negative log-likelihood**:

\[L(dnn_\theta, T) = -\log \prod_{t=1}^{T} p_\theta(y_t|x_t) = -\log p_\theta(y_t|x_t) \]

\[= \sum_{t=1}^{T} -\log \tilde{p}_{dnn_\theta}(x_t)(y_t) = \sum_{t=1}^{T} -\log \tilde{p}_{x^K_t}(y_t) \]

Example with the Gaussian distribution:

\[\ell(x^K_t, y_t) = -\log \tilde{p}_{x^K_t}(y_t) = -\log \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\|x^K_t - y_t\|^2}{2} \right) = \frac{1}{2} \|x^K_t - y_t\|^2 \]

→ We recover the **L2 loss**!
How to choose the loss?

4) Usually, we define the **total loss** as the **negative log-likelihood**:

\[
L(dnn_\theta, T) = -\log \prod_{t=1}^{T} p_\theta(y_t | x_t) = \sum_{t=1}^{T} -\log p_\theta(y_t | x_t) \\
= \sum_{t=1}^{T} -\log \tilde{p}_{dnn_\theta}(x_t)(y_t) = \sum_{t=1}^{T} -\log \tilde{p}_{x^K_t}(y_t)
\]

Example with the Gaussian distribution:

\[
\ell(x^K_t, y_t) = -\log \tilde{p}_{x^K_t}(y_t) = -\log \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\|x^K_t - y_t\|^2}{2} \right) = \frac{1}{2} \|x^K_t - y_t\|^2
\]

→ We recover the **L2 loss**!

Using the L2 loss is equivalent to assuming the network will make i.i.d Gaussian errors.
How to choose the loss?

The approach is very general and can be used with a variety of parameterized probability distributions.
How to choose the loss?

The approach is very general and can be used with a variety of parameterized probability distributions.

- For $y \geq 0$ we can use an exponential distribution $\tilde{p}_\lambda(y) = \lambda \exp(-\lambda y)$.
How to choose the loss?

The approach is very general and can be used with a variety of parameterized probability distributions.

- For $y \geq 0$ we can use an exponential distribution $\tilde{p}_\lambda(y) = \lambda \exp(-\lambda y)$

- We can use this approach to not only estimate the mean but also the variance (\approxuncertainty) of the network output:

$$\tilde{p}_{\mu,\sigma^2}(y) = \frac{1}{\sqrt{2\pi\sigma^2N}} \exp\left(-\frac{\|y - \mu\|^2_2}{2\sigma^2}\right), \quad x^K \equiv [\mu, \sigma^2]$$
Detection

Example: Captcha \(x_t \in \mathbb{R}^D, \ y_t \in \{0, 1\} \)
Detection

Example: Captcha \(x_t \in \mathbb{R}^D, \ y_t \in \{0, 1\} \)

- Let’s use the same principle to design our loss.
Detection

Example: Captcha \(\mathbf{x}_t \in \mathbb{R}^D, \ y_t \in \{0, 1\} \)

- Let’s use the same principle to design our loss.
- We can use a Bernouilli distribution:

\[
\tilde{p}_b(y) = \begin{cases}
 b & \text{for } y = 1 \\
 1 - b & \text{for } y = 0
\end{cases}
\]
Detection

Example: Captcha $\mathbf{x}_t \in \mathbb{R}^D$, $y_t \in \{0, 1\}$

- Let’s use the same principle to design our loss.
- We can use a Bernouilli distribution:

$$\tilde{p}_b(y) = \begin{cases} b & \text{for } y = 1 \\ 1 - b & \text{for } y = 0 \end{cases}$$

- Note that $b \in [0, 1]$, hence we need to constrain the output of the network in this interval => we use a sigmoid function at the output:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
IV. Supervised Learning

Detection

Example: Captcha $x_t \in \mathbb{R}^D$, $y_t \in \{0, 1\}$

- Let’s use the same principle to design our loss.
- We can use a Bernoulli distribution:
 \[
 \tilde{p}_b(y) = \begin{cases}
 b \in [0, 1] & \text{for } y = 1 \\
 1 - b & \text{for } y = 0
 \end{cases}
 \]

- Note that $b \in [0, 1]$, hence we need to constrain the output of the network in this interval \Rightarrow we use a sigmoid function at the output:

- Using the maximum likelihood approach with this distribution, we obtain the following loss:
 \[
 \ell(x^K_t, y_t) = -\log \tilde{p}_{x^K_t}(y_t) = -y_t \log x^K_t - (1 - y_t) \log (1 - x^K_t),
 \]
 \[
 = \text{the Binary Cross-Entropy}.
 \]
IV. Supervised Learning ▶ Detection & Classification

Classification

• This generalizes to **multi-class classification**

\[\mathbf{x}_t \in \mathbb{R}^D, \; y_t \in \{1, 2, \ldots, N\} \]

Ex: ImageNet (1000 classes)
Classification

- This generalizes to **multi-class classification**

\[x_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \ldots, N\} \]

- It is convenient to represent the output as a **“one-hot”** vector:

\[y_t = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \rightarrow \text{index of the class} \]

Ex: ImageNet (1000 classes)
Classification

- This generalizes to multi-class classification

\[x_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \ldots, N\} \]

- It is convenient to represent the output as a "one-hot" vector:

\[
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
\rightarrow \text{index of the class}
\]

- We use a categorical distribution:

\[
\tilde{p}_b(y) = \begin{cases}
 b_1 \in [0, 1] & \text{for } y_1 = 1 \\
 b_2 \in [0, 1] & \text{for } y_2 = 1 \\
 \vdots \\
 b_N \in [0, 1] & \text{for } y_N = 1
\end{cases}, \quad \text{with } \sum_n b_n = 1
\]

Ex: ImageNet (1000 classes)
Classification

- This generalizes to **multi-class classification**
 \[x_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \ldots, N\} \]
- It is convenient to represent the output as a **“one-hot”** vector:
 \[
 y_t = \begin{bmatrix}
 0 \\
 \vdots \\
 0 \\
 1 \\
 0 \\
 \vdots \\
 0
 \end{bmatrix} \rightarrow \text{index of the class}
 \]
- We use a **categorical distribution**:
 \[
 \tilde{p}_b(y) = \begin{cases}
 b_1 \in [0, 1] & \text{for } y_1 = 1 \\
 b_2 \in [0, 1] & \text{for } y_2 = 1 \\
 \vdots & \\
 b_N \in [0, 1] & \text{for } y_N = 1 \\
 \end{cases}, \quad \text{with } \sum_n b_n = 1
 \]
Classification

- The **Soft-Max** activation function:

\[
x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a^K_{n'})} \begin{bmatrix}
\exp(a^K_1) \\
\exp(a^K_2) \\
\vdots \\
\exp(a^K_N)
\end{bmatrix}
\]
IV. Supervised Learning

Classification

• The *Soft-Max* activation function:

\[
x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^K)} \begin{bmatrix} \exp(a_1^K) \\ \exp(a_2^K) \\ \vdots \\ \exp(a_N^K) \end{bmatrix}
\]

• Can be viewed as a generalization of the sigmoid
IV. Supervised Learning

Classification

- The **Soft-Max** activation function:

\[
x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a^K_{n'})} \begin{bmatrix}
\exp(a^K_1) \\
\exp(a^K_2) \\
\vdots \\
\exp(a^K_N)
\end{bmatrix}
\]

- Can be viewed as a generalization of the sigmoid
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value
IV. Supervised Learning

Classification

- The **Soft-Max** activation function:
 \[
 x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a^K_{n'})} \begin{bmatrix}
 \exp(a^K_1) \\
 \exp(a^K_2) \\
 \vdots \\
 \exp(a^K_N)
 \end{bmatrix}
 \]

- Can be viewed as a generalization of the sigmoid

- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value

- Using the maximum likelihood approach with a categorical distribution yields the (generalized) **cross entropy loss**:

 \[
 \ell(x^K_t, y_t) = -\log \tilde{p}_{x^K_t}(y_t) = \sum_{n=1}^{N} -y_{t,n} \log x^K_{t,n}
 \]
Classification

- The **Soft-Max** activation function:
 \[
 x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a^K_{n'})} \begin{bmatrix}
 \exp(a^K_1) \\
 \exp(a^K_2) \\
 \vdots \\
 \exp(a^K_N)
\end{bmatrix}
 \]

- Can be viewed as a generalization of the sigmoid

- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value

- Using the maximum likelihood approach with a categorical distribution yields the (generalized) **cross entropy loss**:
 \[
 \ell(x^K_t, y_t) = -\log \tilde{p}_{x^K_t}(y_t) = \sum_{n=1}^{N} -y_{t,n} \log x^K_{t,n}
 \]

Multi-Label Classification
IV. Supervised Learning

Classification

- The **Soft-Max** activation function:

 \[x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^K)} \begin{bmatrix} \exp(a_1^K) \\ \exp(a_2^K) \\ \vdots \\ \exp(a_N^K) \end{bmatrix} \]

- Can be viewed as a generalization of the sigmoid

- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value

- Using the maximum likelihood approach with a categorical distribution yields the (generalized) **cross entropy loss**:

 \[\ell(x^K_t, y_t) = -\log \tilde{p}_x^K(y_t) = \sum_{n=1}^{N} y_{t,n} \log x^K_{t,n} \]

Multi-Label Classification

- Can be done by statistically aggregating **multiple binary detectors**
Classification

• The **Soft-Max** activation function:

\[
x^K = \sigma(-a^K) = \frac{1}{\sum_{n'=1}^{N} \exp(a^K_{n'})} \begin{bmatrix} \exp(a^K_1) \\ \exp(a^K_2) \\ \vdots \\ \exp(a^K_N) \end{bmatrix}
\]

• Can be viewed as a generalization of the sigmoid

• Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value

• Using the maximum likelihood approach with a categorical distribution yields the (generalized) **cross entropy loss**:

\[
\ell(x^K_t, y_t) = -\log \tilde{p}_t x^K_t(y_t) = \sum_{n=1}^{N} -y_{t,n} \log x^K_{t,n}
\]

Multi-Label Classification

• Can be done by statistically aggregating **multiple binary detectors**

• Falls in the category of **ensemble methods**
Scenario:

- Imagine we have a training dataset \mathcal{T} containing 10,000 images with labels (supervised learning)
Scenario:

- Imagine we have a training dataset \(\mathcal{T} \) containing 10,000 images with labels (supervised learning)
- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task
Scenario:

- Imagine we have a training dataset \mathcal{T} containing 10,000 images with labels (supervised learning).

- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task.

- We get nearly **perfect results** on these 10,000 images, e.g., 99.9% of correct classification.
Scenario:

- Imagine we have a training dataset \mathcal{T} containing 10,000 images with labels (supervised learning)

- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task

- We get nearly **perfect results** on these 10,000 images, e.g., 99.9% of correct classification

- However, when we run the DNN on new images, the results are **awful**, i.e., close to random.
IV. Supervised Learning

Scenario:

• Imagine we have a training dataset \(\mathcal{T} \) containing 10,000 images with labels (supervised learning)

• Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task

• We get nearly **perfect results** on these 10,000 images, e.g., 99.9% of correct classification

• However, when we run the DNN on new images, the results are **awful**, i.e., close to random.

What’s going on?
Overfitting

• Our algorithm is guilty of overfitting \((\text{sur-apprentissage})\)
Overfitting

• Our algorithm is guilty of overfitting (*sur-apprentissage*)

• Instead of learning general features to classify the images, it learned by heart all the images in our training dataset!
Overfitting

- Our algorithm is guilty of **overfitting** (*sur-apprentissage*)

- Instead of learning general features to classify the images, it **learned by heart** all the images in our training dataset!

- Remember that we often have **millions** or **billions** or parameters in a deep model. Hence, it has the **capacity** to **store/encode** large amount of data
Overfitting

- Our algorithm is guilty of **overfitting** (*sur-apprentissage*)

- Instead of learning general features to classify the images, it **learned by heart** all the images in our training dataset!

- Remember that we often have **millions** or **billions** or parameters in a deep model. Hence, it has the **capacity** to **store/encode** large amount of data

- This may even happen for models of relatively small capacity, if the **amount of training data** is insufficient.
Overfitting

- Ex: polynomial regression
Overfitting

- Ex: polynomial regression

- Ex: binary classification
Overfitting

• In supervised learning, we are *not only interested* in a model that works perfectly on our training set. *We already have the answers anyway*, by definition of a (supervised) training set!
Overfitting

- In supervised learning, we are **not only interested** in a model that works perfectly on our training set. **We already have the answers anyway**, by definition of a (supervised) training set!
- We want a model that **generalizes** to **unseen** data.
Overfitting

- In supervised learning, we are **not only interested** in a model that works perfectly on our training set. We already have the answers **anyway**, by definition of a (supervised) training set!

- We want a model that **generalizes** to unseen data

- Solution: We split our dataset in **3**:

 ![Dataset Diagram]

 - TRAINING
 - VALIDATION
 - TEST
Overfitting

• In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set!

• We want a model that generalizes to unseen data

• Solution: We split our dataset in 3:

 Dataset

 | TRAINING | VALIDATION | TEST |

• These 3 subsets must be perfectly disjoint and all representative of the data.
Overfitting

- In supervised learning, we are not only interested in a model that works perfectly on our training set. **We already have the answers anyway,** by definition of a (supervised) training set!

- We want a model that **generalizes** to **unseen** data

- Solution: We split our dataset in **3:**
 - **TRAINING**
 - **VALIDATION**
 - **TEST**

- These 3 subsets must be **perfectly disjoint** and all **representative** of the data.

- To achieve this, the split is done **at random.**
IV. Supervised Learning

Overfitting

Dataset

TRAINING

VALIDATION

TEST
Overfitting

- This separation is **absolutely essential** for any supervised machine learning algorithm to reliably work.
IV. Supervised Learning

Overfitting

- This separation is **absolutely essential** for any supervised machine learning algorithm to reliably work.
- The model parameters are only optimized over the **training set**.

![Dataset](image)
Overfitting

- This separation is **absolutely essential** for any supervised machine learning algorithm to reliably work.
- The model parameters are only optimized over the **training set**.
- We only use the validation set to:
 - At each training step, verify that the model is making progress on that set (possibly using another performance measure than the loss) ➞ If not: we **stop**.
 - Tune hyperparameters (e.g. gradient steps), compare different families of models.
IV. Supervised Learning

Overfitting

Dataset

<table>
<thead>
<tr>
<th>TRAINING</th>
<th>VALIDATION</th>
<th>TEST</th>
</tr>
</thead>
</table>

• This separation is **absolutely essential** for any supervised machine learning algorithm to reliably work.

• The model parameters are only optimized over the **training set**.

• We only use the validation set to:
 • At each training step, verify that the model is making progress on that set (possibly using another performance measure than the loss) => If not: we **stop**.
 • Tune hyperparameters (e.g. gradient steps), compare different families of models.

• Looking at the test set if **forbidden** in any of those steps (**inverse crime**).
Overfitting

- We can detect overfitting by tracking the total loss over the training iterations / epochs:

GOOD. The validation loss is only slightly less good than the training one and does not increase

NOT GOOD. The validation loss increases: we are starting to learn by heart the training set!
Some vocabulary

- **Capacity**: flexibility of a model. It often (but not necessarily!) correlates with the number of parameters of the model.

- **Hyper-parameter**: a parameter of a model that is not trained (specified before training).

- **Model selection**: process of choosing the best hyperparameters on the validation set.

- **Underfitting**: state of model which could improve generalization with more training or more capacity.

- **Overfitting**: state of model which could improve generalization with less training or less capacity.
IV. Supervised Learning

► Over and Underfitting

Overfitting vs. Underfitting

- Training vs. Validation

underfitting overfitting

training time or capacity
IV. Supervised Learning

► Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?

- If training time increases:
 - training error will ?
 - validation error will ?

- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?
IV. Supervised Learning

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?
 - decrease

- If training time increases:
 - training error will ?
 - validation error will ?

- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?
IV. Supervised Learning

Quizz

- If capacity increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training time increases:
 - training error will ?
 - validation error will ?

- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?
IV. Supervised Learning

Quizz

• If capacity increases:
 • training error will ? decrease
 • validation error will ? decrease or increase

• If training time increases:
 • training error will ? decrease
 • validation error will ?

• If training set size increases:
 • generalization error will ?
 • difference between the training and generalization error will ?
IV. Supervised Learning

► Over and Underfitting

Quizz

- If capacity increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training time increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?
IV. Supervised Learning

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training time increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training set size increases:
 - generalization error will ? decrease (or stay the same)
 - difference between the training and generalization error will ?
IV. Supervised Learning

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training time increases:
 - training error will ? decrease
 - validation error will ? decrease or increase

- If training set size increases:
 - generalization error will ? decrease (or stay the same)
 - difference between the training and generalization error will ? decrease
Techniques to reduce overfitting

1) Regularization
Techniques to reduce overfitting

1) Regularization

- We add to the total loss a term that depends directly on the parameters of the neural network:

\[
L(dnn_\theta, T) = \frac{1}{T} \sum_{t=1}^{T} \ell(dnn_\theta(x_t), y_t) + \lambda \mathcal{R}(\theta)
\]
IV. Supervised Learning

Techniques to reduce overfitting

1) Regularization

- We add to the total loss a term that depends directly on the parameters of the neural network:

\[
L(dnn_\theta, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} \ell(dnn_\theta(x_t), y_t) + \lambda R(\theta)
\]

- For example, we could add the **L2 norm** of the coefficients in the **weight matrices**, to avoid that they become very large (a common clue of overfitting)
Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically
IV. Supervised Learning ➤ Over and Underfitting

Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
IV. Supervised Learning

Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful
IV. Supervised Learning

Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically.
- Each hidden unit is set to 0 with a certain probability at each gradient step.
- Hidden units cannot co-adapt to other units.
- Hidden units must be more generally useful.
- Dropout probability typically between 0.2 and 0.5.
Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful
- Dropout probability typically between 0.2 and 0.5.
- At test time, replace the masks by their expectation (e.g., constant vector 0.5 if dropout probability is 0.5).
Techniques to reduce overfitting

2) Dropout

- Idea: “cripple” the neural network by removing hidden units stochastically.
- Each hidden unit is set to 0 with a certain probability at each gradient step.
- Hidden units cannot co-adapt to other units.
- Hidden units must be more generally useful.
- Dropout probability typically between 0.2 and 0.5.
- At test time, replace the masks by their expectation (e.g., constant vector 0.5 if dropout probability is 0.5).
- Can be viewed as averaging an exponential number of networks.
IV. Supervised Learning ▶ Over and Underfitting

Techniques to reduce overfitting

2) Dropout
Techniques to reduce overfitting

3) Data Augmentation
Techniques to reduce overfitting

3) Data Augmentation

- Increase the dataset size by applying **transformations** to the input examples that does **not** affect the output (or affect it in a predictable way)
Techniques to reduce overfitting

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)

- Examples:
 - Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
 - Add noise to input signals, degrade their quality, remove imperceptible parts
Techniques to reduce overfitting

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)

- Examples:
 - Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
 - Add noise to input signals, degrade their quality, remove imperceptible parts

- One may as well augment the data by using simulators: e.g. photorealistic 3D scenes, simulated acoustic scenes… or other generative machine learning models.
Techniques to reduce overfitting

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)

- Examples:
 - Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
 - Add noise to input signals, degrade their quality, remove imperceptible parts

- One may as well augment the data by using simulators: e.g. photorealistic 3D scenes, simulated acoustic scenes….or other generative machine learning models.

- Data augmentation is often key for a ML method to work
IV. Supervised Learning

Techniques to reduce overfitting

3) Data Augmentation