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How to choose the loss?

►►

►►

A general principled approach is to use the network to model  

1) Choose a simple family of parameterized probabilistic distributions over the 

domain of     and      , i.e.,                              .

2) We then model the conditional probability as:

3) We want to find     that maximizes the likelihood over the training set:

Ex:

(Gaussian) (Bernouilli)

Note: we assume the training set 

examples are independent.
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► How to Choose the Loss?

How to choose the loss?

4) Usually, we define the total loss as the negative log-likelihood:

Example with the Gaussian distribution:

→ We recover the L2 loss! Using the L2 loss is equivalent to assuming the 

network will make i.i.d Gaussian errors.

►►

►►



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

141

► How to Choose the Loss?

How to choose the loss?

The approach is very general and can be used with a variety of parameterized 

probability distributions.

►►

►►



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

141

► How to Choose the Loss?

How to choose the loss?

The approach is very general and can be used with a variety of parameterized 

probability distributions.

• For            we can use an exponential distribution

►►

►►



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

141

► How to Choose the Loss?

How to choose the loss?

The approach is very general and can be used with a variety of parameterized 

probability distributions.

• For            we can use an exponential distribution

• We can use this approach to not only estimate the mean but also the 

variance (≈uncertainty) of the network output:

►►

►►
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► Detection & Classification

Detection

Example: Captcha

• Let’s use the same principle to design our loss.

• We can use a Bernouilli distribution:

• Note that               , hence we need to constrain the 

output of the network in this interval => we use a 

sigmoid function at the output:

• Using the maximum likelihood 

approach with this distribution, 

we obtain the following loss:

= the Binary Cross-Entropy.
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Classification
• This generalizes to multi-class classification

• It is convenient to represent the output as a “one-hot” vector:

Ex: ImageNet 

(1000 classes)

→ index of the class

• We use a categorical distribution:

How to enforce this 

constraints at the 

network output?
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► Detection & Classification

Classification
• The Soft-Max activation function:

• Can be viewed as a generalization of the sigmoid

• Approximates the max function, in the sense that if one value is much larger 

than the others, we obtain a 1-hot vector at that value

• Using the maximum likelihood approach with a categorical distribution yields 

the (generalized) cross entropy loss:

Multi-Label Classification
• Can be done by statistically aggregating multiple binary detectors

• Falls in the category of ensemble methods
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Scenario:

• Imagine we have a training dataset     containing 10,000 images 

with labels (supervised learning)

• Using the backpropagation algorithm, we train a DNN to perform 

the multi-class classification task

• We get nearly perfect results on these 10,000 images, e.g., 

99.9% of correct classification

• However, when we run the DNN on new images, the results are 

awful, i.e., close to random.

What’s going on?
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► Over and Underfitting

Overfitting

• Our algorithm is guilty of overfitting (sur-apprentissage)

• Instead of learning general features to classify the images, it 

learned by heart all the images in our training dataset!

• Remember that we often have millions or billions or parameters 

in a deep model. Hence, it has the capacity to store/encode 

large amount of data

• This may even happen for models of relatively small capacity, if 

the amount of training data is insufficient.
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Overfitting

• Ex: polynomial 

regression

• Ex: binary 

classification
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works perfectly on our training set. We already have the answers 

anyway, by definition of a (supervised) training set !
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► Over and Underfitting

Overfitting

• In supervised learning, we are not only interested in a model that 

works perfectly on our training set. We already have the answers 

anyway, by definition of a (supervised) training set !

• We want a model that generalizes to unseen data

• Solution: We split our dataset in 3:

TRAINING VALIDATION TEST

Dataset

• These 3 subsets must be perfectly disjoint and all representative 

of the data.

• To achieve this, the split is done at random.
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learning algorithm to reliably work
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Overfitting

TRAINING VALIDATION TEST

Dataset

• This separation is absolutely essential for any supervised machine 

learning algorithm to reliably work

• The model parameters are only optimized over the training set

• We only use the validation set to:
• At each training step, verify that the model is making progress on that set 

(possibly using another performance measure than the loss) => If not: we 

stop.

• Tune hyperparameters (e.g. gradient steps), compare different families of 

models
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► Over and Underfitting

Overfitting

TRAINING VALIDATION TEST

Dataset

• This separation is absolutely essential for any supervised machine 

learning algorithm to reliably work

• The model parameters are only optimized over the training set

• We only use the validation set to:
• At each training step, verify that the model is making progress on that set 

(possibly using another performance measure than the loss) => If not: we 

stop.

• Tune hyperparameters (e.g. gradient steps), compare different families of 

models

• Looking at the test set if forbidden in any of those steps (“inverse crime”)
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► Over and Underfitting

Overfitting

• We can detect overfitting by tracking the total loss over the training 

iterations / epochs:

GOOD. The validation loss is 

only slightly less good than 

the training one and does not 

increase

NOT GOOD. The validation 

loss increases: we are 

starting to learn by heart the 

training set !
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► Over and Underfitting

Some vocabulary

• Capacity: flexibility of a model. It often (but not necessarily!) correlates 

with the number of parameters of the model

• Hyper-parameter: a parameter of a model that is not trained (specified 

before training)

• Model selection: process of choosing the best hyperparameters on the 

validation set

• Underfitting: state of model which could improve generalization with 

more training or more capacity

• Overfitting: state of model which could improve generalization with less 

training or less capacity
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► Over and Underfitting

Overfitting vs. Underfitting



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

153

► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?
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► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease
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► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease

decrease or increase
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Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease

decrease or increase

decrease
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► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease

decrease or increase

decrease or increase
decrease
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► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease

decrease or increase

decrease or increase
decrease

decrease (or stay the same)
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► Over and Underfitting

Quizz

• If capacity increases:

• training error will ?

• validation error will ?

• If training time increases:

• training error will ?

• validation error will ?

• If training set size increases:

• generalization error will ?

• difference between the training and generalization error will ?

decrease

decrease or increase

decrease or increase
decrease

decrease (or stay the same)

decrease
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Techniques to reduce overfitting

1) Regularization
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► Over and Underfitting

Techniques to reduce overfitting

1) Regularization

• We add to the total loss a term that depends directly on the parmeters of 

the neural network:
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► Over and Underfitting

Techniques to reduce overfitting

1) Regularization

• We add to the total loss a term that depends directly on the parmeters of 

the neural network:

• For example, we could add the L2 norm of the coefficients in the 

weight matrices, to avoid that they become very large (a common clue 

of overfitting)
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step

• Hidden units cannot co-adapt to other units
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step

• Hidden units cannot co-adapt to other units

• Hidden units must be more generally useful
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step

• Hidden units cannot co-adapt to other units

• Hidden units must be more generally useful

• Dropout probability typically between 0.2 and 0.5.
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step

• Hidden units cannot co-adapt to other units

• Hidden units must be more generally useful

• Dropout probability typically between 0.2 and 0.5.

• At test time, replace the masks by their expectation (e.g., constant vector 

0.5 if dropout probability is 0.5).



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

155

► Over and Underfitting

Techniques to reduce overfitting

2) Dropout

• Idea: “cripple” the neural network by removing hidden units stochastically

• Each hidden unit is set to 0 with a certain probability at each gradient step

• Hidden units cannot co-adapt to other units

• Hidden units must be more generally useful

• Dropout probability typically between 0.2 and 0.5.

• At test time, replace the masks by their expectation (e.g., constant vector 

0.5 if dropout probability is 0.5).

• Can be viewed as averaging an exponential number of networks.
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► Over and Underfitting

Techniques to reduce overfitting

2) Dropout
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► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation
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► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation

• Increase the dataset size by applying transformations to the input 

examples that does not affect the output (or affect it in a predictable 

way)



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /200

IV. Supervised Learning

157

► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation

• Increase the dataset size by applying transformations to the input 

examples that does not affect the output (or affect it in a predictable 

way)

• Examples:

• Crop an image, flip it, modify its brightness. Replace words by 

synonyms in sentences

• Add noise to input signals, degrade their quality, remove 

imperceptible parts
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► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation

• Increase the dataset size by applying transformations to the input 

examples that does not affect the output (or affect it in a predictable 

way)

• Examples:

• Crop an image, flip it, modify its brightness. Replace words by 

synonyms in sentences

• Add noise to input signals, degrade their quality, remove 

imperceptible parts

• One may as well augment the data by using simulators: e.g. 

photorealistic 3D scenes, simulated acoustic scenes….or other 

generative machine learning models.
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► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation

• Increase the dataset size by applying transformations to the input 

examples that does not affect the output (or affect it in a predictable 

way)

• Examples:

• Crop an image, flip it, modify its brightness. Replace words by 

synonyms in sentences

• Add noise to input signals, degrade their quality, remove 

imperceptible parts

• One may as well augment the data by using simulators: e.g. 

photorealistic 3D scenes, simulated acoustic scenes….or other 

generative machine learning models.

• Data augmentation is often key for a ML method to work
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► Over and Underfitting

Techniques to reduce overfitting

3) Data Augmentation


