OUTLINE

I. Introduction

II. Background

III. Fitting a Model

- How to minimize a function?
- Backpropagation
- Improved Gradient Descent
- The PyTorch Framework
- IV. Supervised Learning
- V. Unsupervised Learning
- VI. Fantastic DNNs: How to choose them, how to train them

École d'ingénieurs

Antoine.Deleforge@inria.fr

OUTLINE

- I. Introduction
- II. Background
- III. Fitting a Model
- **IV. Supervised Learning**

V. Unsupervised Learning

VI. Fantastic DNNs: How to choose them, how to train them

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

OUTLINE

- Introduction
- II. Background
- III. Fitting a Model
- **IV.** Supervised Learning

 - RegressionHow to Choose the Loss?Detection & Classification
 - Over and Underfitting
- Unsupervised Learning V.
- VI. Fantastic DNNs: How to choose them, how to train them

Antoine.Deleforge@inria.fr

► Overview

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

Overview

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Overview

Supervised Learning

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Overview

Supervised Learning

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Overview

Supervised Learning

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría 🛛

Antoine.Deleforge@inria.fr

► Overview

Supervised Learning

Université de **Strasbourg**

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Regression

Generalizing linear regression

 $y = a_0 x + b_0$

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Regression

Generalizing linear regression

 $y = a_0 x + b_0$

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{bmatrix} x_t, 1 \end{bmatrix}^{\top} \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| \mathbf{W}\boldsymbol{\theta} - \boldsymbol{y} \|_2^2, \quad \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \mathbf{0} \Rightarrow \boldsymbol{\theta}_0 = (\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top} \boldsymbol{y}$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Regression

Generalizing linear regression

Innía

École d'ingénieurs

Université de Strasbourg

 $y = a_0 x + b_0$

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{bmatrix} x_t, 1 \end{bmatrix}^{\top} \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| \mathbf{W}\boldsymbol{\theta} - \boldsymbol{y} \|_2^2, \quad \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \mathbf{0} \Rightarrow \boldsymbol{\theta}_0 = (\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top} \boldsymbol{y}$$

 \rightarrow This generalizes to $y = f_{\theta}(x) = Ax + b$, $\theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^{N}$:

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

► Regression

Generalizing linear regression

 $y = a_0 x + b_0$

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{bmatrix} x_t, 1 \end{bmatrix}^{\top} \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| \mathbf{W}\boldsymbol{\theta} - \boldsymbol{y} \|_2^2, \quad \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \mathbf{0} \Rightarrow \boldsymbol{\theta}_0 = (\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top} \boldsymbol{y}$$

 \rightarrow This generalizes to $y = f_{\theta}(x) = Ax + b$, $\theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^{N}$:

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \|\boldsymbol{A}\boldsymbol{x}_t + \boldsymbol{b} - \boldsymbol{y}_t\|_2^2,$$

Innía

École d'ingénieurs

Université de Strasbourg

Antoine.Deleforge@inria.fr

► Regression

Generalizing linear regression

 $y = a_0 x + b_0$

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = ax + b$
- Parameters: $\boldsymbol{\theta} = [a, b]^{\top} \in \mathbb{R}^2$
- Total Loss: $g(\theta) = L(f_{\theta}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\theta}(x_t) y_t)^2$

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \left(\begin{bmatrix} x_t, 1 \end{bmatrix}^{\top} \begin{bmatrix} a \\ b \end{bmatrix} - y_t \right)^2 = \frac{1}{T} \| \mathbf{W}\boldsymbol{\theta} - \boldsymbol{y} \|_2^2, \quad \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \mathbf{0} \Rightarrow \boldsymbol{\theta}_0 = (\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top} \boldsymbol{y}$$

 \rightarrow This generalizes to $y = f_{\theta}(x) = Ax + b$, $\theta = (A, b) \in \mathbb{R}^{N \times D} \times \mathbb{R}^{N}$:

$$g(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \|\boldsymbol{A}\boldsymbol{x}_{t} + \boldsymbol{b} - \boldsymbol{y}_{t}\|_{2}^{2}, \quad \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_{0}) = \boldsymbol{0} \Rightarrow \begin{bmatrix} \hat{\boldsymbol{a}}_{n,0} \\ \boldsymbol{b}_{n,0} \end{bmatrix} = (\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top} \boldsymbol{y}_{n}, \forall n$$

$$\begin{pmatrix} \boldsymbol{x}_{1}^{\top}, & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_{T}^{\top}, & 1 \end{bmatrix} \in \mathbb{R}^{T \times (D+1)}$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Innía

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$
- Models: $f_{\theta}(x) = a_2 x^2 + a_1 x + a_0$

• Parameters:
$$\boldsymbol{\theta} = [a_0, a_1, a_2]^{\top} \in \mathbb{R}^3$$

• Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) - y_t)^2$

 \rightarrow What about polynomial regression?

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Generalizing linear regression

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$ Models: $f_{\boldsymbol{\theta}}(x) = a_2 x^2 + a_1 x + a_0$

• Parameters:
$$\boldsymbol{\theta} = [a_0, a_1, a_2]^{\top} \in \mathbb{R}^3$$

- Total Loss: $g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) y_t)^2$
- \rightarrow What about polynomial regression?
- Convertible to the same problem using the *lifting*: $y = [a_0, a_1, a_2] \times \begin{vmatrix} x \\ x^2 \end{vmatrix}$

Generalizing linear regression

École d'ingénieurs Télécom Physique

Université de Strasbourg

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$ Models: $f_{\theta}(x) = a_2 x^2 + a_1 x + a_0$

• Parameters:
$$\boldsymbol{\theta} = [a_0, a_1, a_2]^{\top} \in \mathbb{R}^3$$

• Total Loss:
$$g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) - y_t)^2$$

- \rightarrow What about polynomial regression?
- Convertible to the same problem using the *lifting*: $y = [a_0, a_1, a_2] \times \begin{vmatrix} x \\ x^2 \end{vmatrix}$
- More generally, 2nd degree multivariate polynomial regression $(\boldsymbol{y} \in \mathbb{R}^N, \boldsymbol{x} \in \mathbb{R}^D)$:

$$y_n = \sum_{i=1}^{D} \sum_{j=i}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times$$

Generalizing linear regression

École d'inaénieurs Télécom Physique

Université de Strasbourg

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$ Models: $f_{\theta}(x) = a_2 x^2 + a_1 x + a_0$

• Parameters:
$$\boldsymbol{\theta} = [a_0, a_1, a_2]^{\top} \in \mathbb{R}^3$$

• Total Loss:
$$g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) - y_t)^2$$

- \rightarrow What about polynomial regression?
- Convertible to the same problem using the *lifting*: $y = [a_0, a_1, a_2] \times \begin{vmatrix} x \\ x^2 \end{vmatrix}$
- More generally, 2nd degree multivariate polynomial regression $(\boldsymbol{y} \in \mathbb{R}^N, \boldsymbol{x} \in \mathbb{R}^D)$:

$$y_n = \sum_{i=1}^{D} \sum_{j=i}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] > 0$$

→How many parameters?

Artificial Intelligence & Deep Learning

 x_1

 $x_1 x_2$

 x_D^2

Generalizing linear regression

École d'inaénieurs Télécom Physique

Université de Strasbourg

- Training set: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^T$ Models: $f_{\theta}(x) = a_2 x^2 + a_1 x + a_0$

• Parameters:
$$\boldsymbol{\theta} = [a_0, a_1, a_2]^{\top} \in \mathbb{R}^3$$

• Total Loss:
$$g(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} (f_{\boldsymbol{\theta}}(x_t) - y_t)^2$$

- \rightarrow What about polynomial regression?
- Convertible to the same problem using the *lifting*: $y = [a_0, a_1, a_2] \times \begin{vmatrix} x \\ x^2 \end{vmatrix}$
- More generally, 2nd degree multivariate polynomial regression $(\boldsymbol{y} \in \mathbb{R}^N, \boldsymbol{x} \in \mathbb{R}^D)$:

$$y_n = \sum_{i=1}^{D} \sum_{j=i}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_{ij}^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_i^{(n)} x_i x_j + \sum_{i=1}^{D} a_i^{(n)} x_i x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, \dots, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_i^{(n)} x_i x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, \dots, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_i^{(n)} x_i x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, \dots, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_i^{(n)} x_i x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, \dots, a_{12}^{(n)}, \dots, a_{DD}^{(n)}] \times \sum_{i=1}^{D} a_i^{(n)} x_i x_i + a_0^{(n)} \Rightarrow y_n = [a_0^{(n)}, a_1^{(n)}, \dots, a_{11}^{(n)}, \dots, a_{12}^{(n)}, \dots, a_{DD}^{(n)}]$$

\rightarrow How many parameters? $\mathcal{O}(ND^2)$

 x_1

 $x_1 x_2$

 x_D^2

▶ Regression

Generalizing linear regression

Kth degree multivariate polynomial regression:

$$y_n = \sum_{i_1=1}^D \sum_{i_2=i_1}^D \cdots \sum_{i_K=i_{K-1}}^D a_{i_1i_2\dots i_K}^{(n)} x_{i_1} x_{i_2} \dots x_{i_K} + \dots + \sum_{i_1=1}^D \sum_{i_2=i_1}^D a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \sum_{i_1=1}^D a_{i_1}^{(n)} x_{i_1} + a_0^{(n)} x_{i_1} + a_0^{(n)} x_{i_1} + \dots + \sum_{i_1=1}^D a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \sum_{i_1=1}^D a_{i_1}^{(n)} x_{i_1} + a_0^{(n)} x_{i_1} + \dots + \sum_{i_1=1}^D a_{i_1i_2}^{(n)} x_{i_1} x_{i_2} + \dots + \sum_{i_1=1}^D a_{i_1i_2}^{(n)} x_{i_1i_2} + \dots + \sum_{i_1$$

 \rightarrow How many parameters? $\mathcal{O}(ND^{K})$

École d'ingénieurs

Université de Strasbourg

lnría

► Regression

Generalizing linear regression

• Kth degree multivariate polynomial regression:

 \rightarrow How many parameters? $\mathcal{O}(ND^{K})$

► Regression

Generalizing linear regression

• Kth degree multivariate polynomial regression:

$$y_n = \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} \cdots \sum_{i_K=i_{K-1}}^{D} a_{i_1i_2\dots i_K}^{(n)} x_{i_1}x_{i_2}\dots x_{i_K} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1}x_{i_2} + \sum_{i_1=1}^{D} a_{i_1}^{(n)} x_{i_1} + a_0^{(n)} x_{i_1} + a_0^{(n)} x_{i_1} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1i_2} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_2i_2}^{(n)} x_{i_1i_2} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} a_{i_1i_2}^{(n)} x_{i_1i_2} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} x_{i_2i_2} + \dots + \sum_{i_1=1}^{D} \sum_{i_2=i_1}^{D} x_{i_2i_2} + \dots + \sum_{i_1=i_2}^{D} x_{i_2i_2} +$$

 \rightarrow How many parameters? $\mathcal{O}(ND^{K})$

Antoine.Deleforge@inria.fr

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

A general principled approach is to use the network to model p(y|x).

A general principled approach is to use the network to model p(y|x).

1) Choose a simple family of parameterized probabilistic distributions over the domain of y and x^{K} , i.e., $\mathcal{P} = \{\tilde{p}_{\lambda}(y)\}_{\lambda \in \Lambda}$.

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

A general principled approach is to use the network to model p(y|x).

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of y and x^{K} , i.e., $\mathcal{P} = \{\tilde{p}_{\lambda}(y)\}_{\lambda \in \Lambda}$.

$$\begin{aligned} \textbf{\textit{Ex:}} \quad \tilde{p}_{\boldsymbol{\mu}}(\boldsymbol{y}) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{y} - \boldsymbol{\mu}\|_2^2}{2}\right), \qquad \tilde{p}_b(y) = \begin{cases} b \in [0, 1] \text{ for } y = 1\\ 1 - b \text{ for } y = 0 \end{cases} \end{aligned}$$

$$(\text{Gaussian}) \qquad \qquad \text{(Bernouilli)} \end{aligned}$$

Télécom Physique Université de Strasbourg Université de Strasbourg

École d'ingénieurs

École d'ingénieurs

Université de Strasbourg

How to choose the loss?

A general principled approach is to use the network to model p(y|x).

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of y and x^{K} , i.e., $\mathcal{P} = \{\tilde{p}_{\lambda}(y)\}_{\lambda \in \Lambda}$.

$$\begin{aligned} \textbf{Ex:} \quad \tilde{p}_{\boldsymbol{\mu}}(\boldsymbol{y}) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{y}-\boldsymbol{\mu}\|_2^2}{2}\right), \qquad \tilde{p}_b(\boldsymbol{y}) = \begin{cases} b \in [0,1] \text{ for } \boldsymbol{y} = 1\\ 1-b \text{ for } \boldsymbol{y} = 0 \end{cases} \\ \end{aligned}$$
(Gaussian) (Bernouilli)

2) We then model the conditional probability as: $p_{\theta}(y|x) = \tilde{p}_{\lambda = dnn_{\theta}(x)}(y)$

A general principled approach is to use the network to model p(y|x).

1) Choose a **simple** family of **parameterized** probabilistic distributions over the domain of \boldsymbol{y} and \boldsymbol{x}^{K} , i.e., $\mathcal{P} = \{\tilde{p}_{\lambda}(\boldsymbol{y})\}_{\lambda \in \Lambda}$.

$$\begin{aligned} \textbf{Ex:} \quad \tilde{p}_{\boldsymbol{\mu}}(\boldsymbol{y}) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{y}-\boldsymbol{\mu}\|_2^2}{2}\right), \qquad \tilde{p}_b(\boldsymbol{y}) = \begin{cases} b \in [0,1] \text{ for } \boldsymbol{y} = 1\\ 1-b \text{ for } \boldsymbol{y} = 0 \end{cases} \\ \end{aligned}$$
(Gaussian) (Bernouilli)

- 2) We then model the conditional probability as: $p_{\theta}(y|x) = \tilde{p}_{\lambda = dnn_{\theta}(x)}(y)$
- 3) We want to find $\boldsymbol{\theta}$ that maximizes the likelihood over the training set: $\hat{\boldsymbol{\theta}} = \operatorname{argmax} \prod_{t}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$

θ

École d'ingénieurs

Université de Strasbourg

A general principled approach is to use the network to model p(y|x).

Choose a **simple** family of **parameterized** probabilistic distributions over the domain of \boldsymbol{y} and \boldsymbol{x}^{K} , i.e., $\mathcal{P} = \{\tilde{p}_{\lambda}(\boldsymbol{y})\}_{\lambda \in \Lambda}$.

$$\begin{aligned} \textbf{Ex:} \quad \tilde{p}_{\boldsymbol{\mu}}(\boldsymbol{y}) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{y}-\boldsymbol{\mu}\|_2^2}{2}\right), \qquad \tilde{p}_b(\boldsymbol{y}) = \begin{cases} b \in [0,1] \text{ for } \boldsymbol{y} = 1\\ 1-b \text{ for } \boldsymbol{y} = 0 \end{cases} \\ \end{aligned}$$
(Gaussian) (Bernouilli)

- We then model the conditional probability as: $p_{\theta}(y|x) = \tilde{p}_{\lambda = \text{dnn}_{\theta}(x)}(y)$ 2)
- We want to find θ that maximizes the **likelihood** over the training set: 3) **Note:** we assume the training set $\hat{\boldsymbol{\theta}} = \operatorname{argmax} \left[\begin{array}{c} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) \end{array} \right]$

examples are independent.

θ

École d'ingénieurs Télécom Physique

Université de Strasbourg

4) Usually, we define the total loss as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

4) Usually, we define the total loss as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

4) Usually, we define the **total loss** as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$
$$= \sum_{t=1}^{T} -\log \tilde{p}_{\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_t)}(\boldsymbol{y}_t)$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

4) Usually, we define the total loss as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$
$$= \sum_{t=1}^{T} -\log \tilde{p}_{\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_t)}(\boldsymbol{y}_t) = \sum_{t=1}^{T} -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t)$$

Université de **Strasbourg**

École d'ingénieurs

Antoine.Deleforge@inria.fr

4) Usually, we define the **total loss** as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$
$$= \sum_{t=1}^{T} -\log \tilde{p}_{\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_t)}(\boldsymbol{y}_t) = \sum_{t=1}^{T} -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t)$$

Example with the Gaussian distribution:

Inría

École d'ingénieurs

Université de **Strasbourg**

$$\ell(\boldsymbol{x}_t^K, \boldsymbol{y}_t) = -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t) = -\log \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{x}_t^K - \boldsymbol{y}_t\|_2^2}{2}\right)$$

Antoine.Deleforge@inria.fr

4) Usually, we define the **total loss** as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$
$$= \sum_{t=1}^{T} -\log \tilde{p}_{\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_t)}(\boldsymbol{y}_t) = \sum_{t=1}^{T} -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t)$$

Example with the Gaussian distribution:

$$\ell(\boldsymbol{x}_{t}^{K}, \boldsymbol{y}_{t}) = -\log \tilde{p}_{\boldsymbol{x}_{t}^{K}}(\boldsymbol{y}_{t}) = -\log \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{x}_{t}^{K} - \boldsymbol{y}_{t}\|_{2}^{2}}{2}\right) \stackrel{c}{=} \frac{1}{2} \|\boldsymbol{x}_{t}^{K} - \boldsymbol{y}_{t}\|_{2}^{2}$$

 \rightarrow We recover the L2 loss!

4) Usually, we define the **total loss** as the *negative log-likelihood*:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = -\log \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t) = \sum_{t=1}^{T} -\log p_{\boldsymbol{\theta}}(\boldsymbol{y}_t | \boldsymbol{x}_t)$$
$$= \sum_{t=1}^{T} -\log \tilde{p}_{\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_t)}(\boldsymbol{y}_t) = \sum_{t=1}^{T} -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t)$$

Example with the Gaussian distribution:

$$\ell(\boldsymbol{x}_{t}^{K}, \boldsymbol{y}_{t}) = -\log \tilde{p}_{\boldsymbol{x}_{t}^{K}}(\boldsymbol{y}_{t}) = -\log \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\|\boldsymbol{x}_{t}^{K} - \boldsymbol{y}_{t}\|_{2}^{2}}{2}\right) \stackrel{c}{=} \frac{1}{2} \|\boldsymbol{x}_{t}^{K} - \boldsymbol{y}_{t}\|_{2}^{2}$$

 \rightarrow We recover the L2 loss!

École d'ingénieurs

Université de Strasbourg

Using the L2 loss is equivalent to assuming the network will make i.i.d Gaussian errors.

Artificial Intelligence & Deep Learning

140/200

The approach is very general and can be used with a variety of parameterized probability distributions.

École d'ingénieurs Télécom Physique Université de **Strasbourg**

Antoine.Deleforge@inria.fr

The approach is very general and can be used with a variety of parameterized probability distributions.

• For $y \ge 0$ we can use an exponential distribution $\tilde{p}_{\lambda}(y) = \lambda \exp(-\lambda y)$

Antoine.Deleforge@inria.fr

École d'ingénieurs

Université de Strasbourg

How to choose the loss? $\begin{array}{c} y_t \\ y_t$

The approach is very general and can be used with a variety of parameterized probability distributions.

- For $y \ge 0$ we can use an exponential distribution $\tilde{p}_{\lambda}(y) = \lambda \exp(-\lambda y)$
- We can use this approach to not only estimate the mean but also the variance (≈uncertainty) of the network output:

$$ilde{p}_{oldsymbol{\mu},\sigma^2}(oldsymbol{y}) = rac{1}{\sqrt{2\pi\sigma^{2N}}} \exp\left(-rac{\|oldsymbol{y}-oldsymbol{\mu}\|_2^2}{2\sigma^2}
ight), \quad oldsymbol{x}^K \equiv [oldsymbol{\mu},\sigma^2]$$

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

141/200

Detection

Example: Captcha $x_t \in \mathbb{R}^D, y_t \in \{0, 1\}$

traffic lights If there are none, click skip

École d'ingénieurs Télécom Physique Université de **Strasbourg**

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

142/200

Detection

Example: Captcha $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{0,1\}$

• Let's use the same principle to design our loss.

École d'ingénieurs

Antoine.Deleforge@inria.fr

Detection

Example: Captcha $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{0,1\}$

- Let's use the same principle to design our loss.
- We can use a Bernouilli distribution:

$$\tilde{p}_b(y) = \begin{cases} b \in [0,1] \text{ for } y = 1 \\ 1 - b \text{ for } y = 0 \end{cases}$$

Antoine.Deleforge@inria.fr

Detection

École d'ingénieurs

Université de **Strasbourg**

Inría

Example: Captcha $x_t \in \mathbb{R}^D, y_t \in \{0, 1\}$

- Let's use the same principle to design our loss.
- We can use a Bernouilli distribution:

$$\tilde{p}_b(y) = \begin{cases} b \in [0,1] \text{ for } y = 1\\ 1 - b \text{ for } y = 0 \end{cases}$$

• Note that $b \in [0, 1]$, hence we need to constrain the output of the network in this interval => we use a sigmoid function at the output: $\int_{\sigma(x)=1}^{1.5} \sigma(x) = 1$

Detection

Example: Captcha $x_t \in \mathbb{R}^D, y_t \in \{0, 1\}$

- Let's use the same principle to design our loss.
- We can use a Bernouilli distribution:

$$\tilde{p}_b(y) = \begin{cases} b \in [0,1] \text{ for } y = 1\\ 1 - b \text{ for } y = 0 \end{cases}$$

- Note that $b \in [0, 1]$, hence we need to constrain the output of the network in this interval => we use a sigmoid function at the output: $\sigma(x) = \frac{1}{\sigma(x)}$
- Using the *maximum likelihood* approach with this distribution, we obtain the following loss:

$$\ell(x_t^K, y_t) = -\log \tilde{p}_{x_t^K}(y_t) = -y_t \log x_t^K - (1 - y_t) \log(1 - x_t^K),$$

= the *Binary Cross-Entropy*.

Inría

Artificial Intelligence & Deep Learning

C

SKIP

Select all squares with traffic lights If there are none, click skip

Classification

This generalizes to multi-class classification

 $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \dots, N\}$

Ex: ImageNet (1000 classes)

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

143/200

Classification

This generalizes to multi-class classification

 $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \dots, N\}$

• It is convenient to represent the output as a "one-hot" vector:

leopard	
	leopard
	jaguar
	cheetah
	snow leopard
	Egyptian cat

Ex: ImageNet (1000 classes)

Université de **Strasbourg**

École d'ingénieurs

Antoine.Deleforge@inria.fr

Classification

This generalizes to multi-class classification

 $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \dots, N\}$

• It is convenient to represent the output as a "one-hot" vector:

leopard

Ex: ImageNet (1000 classes)

143/200

• We use a *categorical distribution*:

Ínría

École d'ingénieurs

Université de **Strasbourg**

$$\tilde{p}_{\boldsymbol{b}}(\boldsymbol{y}) = \begin{cases} b_1 \in [0, 1] \text{ for } y_1 = 1\\ b_2 \in [0, 1] \text{ for } y_2 = 1\\ \vdots\\ b_N \in [0, 1] \text{ for } y_N = 1 \end{cases}, \text{ with } \sum_n b_n = 1 \end{cases}$$

Classification

This generalizes to multi-class classification

 $\boldsymbol{x}_t \in \mathbb{R}^D, \ y_t \in \{1, 2, \dots, N\}$

• It is convenient to represent the output as a "one-hot" vector:

The Soft-Max activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría

Antoine.Deleforge@inria.fr

The Soft-Max activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

Can be viewed as a generalization of the sigmoid ۲

The **Soft-Max** activation function:

a Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

- Can be viewed as a generalization of the sigmoid ۲
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value

École d'ingénieurs Télécom Physique

Université de **Strasbourg**

The **Soft-Max** activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

- Can be viewed as a generalization of the sigmoid
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value
- Using the maximum likelihood approach with a categorical distribution yields the (generalized) cross entropy loss: λT

$$\ell(\boldsymbol{x}_t^K, \boldsymbol{y}_t) = -\log \tilde{p}_{\boldsymbol{x}_t^K}(\boldsymbol{y}_t) = \sum_{n=1}^N -y_{t,n} \log x_{t,n}^K$$

Antoine.Deleforge@inria.fr

The **Soft-Max** activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

- Can be viewed as a generalization of the sigmoid
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value
- Using the maximum likelihood approach with a categorical distribution yields the (generalized) cross entropy loss: ΛT

$$\ell(\boldsymbol{x}_{t}^{K}, \boldsymbol{y}_{t}) = -\log \tilde{p}_{\boldsymbol{\mathcal{X}}_{t}^{K}}(\boldsymbol{y}_{t}) = \sum_{n=1}^{N} -y_{t,n} \log x_{t,n}^{K}$$

Multi-Label Classification

École d'ingénieurs Télécom Physique

Université de Strasbourg

The **Soft-Max** activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

- Can be viewed as a generalization of the sigmoid
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value
- Using the maximum likelihood approach with a categorical distribution yields the (generalized) cross entropy loss: λT

$$\ell(\boldsymbol{x}_{t}^{K}, \boldsymbol{y}_{t}) = -\log \tilde{p}_{\boldsymbol{x}_{t}^{K}}(\boldsymbol{y}_{t}) = \sum_{n=1}^{N} -y_{t,n} \log x_{t,n}^{K}$$

Multi-Label Classification

École d'ingénieurs Télécom Physique

Université de Strasbourg

Can be done by statistically aggregating multiple binary detectors

The **Soft-Max** activation function:

e Soft-Max activation function:

$$\boldsymbol{x}^{K} = \sigma(-\boldsymbol{a}^{K}) = \frac{1}{\sum_{n'=1}^{N} \exp(a_{n'}^{K})} \begin{bmatrix} \exp(a_{1}^{K}) \\ \exp(a_{2}^{K}) \\ \vdots \\ \exp(a_{N}^{K}) \end{bmatrix}$$

- Can be viewed as a generalization of the sigmoid
- Approximates the **max** function, in the sense that if one value is much larger than the others, we obtain a 1-hot vector at that value
- Using the maximum likelihood approach with a categorical distribution yields the (generalized) cross entropy loss: λT

$$\ell(\boldsymbol{x}_{t}^{K}, \boldsymbol{y}_{t}) = -\log \tilde{p}_{\boldsymbol{x}_{t}^{K}}(\boldsymbol{y}_{t}) = \sum_{n=1}^{N} -y_{t,n} \log x_{t,n}^{K}$$

Multi-Label Classification

École d'ingénieurs Télécom Physique

Université de Strasbourg

- Can be done by statistically aggregating **multiple binary detectors**
- Falls in the category of **ensemble methods**

• Imagine we have a training dataset T containing 10,000 images with labels (supervised learning)

Antoine.Deleforge@inria.fr

- Imagine we have a training dataset \mathcal{T} containing 10,000 images with labels (supervised learning)
- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task

- Imagine we have a training dataset \mathcal{T} containing 10,000 images with labels (supervised learning)
- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task
- We get nearly perfect results on these 10,000 images, e.g., 99.9% of correct classification

- Imagine we have a training dataset T containing 10,000 images with labels (supervised learning)
- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task
- We get nearly perfect results on these 10,000 images, e.g., 99.9% of correct classification
- However, when we run the DNN on new images, the results are awful, i.e., close to random.

- Imagine we have a training dataset T containing 10,000 images with labels (supervised learning)
- Using the backpropagation algorithm, we train a DNN to perform the multi-class classification task
- We get nearly perfect results on these 10,000 images, e.g., 99.9% of correct classification
- However, when we run the DNN on new images, the results are **awful**, i.e., close to random.

What's going on?

Over and Underfitting

Overfitting

• Our algorithm is guilty of overfitting (sur-apprentissage)

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

- Our algorithm is guilty of **overfitting** (*sur-apprentissage*)
- Instead of learning general features to classify the images, it learned by heart all the images in our training dataset!

- Our algorithm is guilty of **overfitting** (*sur-apprentissage*)
- Instead of learning general features to classify the images, it learned by heart all the images in our training dataset!
- Remember that we often have millions or billions or parameters in a deep model. Hence, it has the capacity to store/encode large amount of data

- Our algorithm is guilty of **overfitting** (*sur-apprentissage*)
- Instead of learning general features to classify the images, it learned by heart all the images in our training dataset!
- Remember that we often have millions or billions or parameters in a deep model. Hence, it has the capacity to store/encode large amount of data
- This may even happen for models of relatively small capacity, if the **amount of training data** is insufficient.

IV. Supervised Learning

Over and Underfitting

Overfitting

 Ex: polynomial regression

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

147/200

IV. Supervised Learning

Over and Underfitting

Overfitting

Ex: polynomial regression

Ex: binary classification

Ínría

Artificial Intelligence & Deep Learning

0.75

1.00

 In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set !

Antoine.Deleforge@inria.fr

- In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set !
- We want a model that **generalizes** to **unseen** data

Innía

- In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set !
- We want a model that **generalizes** to **unseen** data

Antoine.Deleforge@inria.fr
Overfitting

- In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set !
- We want a model that **generalizes** to **unseen** data

 These 3 subsets must be perfectly disjoint and all representative of the data.

Overfitting

- In supervised learning, we are not only interested in a model that works perfectly on our training set. We already have the answers anyway, by definition of a (supervised) training set !
- We want a model that **generalizes** to **unseen** data

- These 3 subsets must be perfectly disjoint and all representative of the data.
- To achieve this, the split is done at random.

École d'ingénieurs Télécom Physique Université de Strasbourg

Ínría

Antoine.Deleforge@inria.fr

 This separation is absolutely essential for any supervised machine learning algorithm to reliably work

Antoine.Deleforge@inria.fr

- This separation is absolutely essential for any supervised machine learning algorithm to reliably work
- The model parameters are only optimized over the training set

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría

Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

149/200

- This separation is absolutely essential for any supervised machine learning algorithm to reliably work
- The model parameters are only optimized over the training set
- We only use the validation set to:

Ínría

- At each training step, verify that the model is making progress on that set (possibly using another performance measure than the loss) => If not: we stop.
- Tune hyperparameters (e.g. gradient steps), compare different families of models

- This separation is absolutely essential for any supervised machine learning algorithm to reliably work
- The model parameters are only optimized over the training set
- We only use the validation set to:

Inría

- At each training step, verify that the model is making progress on that set (possibly using another performance measure than the loss) => If not: we stop.
- Tune hyperparameters (e.g. gradient steps), compare different families of models
- Looking at the test set if forbidden in any of those steps ("inverse crime")

Overfitting

Télécom Physique

Université de **Strasbourg**

Innía

• We can detect overfitting by tracking the **total loss** over the training iterations / epochs:

Some vocabulary

- Capacity: flexibility of a model. It often (but not necessarily!) correlates with the number of parameters of the model
- Hyper-parameter: a parameter of a model that is not trained (specified before training)
- Model selection: process of choosing the best hyperparameters on the validation set
- Underfitting: state of model which could improve generalization with more training or more capacity
- Overfitting: state of model which could improve generalization with less training or less capacity

Antoine.Deleforge@inria.fr

Overfitting vs. Underfitting

Antoine.Deleforge@inria.fr

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?
- If training time increases:
 - training error will ?
 - validation error will ?
- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?

École d'ingénieurs **Télécom Physique** Université de **Strasbourg**

Antoine.Deleforge@inria.fr

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?

validation error will?

decrease

- If training time increases:
 - training error will ?
 - validation error will ?
- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

Over and Underfitting

Quizz

École d'ingénieurs

Université de **Strasbourg**

- If capacity increases:
 - training error will ?
 - validation error will ?
- If training time increases:
 - training error will ?
 - validation error will ?
- If training set size increases:

Inría

- generalization error will ?
- difference between the training and generalization error will ?

decrease decrease or increase

Over and Underfitting

Quizz

École d'ingénieurs

Université de **Strasbourg**

- If capacity increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training time increases:
 - training error will ?
 - validation error will ?
- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?

decrease

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training time increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training set size increases:
 - generalization error will ?
 - difference between the training and generalization error will ?

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training time increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training set size increases:
 - generalization error will ? decrease (or stay the same)
 - difference between the training and generalization error will ?

Antoine.Deleforge@inria.fr

Over and Underfitting

Quizz

- If capacity increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training time increases:
 - training error will ?
 - validation error will ?

decrease decrease or increase

- If training set size increases:
 - generalization error will ? decrease (or stay the same)
 - difference between the training and generalization error will ? decrease

1) Regularization

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

1) Regularization

 We add to the total loss a term that depends directly on the parmeters of the neural network:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} \ell \left(\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}), \boldsymbol{y}_{t} \right) + \lambda \mathcal{R}(\boldsymbol{\theta})$$

Antoine.Deleforge@inria.fr

1) Regularization

 We add to the total loss a term that depends directly on the parmeters of the neural network:

$$L(\operatorname{dnn}_{\boldsymbol{\theta}}, \mathcal{T}) = \frac{1}{T} \sum_{t=1}^{T} \ell \left(\operatorname{dnn}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}), \boldsymbol{y}_{t} \right) + \lambda \mathcal{R}(\boldsymbol{\theta})$$

 For example, we could add the L2 norm of the coefficients in the weight matrices, to avoid that they become very large (a common clue of overfitting)

Techniques to reduce overfitting

2) Dropout

• Idea: "cripple" the neural network by removing hidden units stochastically

Antoine.Deleforge@inria.fr

Techniques to reduce overfitting

2) Dropout

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step

Antoine.Deleforge@inria.fr

Techniques to reduce overfitting

2) Dropout

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units

Antoine.Deleforge@inria.fr

Techniques to reduce overfitting

2) Dropout

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful

Antoine.Deleforge@inria.fr

Techniques to reduce overfitting

2) Dropout

École d'ingénieurs

Université de Strasbourg

Innía

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful
- Dropout probability typically between 0.2 and 0.5.

Techniques to reduce overfitting

2) Dropout

École d'ingénieurs

Université de Strasbourg

Innío

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful
- Dropout probability typically between 0.2 and 0.5.
- At test time, replace the masks by their expectation (e.g., constant vector 0.5 if dropout probability is 0.5).

Techniques to reduce overfitting

2) Dropout

École d'ingénieurs

Université de Strasbourg

Innío

- Idea: "cripple" the neural network by removing hidden units stochastically
- Each hidden unit is set to 0 with a certain probability at each gradient step
- Hidden units cannot co-adapt to other units
- Hidden units must be more generally useful
- Dropout probability typically between 0.2 and 0.5.
- At test time, replace the masks by their expectation (e.g., constant vector 0.5 if dropout probability is 0.5).
- Can be viewed as averaging an exponential number of networks.

Techniques to reduce overfitting

2) Dropout

École d'ingénieurs Télécom Physique Université de Strasbourg

Inría Antoine.Deleforge@inria.fr

Artificial Intelligence & Deep Learning

156/200

3) Data Augmentation

École d'ingénieurs Télécom Physique Université de Strasbourg

Antoine.Deleforge@inria.fr

3) Data Augmentation

 Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)
- Examples:
 - Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
 - Add noise to input signals, degrade their quality, remove imperceptible parts

157/200

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)
- Examples:
 - Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
 - Add noise to input signals, degrade their quality, remove imperceptible parts
- One may as well augment the data by using simulators: e.g. photorealistic 3D scenes, simulated acoustic scenes....or other generative machine learning models.

École d'ingénieurs Télécom Physique Université de Strasbourg

Innío

Antoine.Deleforge@inria.fr

3) Data Augmentation

- Increase the dataset size by applying transformations to the input examples that does not affect the output (or affect it in a predictable way)
- Examples:

École d'ingénieurs

Université de **Strasbourg**

Innía

- Crop an image, flip it, modify its brightness. Replace words by synonyms in sentences
- Add noise to input signals, degrade their quality, remove imperceptible parts
- One may as well augment the data by using simulators: e.g. photorealistic 3D scenes, simulated acoustic scenes....or other generative machine learning models.
- Data augmentation is often key for a ML method to work

Techniques to reduce overfitting

3) Data Augmentation

École d'ingénieurs

Antoine.Deleforge@inria.fr