
Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Convolutional Neural Networks



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Convolutional Neural Networks

• Definition

• Why ConvNets ?

• CNN layers

• Famous examples



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer

• This amounts to constraining the weight matrix to have a special 

structure called Toeplitz



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer

• This amounts to constraining the weight matrix to have a special 

structure called Toeplitz



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer

• This amounts to constraining the weight matrix to have a special 

structure called Toeplitz

• Typically,     and    only have 

only a few nonzero values, 

determined by the kernel size



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer

• This amounts to constraining the weight matrix to have a special 

structure called Toeplitz

• Typically,     and    only have 

only a few nonzero values, 

determined by the kernel size

• In terms of model fitting, 

everything we saw so far 

remains valid!



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Convolutional Neural Networks

182

► Definition

Convolutional Neural Networks
• The idea of using such networks to mimic the human visual system

dates back to K. Fukushima (1980). Y. Lecun was the first to train a CNN 

using backpropagation (1989)

• Def: a neural network that uses a linear operation called convolution in 

at least one layer, instead of a generic linear layer

• This amounts to constraining the weight matrix to have a special 

structure called Toeplitz

• Typically,     and    only have 

only a few nonzero values, 

determined by the kernel size

• In terms of model fitting, 

everything we saw so far 

remains valid!

But what is (discrete) 

convolution?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

Discrete Convolution (1D Case)

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

• Given two sequences       and       , the convolved sequence        

is defined by the following linear operation:

Discrete Convolution (1D Case)

denoted by

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

• Given two sequences       and       , the convolved sequence        

is defined by the following linear operation:

Discrete Convolution (1D Case)

denoted by

• In practice, in CNNs,    only has a finite support: the sum is finite

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

• Given two sequences       and       , the convolved sequence        

is defined by the following linear operation:

Discrete Convolution (1D Case)

denoted by

• Terminology:

• : input (or signal)

• : convolution kernel (or filter)

• : feature map (analog to pre-activation)

• In practice, in CNNs,    only has a finite support: the sum is finite

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

• Given two sequences       and       , the convolved sequence        

is defined by the following linear operation:

Discrete Convolution (1D Case)

denoted by

• Terminology:

• : input (or signal)

• : convolution kernel (or filter)

• : feature map (analog to pre-activation)

• 1D convolutions precisely describe Linear Time Invariant

systems 

• In practice, in CNNs,    only has a finite support: the sum is finite

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204183

• Given two sequences       and       , the convolved sequence        

is defined by the following linear operation:

Discrete Convolution (1D Case)

denoted by

• Terminology:

• : input (or signal)

• : convolution kernel (or filter)

• : feature map (analog to pre-activation)

• 1D convolutions precisely describe Linear Time Invariant

systems 

• Ex: moving average, smoothing, low-pass, band-pass, etc.

• In practice, in CNNs,    only has a finite support: the sum is finite

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204184

Discrete Convolution (1D Case)

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204185

Discrete Convolution (2D Case)

• Convolution can be generalized to any dimension

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204185

Discrete Convolution (2D Case)

• Convolution can be generalized to any dimension

• For instance in 2D:

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204185

Discrete Convolution (2D Case)

• Convolution can be generalized to any dimension

• For instance in 2D:

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204186

Discrete Convolution (2D Case)

• Ex: edge detection, sharpening, blurring, ….

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204187

Discrete Convolution (2D Case)

• Ex: edge detection, sharpening, blurring, ….

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204188

Convolution vs. Correlation

• The convolution operation (using proper zero-padding in the 

discrete finite case) is associative and commutative: 

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204188

Convolution vs. Correlation

• The convolution operation (using proper zero-padding in the 

discrete finite case) is associative and commutative: 

• This is not the case of the related cross-correlation operation:

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204188

Convolution vs. Correlation

• The convolution operation (using proper zero-padding in the 

discrete finite case) is associative and commutative: 

• This is not the case of the related cross-correlation operation:

Equivalent to flipping

the kernel along all axes

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204188

Convolution vs. Correlation

• The convolution operation (using proper zero-padding in the 

discrete finite case) is associative and commutative: 

• This is not the case of the related cross-correlation operation:

Equivalent to flipping

the kernel along all axes

• Most machine learning libraries (eg. Pytorch, TensorFlow) 

implement cross-correlation but call it convolution

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204188

Convolution vs. Correlation

• The convolution operation (using proper zero-padding in the 

discrete finite case) is associative and commutative: 

• This is not the case of the related cross-correlation operation:

Equivalent to flipping

the kernel along all axes

• Most machine learning libraries (eg. Pytorch, TensorFlow) 

implement cross-correlation but call it convolution

• In practice, since the kernel elements are learned parameters, it 

makes no difference (but worth keeping in mind!)

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204189

The maths:

VI. Convolutional Neural Networks ► Definition



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204190

Why Convolutional Neural Networks?

• Convolution leverages three key machine learning concepts:

1) Sparse connectivity

2) Parameter sharing

3) Equivariant representation

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204190

Why Convolutional Neural Networks?

• Convolution leverages three key machine learning concepts:

1) Sparse connectivity

2) Parameter sharing

3) Equivariant representation

• Moreover, it provides a means for handling variable size 

inputs. The same kernel can be sled on signals/images of 

variable sizes:

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

• Every output entry of a layer is 

connected to every input entry 

of the next

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

• Every output entry of a layer is 

connected to every input entry 

of the next

Two convolutional layers (kernel size S=3):

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

• Every output entry of a layer is 

connected to every input entry 

of the next

Two convolutional layers (kernel size S=3): • Every output connected to only 

a few neighboring inputs due 

to the small kernel

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

• Every output entry of a layer is 

connected to every input entry 

of the next

Two convolutional layers (kernel size S=3): • Every output connected to only 

a few neighboring inputs due 

to the small kernel

• Still, in a deep CNN, each unit 

in late layers can interact with 

many inputs, forming a 

receptive field

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204191

Why Convolutional Neural Networks?

1) Sparse connectivity
Two conventional fully connected layers:

• Every output entry of a layer is 

connected to every input entry 

of the next

Two convolutional layers (kernel size S=3): • Every output connected to only 

a few neighboring inputs due 

to the small kernel

• Still, in a deep CNN, each unit 

in late layers can interact with 

many inputs, forming a 

receptive field

Less connections = smaller model = less overfitting & faster computation

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204192

Why Convolutional Neural Networks?

2) Parameter sharing
Two conventional fully connected layers:

Two convolutional layers (kernel size S=3):

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204192

Why Convolutional Neural Networks?

2) Parameter sharing
Two conventional fully connected layers:

• Every parameter is used 

exactly once

• parameters

Two convolutional layers (kernel size S=3):

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204192

Why Convolutional Neural Networks?

2) Parameter sharing
Two conventional fully connected layers:

• Every parameter is used 

exactly once

• parameters

Two convolutional layers (kernel size S=3): • Parameters shared (or tied) 

across every position of the 

input

• parameters

• Even smaller model, even 

less overfitting

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204193

Why Convolutional Neural Networks?

Computational efficiency

• Example: horizontal edge detection (280 x 320 pixels)

• Convolutional: 1 x 2 kernel, 280 x 319 ≈ 2 x 105 operations

• Fully connected: 280 x 320 x 280 x 319 ≈ 8 x 109 weights ≈ 

16 x 109 operations

-1 1

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204194

Why Convolutional Neural Networks?

3) Equivariance

• Definition: If the input is transformed, then the output is 

transformed the same way

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204194

Why Convolutional Neural Networks?

3) Equivariance

• Definition: If the input is transformed, then the output is 

transformed the same way

• /!\ Different from invariance: If the input is transformed, 

then the output is unchanged.

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204194

Why Convolutional Neural Networks?

3) Equivariance

• Definition: If the input is transformed, then the output is 

transformed the same way

• /!\ Different from invariance: If the input is transformed, 

then the output is unchanged.

• Convolution is equivariant to translation: If the input signal 

is shifted (along its axes) by    , then the output is also 

shifted by     (convolution can even be defined by this).

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204194

Why Convolutional Neural Networks?

3) Equivariance

• Definition: If the input is transformed, then the output is 

transformed the same way

• /!\ Different from invariance: If the input is transformed, 

then the output is unchanged.

• Convolution is equivariant to translation: If the input signal 

is shifted (along its axes) by    , then the output is also 

shifted by     (convolution can even be defined by this).

• Hence, the feature map can be interpreted as indicating 

where some features (matching the kernels) appear in the 

input

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204195

Why Convolutional Neural Networks?

3) Equivariance

• Example 1: To process an image, because the objects will 

look the same no matter where they are in the image, it 

makes sense to use 2D convolution 

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204195

Why Convolutional Neural Networks?

3) Equivariance

• Example 1: To process an image, because the objects will 

look the same no matter where they are in the image, it 

makes sense to use 2D convolution 

• Example 2: To process a speech signal, because speech 

will sound the same no matter when it occurs in the signal, 

it makes sense to use 1D convolution

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204195

Why Convolutional Neural Networks?

3) Equivariance

• Example 1: To process an image, because the objects will 

look the same no matter where they are in the image, it 

makes sense to use 2D convolution 

• Example 2: To process a speech signal, because speech 

will sound the same no matter when it occurs in the signal, 

it makes sense to use 1D convolution

• Note: Convolution is not equivariant to rotation or scaling

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204195

Why Convolutional Neural Networks?

3) Equivariance

• Example 1: To process an image, because the objects will 

look the same no matter where they are in the image, it 

makes sense to use 2D convolution 

• Example 2: To process a speech signal, because speech 

will sound the same no matter when it occurs in the signal, 

it makes sense to use 1D convolution

• Note: Convolution is not equivariant to rotation or scaling

• Exercise: Supposed my input signal is a list of incomes in a 

given city, sorted in ascending order? Supposed my input is 

a 2D map of the humidity of the soil around a given location?

VI. Convolutional Neural Networks ► Why ConvNets?



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204196

CNN layers

• A CNN layer typically consists of 

3 stages 

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204196

CNN layers

• A CNN layer typically consists of 

3 stages 

• The affine convolution stage applies multiple kernels              

to the input, yielding     feature maps, arranged in a multi-way 

tensor    .

ro
w

s

columns

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204196

CNN layers

• A CNN layer typically consists of 

3 stages 

• The affine convolution stage applies multiple kernels              

to the input, yielding     feature maps, arranged in a multi-way 

tensor    .

ro
w

s

columns

• A bias term is added to each feature map

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204196

CNN layers

• A CNN layer typically consists of 

3 stages 

• The affine convolution stage applies multiple kernels              

to the input, yielding     feature maps, arranged in a multi-way 

tensor    .

ro
w

s

columns

• A bias term is added to each feature map

• A nonlinear activation function    is then 

applied to all feature maps (e.g. ReLU)

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204196

CNN layers

• A CNN layer typically consists of 

3 stages 

• The affine convolution stage applies multiple kernels              

to the input, yielding     feature maps, arranged in a multi-way 

tensor    .

ro
w

s

columns

• A bias term is added to each feature map

• A nonlinear activation function    is then 

applied to all feature maps (e.g. ReLU)

• There is then a pooling stage, that replaces 

every neighborhood in a given feature map 

by a summary statistics (ex: mean or max)

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204197

Pooling

• Pooling makes the representation more invariant to small 

translations of the input

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204197

Pooling

• Pooling makes the representation more invariant to small 

translations of the input

• Translation invariance is useful when we care more about 

whether some feature is present than exactly where it is

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204197

Pooling

• Pooling makes the representation more invariant to small 

translations of the input

• Translation invariance is useful when we care more about 

whether some feature is present than exactly where it is

• Example: to detect a face, we search for an eye on the left side 

and an eye on the right side, but we don’t need to locate them 

with pixel-level accuracy.

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204197

Pooling

• Pooling makes the representation more invariant to small 

translations of the input

• Translation invariance is useful when we care more about 

whether some feature is present than exactly where it is

• Example: to detect a face, we search for an eye on the left side 

and an eye on the right side, but we don’t need to locate them 

with pixel-level accuracy.

• Counter-example: to denoise an image, we must preserve the 

location of the features. In that situation pooling is not desirable..

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204198

Pooling

• Since pooling summarizes the responses over a neighborhood, 

we often report summary statistics every S pixels instead of 

every 1 pixel

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204198

Pooling

• Since pooling summarizes the responses over a neighborhood, 

we often report summary statistics every S pixels instead of 

every 1 pixel

• S is called the stride. It can be different for different spatial 

directions

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204198

Pooling

• Since pooling summarizes the responses over a neighborhood, 

we often report summary statistics every S pixels instead of 

every 1 pixel

• S is called the stride. It can be different for different spatial 

directions

• This drastically improves the computational efficiency

• Typical stride values are 2 or 3 along each axes.

• For an image, this amounts to a x4 or x9 dimensionality 

reduction over feature maps

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204198

Pooling

• Since pooling summarizes the responses over a neighborhood, 

we often report summary statistics every S pixels instead of 

every 1 pixel

• S is called the stride. It can be different for different spatial 

directions

• This drastically improves the computational efficiency

• Typical stride values are 2 or 3 along each axes.

• For an image, this amounts to a x4 or x9 dimensionality 

reduction over feature maps

• Also useful when dealing with variable size input: adjust the 

pooling and stride to obtain a fixed-size output

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204199

Pooling

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

• Ex1: RGB channels in an image

• Ex2: Multiple feature maps obtained in a previous layer

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

• Ex1: RGB channels in an image

• Ex2: Multiple feature maps obtained in a previous layer

• Hence, the input of a 2D conv. layer is also a 3-way tensor:

ro
w

s

columns

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

• Ex1: RGB channels in an image

• Ex2: Multiple feature maps obtained in a previous layer

• Hence, the input of a 2D conv. layer is also a 3-way tensor:

ro
w

s

columns • Convolution over the channels (ie. 3D conv.) 

does not make sense (by def. of “channels”)

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

• Ex1: RGB channels in an image

• Ex2: Multiple feature maps obtained in a previous layer

• Hence, the input of a 2D conv. layer is also a 3-way tensor:

ro
w

s

columns • Convolution over the channels (ie. 3D conv.) 

does not make sense (by def. of “channels”)

• In standard multichannel convolution, each of 

the     input channel is fully connected to all of 

the     feature maps, i.e., output channels:

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204200

Dealing with multichannel input

• In contrast to classical convolution, each entry of the input of a 

convolution layer in a CNN is usually a vector, not a scalar.

• Ex1: RGB channels in an image

• Ex2: Multiple feature maps obtained in a previous layer

• Hence, the input of a 2D conv. layer is also a 3-way tensor:

ro
w

s

columns • Convolution over the channels (ie. 3D conv.) 

does not make sense (by def. of “channels”)

• In standard multichannel convolution, each of 

the     input channel is fully connected to all of 

the     feature maps, i.e., output channels:

• Each entry of the kernel acts as a            matrix: 

the list of kernels      form a 4-way tensor

VI. Convolutional Neural Networks ► CNN layers



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204201

Famous example: LeNet-5 for digit recognition (1989)

VI. Convolutional Neural Networks ► Famous Examples



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204202

Famous example: AlexNet for ImageNet classification (2012)
(84.7% top-5 test set accuracy)

Proven not so 

useful in the end 

VI. Convolutional Neural Networks ► Famous Examples



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

203

► Famous Examples

Famous example: VGG-16 for ImageNet classification (2014)
(91.9% top-5 test set accuracy)

• Uses only 3x3 kernels, but more depth (16 vs. 7 layers)



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

204

► Famous Examples

Famous example: ResNet for ImageNet classification (2015)

94.3% top-5 for ResNet-152      /      95.2% for ResNet-200 (2016)



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

204

► Famous Examples

Famous example: ResNet for ImageNet classification (2015)

94.3% top-5 for ResNet-152      /      95.2% for ResNet-200 (2016)

• Human top-5 accuracy reported at 94.9%

• Perf. on ImageNet ≈plateaus around 98% since 2018

Note:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

204

► Famous Examples

Famous example: ResNet for ImageNet classification (2015)

94.3% top-5 for ResNet-152      /      95.2% for ResNet-200 (2016)

• Human top-5 accuracy reported at 94.9%

• Perf. on ImageNet ≈plateaus around 98% since 2018

Key idea: 

• Residual or skip connections that “passes 

through” several layers

Note:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

204

► Famous Examples

Famous example: ResNet for ImageNet classification (2015)

94.3% top-5 for ResNet-152      /      95.2% for ResNet-200 (2016)

• Human top-5 accuracy reported at 94.9%

• Perf. on ImageNet ≈plateaus around 98% since 2018

Key idea: 

• Residual or skip connections that “passes 

through” several layers

• Solves the problem of vanishing gradient

Note:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning /204

VI. Fantastic DNNs

204

► Famous Examples

Famous example: ResNet for ImageNet classification (2015)

94.3% top-5 for ResNet-152      /      95.2% for ResNet-200 (2016)

• Human top-5 accuracy reported at 94.9%

• Perf. on ImageNet ≈plateaus around 98% since 2018

Key idea: 

• Residual or skip connections that “passes 

through” several layers

• Solves the problem of vanishing gradient

• Recall:

Note:



Antoine.Deleforge@inria.fr Artificial Intelligence & Deep Learning

OUTLINE

I. Introduction

II. Background

III. Fitting a Model

IV. Supervised Learning

V. Unsupervised Learning

VI. Convolutional Neural Networks

A.I., Machine Learning, Deep Learning: What, How, Why and When

Tensors and Multivariate Calculus

Regression, Classification, Loss Design, Over & Underfitting

From K-means and PCA to Deep Clustering and Autoencoders

Definition, Why, Layers, Famous Examples 

Optimization techniques, Backpropagation, Gradient Descent, PyTorch


