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1. Pick points at random

► The centroids

2. For each point      , find its

nearest centroid . Place    

in cluster      . 

3. Update each as the 

mean of all points in      :

►

4. Repeat 2. and 3. until

convergence

The K-means Algorithm
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K-means: What does it do?

• It decreases this total loss at each iteration:

• « Compression » interpretation:      is « summarized » by  

• Probabilistic / Generative interpretation (where is    ) ?

► Non-Convex

(Depends on init.)

where !

1

(Gaussian centered on     )

K-means can be seen as a maximum a posteriori (MAP) approach!
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Gaussian mixture models: a generalization

• Find that maximizes the observed data log-likelihood:

…very hard to solve directly.

• The Expectation-Maximization (EM) 

algorithm iteratively maximizes the expected

complete-data log-likelihood instead:

Repeat until convergence:
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And in the Deep Learning Era …

• Deep clustering: trains a DNN to project data to a feature space

where K-means can be optimally used

John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji

Watanabe. "Deep clustering: Discriminative embeddings for

segmentation and separation." In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 31-35. IEEE, 2016.

• Application to blind speech source separation:
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Overview
And in the Deep Learning Era …

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs

Douze. "Deep clustering for unsupervised learning of visual

features." In Proceedings of the European Conference on Computer

Vision (ECCV), pp. 132-149. 2018.

• Deep clustering: trains a DNN to project data to a feature space

where K-means can be optimally used

John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji

Watanabe. "Deep clustering: Discriminative embeddings for

segmentation and separation." In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 31-35. IEEE, 2016.

• Application to feature learning from images:

• Application to blind speech source separation:
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Typical applications of clustering

Image segmentation (               are 

local descriptors)

Audio segmentation (               are 

sound segment)

DNA sequence analysis
Medical imaging

Social network analysis
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Overview

3. Find … etc.  

► The Principal Axes of     are the    dominant eigenvectors of     . 

Let                                                 be a 3D 

set of points 

How to reduce its dimensionality while

preserving most of its information?

Project it along axes of 

maximal variance

1. Find such that is largest

► The solution is given by the eigenvector associated to the largest eigenvalue

of the sample covariance matrix                                                                 .   

2. Find such that is largest.     ► Second dominant eigenvector of      .

Principal

Component

Anaysis
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► Dimensionality Reduction

Overview
Principal Component Analysis

• Probabilistic / Generative interpretation:
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► Dimensionality Reduction

Overview
Principal Component Analysis

• Probabilistic / Generative interpretation:

PCA is equivalent to:

• (Maximum Likelihood)

• (Maximum a posteriori)

M.E. Tipping and C.M. Bishop. 

"Probabilistic PCA." Journal of the 

Royal Statistical Society: Series 

B, 61, no. 3 (1999): 611-622.
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• (Maximum a posteriori)

Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", ICLR 2014.
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B, 61, no. 3 (1999): 611-622.
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► Dimensionality Reduction

Overview
Principal Component Analysis

• Probabilistic / Generative interpretation:

Variational Autoencoders
• Generalize PCA by replacing  this  by a DNN (the decoder)

• Optimized using a variational approximation of               by another neural 

network (the encoder)

PCA is equivalent to:

• (Maximum Likelihood)

• (Maximum a posteriori)

Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", ICLR 2014.

M.E. Tipping and C.M. Bishop. 

"Probabilistic PCA." Journal of the 

Royal Statistical Society: Series 

B, 61, no. 3 (1999): 611-622.
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► Dimensionality Reduction

Overview
Autoencoder
• A neural network trained to predict its input: a pretext task
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► Dimensionality Reduction

Overview
Autoencoder
• A neural network trained to predict its input: a pretext task

• Consists of two parts:

• An encoder function

• A decoder function

• The task is non-trivial if the encoder is dimensionality-reducing

Ex:

• is called an embedding of    , i.e., a nonlinear representation of 

the input.

The encoder and 

decoder 

parameters can 

be tied together
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► Dimensionality Reduction

Overview
Manifold Learning

• Local Tangent Space Alignment (LTSA)

Zhang, Zhenyue, and Hongyuan Zha. "Principal manifolds and nonlinear dimensionality

reduction via tangent space alignment." SIAM journal on scientific computing 26, no. 1 (2004): 313-338.
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on the data 



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

V. Unsupervised Learning

173

► Dimensionality Reduction

Overview
Manifold Learning

• Local Tangent Space Alignment (LTSA)

Zhang, Zhenyue, and Hongyuan Zha. "Principal manifolds and nonlinear dimensionality

reduction via tangent space alignment." SIAM journal on scientific computing 26, no. 1 (2004): 313-338.
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on the data 

2. Applies PCA to each neighborhood
PCA
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► Dimensionality Reduction

Overview
Manifold Learning

• Local Tangent Space Alignment (LTSA)

Zhang, Zhenyue, and Hongyuan Zha. "Principal manifolds and nonlinear dimensionality

reduction via tangent space alignment." SIAM journal on scientific computing 26, no. 1 (2004): 313-338.

1. Builds local k-nearest neighborhoods 

on the data 

2. Applies PCA to each neighborhood

3. Patch the local PCAs together

PCA
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► Dimensionality Reduction

Overview
Manifold Learning

• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…

Ghodsi, Ali. "Dimensionality reduction a short tutorial." Department of Statistics and Actuarial

Science, Univ. of Waterloo, Ontario, Canada 37, no. 38 (2006): 2006.
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• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…

• Build a neighborhood graph from  the data

• « Unroll » the graph to a lower dimensional space

• Ex: Isomap. Compute all geodesic distances (shortest paths) on the graph

Ghodsi, Ali. "Dimensionality reduction a short tutorial." Department of Statistics and Actuarial

Science, Univ. of Waterloo, Ontario, Canada 37, no. 38 (2006): 2006.



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

V. Unsupervised Learning

174

► Dimensionality Reduction

Overview
Manifold Learning

• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…• Graph-Based Methods: Isomap, LLE, Laplacian Eigenmap,…

Hinton, Geoffrey E., and Sam Roweis. "Stochastic neighbor embedding." Advances in neural

information processing systems 15 (2002).

• Build a neighborhood graph from  the data

• « Unroll » the graph to a lower dimensional space

• Ex: Isomap. Compute all geodesic distances (shortest paths) on the graph

• Stochastic neighbor embedding (SNE): match 

neighborhood probabilities in the high- and low-dim. spaces

Ghodsi, Ali. "Dimensionality reduction a short tutorial." Department of Statistics and Actuarial

Science, Univ. of Waterloo, Ontario, Canada 37, no. 38 (2006): 2006.
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► Dimensionality Reduction

Overview
Manifold Learning
• Ex: t-SNE: uses a Gaussian model for similarity between data points 

and a Student’s t (Cauchy) model for similarity in the latent space (2D 

or 3D)
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divergence wrt. these distributions using gradient descent.
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► Dimensionality Reduction

Overview
Manifold Learning
• Ex: t-SNE: uses a Gaussian model for similarity between data points 

and a Student’s t (Cauchy) model for similarity in the latent space (2D 

or 3D)

• The variances of the Gaussians are fixed to attain a given entropy

value.

• The latent representation is found by minimizing the Kullback-Leibler 

divergence wrt. these distributions using gradient descent.

• Easy to use thanks to the Scikit Learn implementation

Documentation:

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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► Dimensionality Reduction

Overview
Manifold Learning

Examples of t-SNE visualizations

• MNIST dataset

T-SNE on image pixels
T-SNE on auto-encoder 

bottleneck layer
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► Dimensionality Reduction

Overview
Manifold Learning

Examples of t-SNE visualizations

• Speech recognition (Wall Street Journal Dataset)
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► Dimensionality Reduction

Overview
And in the Deep Learning era?

Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", arXiv:1312.6114 (2013).
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Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", arXiv:1312.6114 (2013).

Typical applications:

Dataset Visualization
Data generation (Glow)
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Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", arXiv:1312.6114 (2013).

Dinh, Laurent, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components 

estimation." arXiv preprint arXiv:1410.8516 (2014).  => Invertible Neural Networks

Typical applications:

Dataset Visualization
Data generation (Glow)
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► Dimensionality Reduction

Overview
And in the Deep Learning era?

Diederik P. Kingma and Max Welling. "Auto-encoding variational bayes.", arXiv:1312.6114 (2013).

Dinh, Laurent, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components 

estimation." arXiv preprint arXiv:1410.8516 (2014).  => Invertible Neural Networks

Typical applications:

Dataset Visualization
Data generation (Glow)

+ extensions (Normalizing Flows, Glow…)
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► Summary

Overview
Supervised Learning Unsupervised Learning

Labeled training data Unlabeled training data

2. Continuous case:

► Regression

Ex. application: head pose

1. Discrete case: («one-hot») 

► Classification

Ex. application: dog breed

3. Sparse case:

► Multi-classification

Ex. application: image 

labelling

… …

Input
Labels/Targets

…

Input

Training

Learned 

Model

Test Estimate
Training

Learned 

Model

Representation

…

1

0.6

0.1

0.3

13: German Shepherd

man
palm tree

phone

2. Continuous case: (                               )

► Dimensionality

Reduction

1. Discrete case:

► Clustering

3. Sparse case:

► Dictionary Learning


