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ABSTRACT:
In the context of building acoustics and the acoustic diagnosis of an existing room, it introduces and investigates a

new approach to estimate the mean absorption coefficients solely from a room impulse response (RIR). This inverse

problem is tackled via virtually supervised learning, namely, the RIR-to-absorption mapping is implicitly learned by

regression on a simulated dataset using artificial neural networks. Simple models based on well-understood architec-

tures are the focus of this work. The critical choices of geometric, acoustic, and simulation parameters, which are

used to train the models, are extensively discussed and studied while keeping in mind the conditions that are repre-

sentative of the field of building acoustics. Estimation errors from the learned neural models are compared to those

obtained with classical formulas that require knowledge of the room’s geometry and reverberation times. Extensive

comparisons made on a variety of simulated test sets highlight different conditions under which the learned models

can overcome the well-known limitations of the diffuse sound field hypothesis underlying these formulas. Results

obtained on real RIRs measured in an acoustically configurable room show that at 1 kHz and above, the proposed

approach performs comparably to classical models when reverberation times can be reliably estimated and continues

to work even when they cannot. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005888
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I. INTRODUCTION

When sound propagates in a room, its reflections on the

walls, ceiling, floor, and other surfaces lead to the well

known phenomenon of reverberation. When the reverberation

level is too high, it can be a major source of nuisance for the

room’s users. To alleviate this, some of the main parameters

an acoustician can act on are the absorption coefficients of

the room surfaces, namely, the proportion of sound energy

that the surfaces’ materials do not reflect. These are generally

frequency dependent and typically expressed within octave

bands, b 2 F ¼ f0:125; 0:25; 0:5; 1; 2; 4g kHz, in room

acoustics standards. To obtain the acoustic diagnosis of a

room and deduce a renovation plan, acousticians need to

know the absorption coefficients aiðbÞ of each individual sur-

face i in the room. This is typically done through a manual

iterative process in which acoustic simulators are tuned to

match the in situ measurements while taking into account the

room’s geometry and properties of known materials as mea-

sured in laboratories.

Among the in situ measurements used in practice, room

impulse responses (RIR) are rich signals that capture the

acoustic signature of the room via the shape of their decay,

their echo density over time, or the timings of their early ech-

oes. Although the forward physical process from the acoustic

parameters to RIRs is well understood, as illustrated by the

existence of many reasonably accurate and efficient RIR sim-

ulators (Habets, 2006; Scheibler et al., 2018; Schimmel et al.,
2009), the inverse problem of retrieving the absorption coeffi-

cients of surfaces solely from a RIR is much more challeng-

ing and is the focus of this article. We consider the simple

but common case of a shoebox (cuboid) room with a different

material on each of the six surfaces. Even in this case, recov-

ering the absorption coefficients of all surfaces from a single

RIR without any knowledge on the source, receiver, or wall

positions is out of reach because of inherent ambiguities of

the problem such as permutations between the different surfa-

ces. To alleviate this issue, this work focuses on estimating

the area-weighted mean absorption coefficients,

�aðbÞ ¼

X

i

aiðbÞSi

X

i

Si

2 0; 1½ �; (1)

where Si denotes the area of surface i in m2. Note that this

quantity is treated, here, as a purely analytical parameter that

globally summarizes the acoustic properties of all surfaces in
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the room. In acoustics, it is traditionally used under the

hypothesis of a diffuse sound field (DSF) in which the energy

is uniformly distributed in space and flows isotropically

(Kuttruff, 2009; Nolan et al., 2018). However, in this work,

we will also consider its estimation under more general, non-

diffuse settings. Choosing this particular quantity as a target

will notably allow relevant comparisons to methods based on

the classical reverberation theory, i.e., by inverting the well-

known Sabine and Eyring formulas (Kuttruff, 2009), at least

under conditions that are close to the DSF regime.

We propose to tackle the inverse problem of estimating

�a ¼ ½�aðbÞ�b2F 2 ½0; 1�
6

from a single RIR without any other

information on the room using supervised machine learning

and, in particular, nonlinear regression.

Whereas artificial neural networks have proven to be a

very powerful family of models for nonlinear regression in

recent years, a well-known bottleneck is their need for a

large number of input-output pairs to be trained. As of

today, because in situ estimation of absorption coefficients

remains a costly and complex task, sufficiently large and

diverse real RIR databases annotated with surface absorp-

tion profiles are not available. Hence, we propose to make

use of virtually supervised learning as introduced in

Gaultier et al. (2017). The idea is to use the known forward

physical model, namely, a room acoustic simulator, to gen-

erate a potentially unlimited amount of annotated data to

learn the inverse mapping from. The main contributions of

this article are (i) a novel approach to efficiently sample

simulated training data that are representative of commonly

encountered acoustics in cuboid rooms, which is shown to

outperform naive uniform sampling; (ii) an extensive com-

parative simulation study between estimates based on classi-

cal reverberation theory and those obtained from various

neural network designs, including their generalizability to

unseen data, noise, and various acoustic conditions; and (iii)

a comparative study between virtually trained models and

classical models on real measured RIRs.

Our simulated experiments reveal that neural models

can successfully estimate the mean absorption coefficients

under a wide range of acoustical conditions with the mean

absolute errors below 0.05 while not requiring any geometri-

cal information on the room. As expected, in non-DSF set-

tings, they are more accurate than classical models that rely

on the DSF hypothesis. On real data that are close to the

DSF regime, errors obtained from the proposed learned

model are not satisfying below 1 kHz but remain under 0.1

in higher octave bands and are comparable to those obtained

with classical models. Moreover, in those higher frequen-

cies, it is shown that the neural model continues to yield

reliable �aðbÞ estimates even in conditions where classical

models cannot as reverberation times cannot be extracted

from RIRs due to the lack of sufficient linear decays in the

Schroeder curves (Schroeder, 1965).

Although the observed limitations of classical formulas

from reverberation theory outside of the DSF regime are

well-known and expected (Nolan et al., 2018), they still

constitute an interesting comparison point as these tools

remain widely used today to obtain initial in situ acoustical

estimates in practice, e.g., Prawda et al. (2020). Further

investigation on the real-world applicability of learned mod-

els in lower octave bands and their extension to the geomet-

rically informed estimation of individual absorption profiles

are left for future work.

The remainder of this work is organized as follows.

Section II provides an overview of the related works.

Section III details the construction of our simulated RIR

datasets, examining trade-offs between computational trac-

tability, realism, and representativity. Section IV presents

the neural networks’ design and training. Sections V and VI

contains our extensive comparative experimental study on

both the simulated and real data. Finally, Sec. VII concludes

and offers leads for future work.

II. RELATED WORKS

A. Absorption coefficient estimation

Whereas this article focuses on the intermediate task of

estimating the area-weighted mean absorption coefficients

in a room, the estimation of the individual absorption coeffi-

cients or, more generally, the surface impedance of a mate-

rial is a vast and long-standing research topic, which is

briefly reviewed here. The most commonly used techniques

require an isolated sample of the studied material in a con-

trolled environment. The impedance tube method is one of

the most widely used methods (ASTM, 2006; ISO, 2001),

and the associated analytical approach is usually that of

Chung and Blaser (1980a,b), based on the transfer function

between two microphones. Alternatively, the reverberation
room method (ISO, 2003) uses the theory of reverberation

and relies on the DSF hypothesis.

In contrast, this article explores in situ estimation. For a

recent exhaustive review of this topic, the reader is referred

to Brand~ao et al. (2015). Classically, the goal is to separate

the direct wave from the reflected wave in an impulse

response with different constraints that depend on the acous-

tic environment. Early approaches include echo-impulse
methods in which the reflected wave is extracted by eliminat-

ing the incident wave and parasite wave using temporal win-

dowing or subtraction. Due to the time-frequency uncertainty

relation DtDf � 1 (Garai, 1993), a compromise must then be

found between the size of the time-domain filters used and

the information loss at low frequencies. Also, to have a good

temporal separation of the waves, the emitted pulse must be

narrow, of flat frequency spectrum, and repeatable, which is

difficult to have in practice (Cramond and Don, 1984; Davies

and Mulholland, 1979; Garai, 1993; Yuzawa, 1975).

To overcome these limitations, methods based on sta-

tionary noise have been proposed. Although Barry (1974)

and Hollin and Jones (1977) use white noise, Aoshima

(1981) and Suzuki et al. (1995) later proposed a flat spec-

trum pulse signal stretched in time by filtering. Other excita-

tion signals were then developed to guarantee a better

immunity to background noise such as maximum-length

sequences (MLS) (Rife and Vanderkooy, 1999; Schroeder,
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1979; Stan et al., 2002) and sine sweep signals (Farina,

2000, 2007; M€uller and Massarani, 2001). To date, the

advantages and disadvantages of these signals are still being

studied (Guidorzia et al., 2015; Torras-Rosell and Jacobsen,

2010).

In parallel, other works focus on the development of

analytical models of propagation. In Ingård and Bolt (1951),

the sound field of an anechoic room is approximated by a

set of plane waves. This was later reiterated in Ando (1968)

and Sides and Mulholland (1971). Allard and Sieben (1985)

introduced the microphonic doublet approach and specific

impedance, which can be related to surface impedance using

the linearized Euler equation. This approach is only valid if

the distance between the microphones is small compared to

the wavelength (Allard and Aknine, 1985; Champoux and

L’esp�erance, 1988; Champoux et al., 1988; Minten et al.,
1988). More finely, the sound field can be modeled by a set

of spherical waves, as proposed in Champoux et al. (1988),

based on the analytical model of Nobile and Hayek (1985)

and later in Li and Hodgso, (1997). Finally, approaches

based on the principle of acoustical holography, following

Tamura (1990), have also been recently investigated (Nolan,

2020; Rathsam and Rafaely, 2015; Richard et al., 2017).

Although simple propagation models are easily invertible,

more realistic propagation models are generally not, requir-

ing the use of more complex and approximate numerical

solvers, as well as access to precise details on the acoustic

environment, which are not always available to field acous-

ticians, in practice (Brand~ao et al., 2015).

In summary, estimating the absorption coefficients of a

material remains a complex task. It hinges on the choice of

a number of parameters that are often correlated with each

other and hard to precisely control, in practice, such as the

excitation signal, source and receiver properties, environ-

ment (free field, anechoic, reverberant), experimental setup

(number and position of sources and microphones, size of

the material under study), chosen propagation model, and

post processing. Developing a generic approach to retrieve

absorption profiles in situ from a unique RIR measurement

at an arbitrary location is, hence, an attractive research ave-

nue for building acoustics.

B. Machine learning in acoustics

Machine learning methodologies have only recently

been applied to acoustics. They are still relatively scarce in

the field but have received fast growing interest (Bianco

et al., 2019). Whereas the lack of a large amount of training

data is often a limiting factor, this has been alleviated by the

use of massive simulations (Gaultier et al., 2017; Kim et al.,
2017), data augmentation (Gamper and Tashev, 2018), or

domain adaptation (He et al., 2019). Early successful appli-

cations of machine learning to acoustics were mostly in

sound source localization (Chakrabarty and Habets, 2017;

Deleforge et al., 2015a; Deleforge et al., 2015b; Di Carlo

et al., 2019; Gaultier et al., 2017; He et al., 2019; Lefort

et al., 2017; Niu et al., 2017) and acoustic scene and event

classification (Deecke and Janik, 2006; Gradi�sek et al.,

2017; Mesaros et al., 2017; Mesaros et al., 2019; Parsons

and Jones, 2000). The concept of acoustic space learning
was introduced in Deleforge et al. (2015a) in the context of

sound source localization. A large dataset of broadband

audio recordings from different (source, receiver) locations

in a fixed room was gathered using a motorized binaural

head. A supervised nonlinear regression model was then

trained on this dataset to learn a mapping from audio fea-

tures to source directions. This approach is, however, lim-

ited by the data availability and does not generalize well to

different acoustic environments as shown in Deleforge et al.
(2015b). To alleviate this issue, the concept was later

extended to virtual acoustic space learning (Gaultier et al.,
2017; Kataria et al., 2017) in which hundreds of thousands

of examples are generated using a room acoustic simulator.

In the context of sound localization, such virtually learned

models showed some direct, albeit limited, generalizability

to real data in Gaultier et al. (2017) and Chakrabarty and

Habets (2017). In He et al. (2019), a domain adaptation

technique was proposed to strengthen this generalizability.

Closer to our application, supervised learning was

recently used to estimate the reverberation time (Gamper

and Tashev, 2018) or volume (Genovese et al., 2019) of a

room blindly, i.e., from the single channel noisy recording

of an unknown speech source. Interestingly, these works use

a careful combination of real and simulated data for training.

Performances are, however, naturally limited in such blind

settings. In a preliminary study (Kataria et al., 2017), virtu-

ally supervised learning was used to jointly estimate the

mean absorption coefficients of the walls and three-

dimensional (3D) position of a broadband noise source from

binaural recordings. The room shape, receiver position, and

properties of the floor and ceiling were fixed and known

throughout, whereas the absorption coefficients of the walls

were supposedly frequency independent and only results on

the simulated data were reported. Even more recently, a

method to estimate the six absorption coefficients of the sur-

faces of a shoebox room in increasing order in a fixed fre-

quency band from an impulse response was proposed using

a fully connected deep neural network (Yu and Kleijn,

2021). The model was both trained and tested on simulated

RIR datasets using the image source method without diffu-

sion or noise and with absorption coefficients uniformly

drawn at random between zero and one. Such an absorption

distribution is, however, not representative of commonly

encountered room acoustics as will be showed in Sec. III B.

Reported errors were 30%–60% lower than random guess-

ing, but no comparison to known acoustical models and no

experiments on real data were performed.

III. SIMULATED DATASETS

The first step of the proposed virtually supervised

approach is to simulate a large number of RIRs paired with

corresponding mean absorption coefficients �a [Eq. (1)] to

train our models. For this, two important trade-offs must to

be considered. The first one is between the realism of simu-

lations and their computational demand and is governed by
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the choice of a simulator and tuning of its internal parame-

ters. The second trade-off is between the diversity of consid-

ered acoustic environments and amount of representative

data needed to train the model. Both trade-offs are discussed

in detail in Secs. III A and III B.

A. Realism trade-off

When simulating RIRs, more realism typically implies

higher, sometimes prohibitive computational costs. Existing

room acoustic simulators can be divided into three catego-

ries (Habets, 2006). The first category solves the wave equa-

tion in discretized space, time, and/or frequency domains.

These notably include finite element methods (Okuzono

et al., 2014), boundary-element methods (Pietrzyk, 1998),

or finite-difference time-domain methods (Botteldooren,

1995). Whereas they can, in principle, simulate any acoustic

conditions and geometry to arbitrary precision, their compu-

tational time depends on the space discretization steps used,

which conditions the attainable wavelengths. In the context

of building acoustics, which deals with frequencies as high

as 5 kHz within large volumes, accurately generating thou-

sands of RIRs is unfeasible with such methods. A second

category includes variants of the well-known image source

model, originally proposed in Allen and Berkley (1979),

many times extended, e.g., Borish, (1984), Peterson (1986),

Samarasinghe et al. (2018), and implemented in many

widely used acoustic simulators, e.g., Habets (2006),

Scheibler et al. (2018), and Schimmel et al. (2009). This

deterministic method allows very efficient implementations,

in particular, in cuboid rooms but only models ideal specular

reflections on surfaces and, hence, lacks realism. The last

category includes energetic methods based on Monte Carlo

sampling, which is also known as ray-tracing or particle fil-

tering (Kulowski, 1985; Schimmel et al., 2009; Schr€oder,

2011). Similar to wave-based methods, these approaches

can, in principle, model arbitrary acoustic conditions and

are particularly well-suited to model surface scattering.

However, their computational time and precision depends

on the number of rays (or equivalently particles). For such

methods to be tractable in the context of room acoustics, the

receiver must typically be approximated by a large receptive

field to aggregate enough rays. Alternatively, the diffuse-

rain method proposed in Schr€oder (2011) systematically

sends a proportion of diffuse energy to a point receiver at

each ray collision, reducing the number of rays needed. In

both cases, the timings of rays reaching the receivers are

nondeterministic and only reflect acoustical effects in a sta-

tistical, energetic sense.

For this study, we choose a hybrid simulator belonging

to the last two categories, which is referred to as Roomsim

and proposed in Schimmel et al. (2009). Roomsim combines

the image source method to obtain precise timings of specu-

lar reflections dominating the early part of the RIR and the

diffuse-rain method to account for stochastic diffuse effects

dominating the RIR’s tail. The hybrid simulator Roomsim

enables frequency-dependent absorption and scattering

coefficients and uses a minimum-phase finite-impulse-

response representation of rays reaching the receiver to

convert echograms into RIRs. This minimum-phase repre-

sentation is physically motivated by the causality and fast-

decaying properties of the resulting signals. A software

based on Roomsim is shown to yield remarkably accurate

RIRs compared to measured RIRs in identical conditions in

Wabnitz et al. (2010). We used the open-source Cþþ/

MATLAB implementation from the original authors

(Schimmel et al., 2009). As a compromise between accuracy

and computational demand, we used a frequency of sam-

pling of 48 kHz, 50 000 rays per simulation for the diffuse-

rain method, and image sources up to order 50 for the image

source method. Simulations were run and aggregated along

the following six octave bands: b 2 F . These match those

available in most absorption coefficient databases and are

commonly used in acoustic regulations. Although its impact

is minor, atmospheric attenuation is taken into account for a

temperature of 20 �C and a relative humidity of 42%

(Roomsim default values).

We must stress that although lower frequencies are per-

ceptually relevant in building acoustics, the energy-based

simulation approach used here is unable to accurately model

some of the wave phenomena occurring below Shroeder’s

frequency (Schroeder, 1996) such as room modes (Schr€oder,

2011, Sec. 5.6). This limitation of the current study will

be reflected in our real-data experiments as discussed in

Sec. VI.

B. Representativity trade-off

A large diversity in the training data is generally desir-

able to learn a model that generalizes well to many different

situations. However, more diversity also implies more data

to obtain a representative training dataset. Indeed, for a fixed

sampling density of a parameterized observation space, the

number of required samples grows exponentially in the

number of parameters, an effect known as the curse of
dimensionality. As a mitigating trade-off, we choose in this

study to focus on environments that are representative of the

field of building acoustics, e.g., offices, schools, restaurants,

or accommodations. In particular, we exclude very large

volumes such as those encountered in churches, tunnels,

hangars, or swimming pools. Our evaluation will also

exclude unusual absorption profiles that are only encoun-

tered in highly specialized rooms (e.g., anechoic or semi-

anechoic chambers). Figure 1 shows the absorption profiles

of the 92 commonly encountered reflective, wall, floor, and

ceiling materials that will be considered in this study.1

Because most commonly encountered rooms in buildings

are cuboids, this study focuses on those rather than dealing

with arbitrary complex geometries. This is also motivated

by the fact that the image source method is much faster in

this setting as exploited by Roomsim. Finally, we only con-

sider empty rooms. This strong assumption is partially miti-

gated by the use of the diffuse-rain model. The random

sound rays stemming from this Monte Carlo approach can
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approximate reflections on objects of different sizes,

depending on the octave bands/wavelengths considered.

The relevant parameters impacting RIRs can then be

divided into a reasonably small set of geometric and acous-

tic parameters. The geometric parameters include the 3D

positions of the source and receiver (both assumed to be

omnidirectional in this study) and the width Lx, length Ly,

and height Lz of the room. The height Lz was drawn uni-

formly at random between 2.5 m and 4 m, and the width Lx

and length Ly were drawn uniformly at random between

1.5 m and 10 m. The receiver and source positions were

drawn uniformly at random in the room for each RIR while

ensuring a minimum distance of 0.5 m to any surface and

1 m between the two using rejection sampling (ISO, 2008).

The acoustic parameters include the absorption aiðbÞ
and scattering siðbÞ coefficients of each of the six surfaces i
in each of the six octave bands b. Two different strategies

were explored to sample the absorption coefficients. The

first, most straightforward strategy is to draw all 36 coeffi-

cients uniformly at random between 0 and 1 for each RIR.

We later refer to this approach as Unif, which is also the

approach employed in the recent paper by Yu and Kleijn

(2021). The obtained �aðbÞ distribution [Eq. (1)] over 15 000

simulated RIRs is shown in Fig. 2(a). As can be observed in

Fig. 2(b), the resulting histogram of RT30ðbÞ values2 is nar-

rowly spread around 150 ms, which is an unusual value

mostly encountered in semi-anechoic chambers. This is

because using this technique, drawing four or more reflec-

tive absorption profiles within the same room [e.g., �aiðbÞ
< 0:15 for all b] is very unlikely. Yet, highly reflective pro-

files are frequently encountered in real buildings. These are

characteristics of hard surfaces made of, e.g., concrete,

bricks, or tiles. The absorption profiles of 26 such materials

are plotted in Fig. 1(a). As can be seen, they are all roughly

frequency independent with absorption coefficients below

0.12. Based on this, we designed the following new reflec-
tivity biased (RB) sampling strategy:

(1) For each surface type (wall, floor, ceiling), toss a coin;

(2) on heads, draw reflective frequency-independent absorp-

tion profiles uniformly at random in [0.01,0.12] for these

surfaces; and

(3) on tails, draw nonreflective frequency-dependent

absorption profiles uniformly at random within prede-

fined ranges, depending on the surface type (see Fig. 1).

Note that walls are either all reflective or all nonreflective

but may still have distinct profiles. The nonreflective ranges are

chosen to encompass typical materials used on walls, floors,

and ceilings in common buildings as shown in Figs. 1(b)–1(d).

As can be seen in Figs. 2(d) and 2(c), the proposed RB sam-

pling technique results in more diverse and more representative

distributions for both reverberation times RT30ðbÞ and mean

absorption coefficients �aðbÞ. The peak around 0.06 observed in

Fig. 2(c) is consistent with the proposed bias toward reflective

surfaces and the chosen realistic absorption ranges.

Finally, for both the Unif and RB sampling strategies,

the same frequency-dependent scattering profile was used for

all surfaces. This approach, previously used in Gaultier et al.
(2017), is based on the interpretation that the diffuse-rain

model of Roomsim globally captures the random reflections

in the room rather than the specific local effects. Whereas

random scattering coefficients in [0,1] were used in all octave

bands for Unif, we, respectively, used the ranges [0,0.3] and

[0.2,1] for octave bands in {125 Hz,250 Hz,500 Hz} and

{1 kHz,2 kHz,4 kHz} for RB. This choice is guided by scat-

tering profiles measured in real rooms as reported in

Vorl€ander and Mommertz (2000). Overall, 1 training set of

15 000 RIRs and 1 development set of 5000 RIRs were gen-

erated for each of the 2 sampling techniques.

IV. NEURAL NETWORK MODELS AND TRAINING

A. Data preprocessing

A crucial problem in supervised learning is that of find-

ing an appropriate representation for input data, which is

FIG. 1. (Color online) The absorption profiles of 92 commonly encountered reflective, wall, floor, and ceiling materials with lower and upper bounds. (a) 26

reflective profiles, (b) 19 wall profiles, (c) 12 floor profiles, and (d) 35 ceiling profiles are shown.
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sometimes referred to as the feature extraction step. Ideally,

one seeks a representation that preserves or enhances fea-

tures that are relevant for estimating the output while

removing unnecessary or redundant features. In learning-

based audio signal processing applications, phaseless time-

frequency representations, such as magnitude spectrograms

or Mel-frequency cepstral coefficients, have been widely

used. Because frequency-dependent values are sought, such

representations seem attractive at first glance. However, by

discarding the phase, they would remove fine-grain temporal

information such as the timings of early echoes in the RIRs.

These timings could be exploited to infer geometrical prop-

erties of the room that, in turn, correlate with absorption

coefficients conditionally on the reverberation time, as

shown by Eq. (2). Alternatively, one could consider invert-

ible complex time-frequency representations such as the

short-term Fourier transform (STFT). Our preliminary

experiments in that direction were, however, not conclusive,

possibly the result of the difficulty of handling nonlinear

complex phase behavior in the networks, or because any

choice of STFT parameters implies a nonobvious compro-

mise between the time and frequency resolution at each

frame. Consequently, we choose to let the network learn its

own internal representation of time-domain RIRs in an end-

to-end fashion. This approach has recently shown consider-

able success in other audio signal processing applications,

e.g., Luo and Mesgarani (2018).

RIRs obtained by Roomsim were resampled from 48 to

16 kHz. In fact, the highest octave band considered does not

exceed 5.7 kHz, suggesting that 12 kHz could be sufficient

for our application. However, higher-frequency features,

such as the times of arrival of early reflections, may still

carry useful information. On the other hand, overly relying

on very high frequencies would be disconnected from real

applications as the receivers and emitters used to measure

RIRs are always band limited in practice. Only the first

500 ms of the RIRs were preserved as this range is expected

to contain the most salient acoustical information, including

both early and late reflections. This resulted in 8000-

dimensional input vectors. A random white Gaussian noise

with a signal-to-noise ratio (SNR) of 30 dB was also added

to every RIR in the datasets. This is expected to make

learned models more robust and prevent them from relying

on vanishingly small values in the RIRs, which would be

inaccessible in practical applications. Finally, all input vec-

tors were normalized to have a maximum value of one. This

is done to facilitate learning and also prevent models from

relying on the RIR’s absolute amplitude, which is often

inaccessible in practical applications due to unknown source

and microphone gains.

B. Network design

Two commonly used neural network architectures are

considered for this study, namely, the multilayer perceptron

(MLP) and convolutional neural network (CNN), depicted

in Figs. 3(a) and 3(b), respectively. The MLP is made up of

three fully connected hidden layers of successive dimen-

sions 128, 64, and 32, each followed by exponential linear

units (ELUs). The CNN starts with three consecutive one-

dimensional (1D)-convolutional hidden layers with a stride

of 1, respective filter sizes 33, 17, 98 with zero-padding to

preserve dimensionality after each convolution, and number

of filters 64, 32, and 16. Each convolution is followed by a

FIG. 2. (Color online) The histograms of �aðbÞ [(a),(c)] and RT30ðbÞ [(b),(d)] values in 6 octave bands for 15 000 RIRs using Unif [(a),(b)] vs RB [(c),(d)]

sampling.
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max pooling layer of width four and ELUs. The resulting

output of dimension 2000 is then passed through a fully con-

nected hidden layer of size 32 with ELUs. This particular

design of layers is meant to define two simple

dimensionality-reducing networks of relatively small and

comparable sizes and depths. For each network, a final fully

connected output layer is used to yield the desired output

vector, evaluated by a mean-squared error loss function.

Networks are optimized on the training set using batches of

size of 1000 and ADAM (Kingma and Ba, 2014) with a

learning rate of 0.001. Parameters, yielding the lowest aver-

age loss on the development set over 400 epochs, are used

in all experiments. These meta-parameters and choicec of

ELUs, rather than rectified linear units (ReLUs), were

guided by preliminary experiments on the development sets.

Three different output targets were considered: (i) the

six-dimensional vector of mean absorption coefficients in all

octave bands �a 2 ½0; 1�6, (ii) the vector of inverse mean

absorption coefficient �a�1 2 Rþ6, or (iii) the concatenation

of the mean absorption and scattering coefficients

½�a; �s� 2 ½0; 1�12
. The second idea derives from the fact that

the reverberation of a room is roughly inversely proportional

to the mean absorption in DSF conditions, e.g., Sabine’s law

(Kuttruff, 2009). The third idea is to test whether annotating

the network with scattering coefficients at train time could

help the estimation of absorption, i.e., multi-task learning.

Output values in [0,1] were constrained using sigmoid gates,

whereas positive values were constrained using a ReLU. A

comparison of the distribution of absolute errors on �a
obtained on the development set of RB using these three tar-

gets is shown in Fig. 4. In the remainder of this article, the

absolute error is defined as the absolute difference between

the target and estimated values. For a given dataset, reported

means or box plots are computed over all input RIRs but

also over all six octave bands unless stated otherwise. As

can be seen, using inverse or concatenated vectors yields

equivalent or worse results than simply using �a. Hence, only

networks outputting �a are considered in the remainder of

this article.

Figures 5(a) and 5(b) show the evolution of the loss

functions of the two networks on the training and develop-

ment sets for both Unif and RB. It can be observed that the

MLP is more prone to over-fitting than the CNN. This sug-

gests that the latter generalizes better to the unseen RIRs, an

effect which will be confirmed in Sec. VI. This might be

explained by the use of temporal convolutions, which may

more efficiently capture the global frequency content of the

RIRs than fully connected layers, while discarding less rele-

vant local information.

V. EXPERIMENTS AND RESULTS

A. Baseline models

As a comparison point with the proposed neural models,

we use mean absorption estimates obtained using the well-

known Sabine’s law and its more precise variant from

Eyring from the reverberation theory (Kuttruff, 2009):

�aSabineðbÞ ¼ 0:163V=ðSÞ; (2)

�aEyringðbÞ ¼ �ln 1� �aSabineðbÞð Þ; (3)

FIG. 3. (Color online) The neural network architectures. (a) The multilayer

perceptron (MLP) and (b) convolutional neural network (CNN) are shown.

FIG. 4. (Color online) The comparison of three output layers, which were

trained on RB and evaluated on the RB development set.

FIG. 5. (Color online) The loss evolution on training and development sets.

(a) The Unif datasets and (b) RB datasets are shown.
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where V denotes the room’s volume and S ¼
P

iSi is its total

surface. Eyring’s and Sabine’s models are always given the

true volume V and total surface S of the room in all experi-

ments. Obviously, the DSF hypothesis inherent to these clas-

sical models is not theoretically verified for many of the

considered room configurations. To better understand the

impact of this limitation, a preliminary study was performed

on the Unif and RB training databases. The reverberation

time used in the formulas was calculated on different dynam-

ics (½�5 dB;�15 dB�; ½�5 dB;�20 dB�; ½�5 dB;�25 dB�;
½�5 dB;�35 dB�; ½�5 dB;�65 dB�) of the Schroeder curves

(Schroeder, 1965), and the resulting distributions of the abso-

lute errors were estimated. The dynamic ½�5 dB;�35 dB�,
i.e., RT30ðbÞ, was retained for our study as it offered the

smallest median values of absolute errors for the Unif and

RB training databases, i.e., 0.07 and 0.03, respectively. Such

low errors show that the exploitation of these DSF-based

models in our comparative study, while limited, is not unrea-

sonable for the selected room configurations.

B. Simulation results

We now compare the different learned models (MLP-

Unif, MLP-RB, CNN-Unif, CNN-RB) to Eyring’s [Eq. (3)]

and Sabine’s [Eq. (2)] models on the task of estimating

surface-weighted mean absorption coefficients [Eq. (1)]

from a simulated RIR. A variety of simulated test sets,

containing 500 RIRs each and all generated with Roomsim,

are considered.

The first simulated test set, called realistic, only contains

surface materials commonly encountered in real buildings

and is drawn uniformly at random from the database pre-

sented in Fig. 1. Five fixed geometries, representative of typi-

cal rooms, were selected for this set with the following

ðLx; Ly; LzÞ dimensions in meters: (4,5,3), (10,2,3), (10,5,3),

(5,8,2.5), (10,10,5). The scattering of the walls and noise level

are the same as those in the RB datasets. Absolute errors

obtained with the six methods are presented in the form of

box plots in Fig. 6(a). As can be seen, networks trained on the

naive Unif training set do not succeed in outperforming the

classical approaches based on reverberation theory. However,

mean estimation errors, twice as small as Eyring’s method

and with much less variance, are obtained using the networks

trained on the RB set. As expected, the estimates by Sabine

are shown to be slightly less accurate than those of Eyring.

Hence, results from the Unif-trained networks and Sabine’s

model will no longer be reported in what follows. The abso-

lute error distribution was also observed per octave band for

this test set (Fig. 7). No major differences in errors were

observed across the octave bands for the different methods.

Therefore, the errors will systematically be aggregated over

all octave bands in the remainder of this section.

We then conduct a series of experiments on specially

crafted simulated test sets to further assess the efficiency of

FIG. 6. (Color online) The comparison of �a estimation errors on different simulated test sets of 500 RIRs each. (a) The realistic test set, (b) influence of

geometry, (c) influence of reverberation time, (d) influence of noise, (e) influence of diffusion, and (f) influence of absorption are shown.
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the different models against various acoustical conditions.

Unless stated otherwise, the acoustic parameters follow the

RB sampling (see Sec. III B), and the RIRs have undergone

the same pretreatment as those in Sec. IV A. First, Fig. 6(b)

compares results on three test sets, respectively, containing

only cube-like rooms (Lx; Ly 2 ½2; 4�; Lz ¼ 2:5), flat rooms

(Lx;Ly 2 ½8;10�; Lz ¼ 2:5), and elongated rooms (Lx 2 ½2;4�;
Ly 2 ½8;10�; Lz ¼ 2:5). Unsurprisingly, with Eyring’s model,

the smallest absolute errors are obtained on cube-like rooms

for which the sound field is closest to being diffuses

(Hodgson, 1994, 1996). Logically, both the mean and vari-

ance of this error increase for the two other geometrical con-

figurations. Although learned models only provide minor

improvements over Eyring’s formula under cube-like geom-

etries where the DSF assumption is mostly met, they offer a

clear advantage in nonhomogeneous conditions.

Figure 6(c) compares the results for three test sets, each

associated with a specific reverberation (slightly reverberant,

semi-reverberant, reverberant). Where the obtained errors tend

to increase as the reverberation time decreases, the learned

models remain superior to Eyring’s in all conditions. For

Eyring, this increase is expected as more reverberant rooms

are closer to the DSF hypothesis (Hodgson, 1994, 1996).

Figure 6(d) reports errors as a function of the SNR

when additive white Gaussian noise is added to the RIR sig-

nals (SNR levels are calculated on the first 500 ms of the

RIRs). It can be seen that the Eyring model estimations

degrade abruptly for SNRs of 30 dB or lower. To investigate

this effect, Fig. 8 shows the 1 kHz Schroeder curves of an

example RIR under varying noise levels. As can be seen, as

the noise level increases, a clean, linear, �30 dB log-energy

decay may no longer be available, thus, degrading the RT30

estimation. This is a well-known limitation of the

reverberation-based techniques, which often require manual

adaptation of the decay level used, depending on the mea-

surements. On the other hand, the learned MLP-RB and

CNN-RB models, trained on a noisy dataset (30 dB SNR),

prove to be much more robust to noise, suggesting that they

adaptively extract relevant cues from the RIRs.

Finally, Figs. 6(e) and 6(f) report errors as a function of

�a and the mean scattering coefficient �s, where each

coefficient is fixed to a constant value across all octave

bands and surfaces in each test set. Once again, the behavior

of Eyring’s model matches the model expected from the

reverberation theory because rooms containing high-

scattering, low-absorption materials tend to feature more

DSFs (Hodgson, 1994, 1996). On the other hand, learned

models perform similarly or better than Eyring’s model for

�s < 0:5 and �a < 0:5 but significantly less well otherwise.

This is because the mean scattering values outside those

ranges were not present in the RB training set [see Fig.

2(c)]. Although learning-based methods show remarkable

interpolation capabilities, they are known to have limited

extrapolation capabilities.

To get further insight on the influence of the scattering

coefficients and diffusion when training neural networks, we

tried retraining the CNN model on a purely specular RB set,

i.e., using only the image source method in Roomsim while

FIG. 7. (Color online) The comparison

of �aðbÞ estimation errors on the realis-

tic test set in different octave bands.

The set used for training networks is

RB.

FIG. 8. (Color online) The 1 kHz Schroeder curves of a RIR under varying

SNRs is depicted.
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disabling the diffuse-rain algorithm as was perfomed in,

e.g., the learning-based absorption estimation technique pro-

posed in Yu and Kleijn (2021). The obtained mean absolute

error on �a of the realistic test set was 0.18, which is six

times larger than when using the original RB set with the

diffusion activated (0.03). This strongly highlights the

importance of taking into account scattering effects when

training learning-based acoustic estimation techniques.

Overall, this extensive simulated study reveals that care-

fully trained, virtually supervised models can consistently and

significantly outperform conventional reverberation-based

techniques in the task of estimating the quantity �a, particularly

under noisy or non-DSF conditions. This was expected as the

use of Eyring’s model is theoretically inadequate under such

conditions even if the observed absolute errors were reason-

able in practice (see Sec. V A). In conditions close to the DSF

hypothesis, the learned models and reverberaton-based models

become comparable. This suggests that the trained models

learned a correction with respect to the classical models under

non-DSF conditions by extracting richer features from the

RIRs than from the mere reverberation times.

VI. TEST ON REAL DATA

A. Real dataset

To evaluate the generalizability of the proposed

approach to the real measured RIR, we us a subset of the

dEchorate dataset (Di Carlo et al., 2021). The dataset con-

sists of RIR measured in a 6 m� 6 m� 2:4 m acoustic

room in the acoustic laboratory of the Bar-Ilan University.

The wall and ceiling absorption properties can be changed

by flipping the double-sided panels with one reflective and

one absorbing face.

Ten different room configurations are considered. They

are represented as binary strings of 6 bits in Table I, where

“1” denotes a reflective surface, “0” denotes an absorbing

surface, and the ordered bits represent the floor, the ceiling,

and the West, South, East, and North walls. For each configu-

ration, 90 RIRs from all combinations of 3 sources and 30

receivers spread inside the room are measured. The sources

are Avantone Pro Active Mixcube loudspeakers (directional;

Middletown, NY), and the receivers are AKG CK32 omnidi-

rectional microphones (Vienna, Austria). Whereas room con-

figurations 1–9 only contain the sources and receivers, room

configuration 10 also contains some typical meeting room

furnitures, namely, a table, some chairs, and a coat hanger.

Each RIR is measured using the exponential sine sweep

technique described in Farina (2007). In this experiment, the

octave bands centered at 125 and 250 Hz will not be consid-

ered because the measured RIRs did not exhibit sufficient

power in those bands for reliable RTðbÞ estimations. This

observation is consistent with the frequency response pro-

vided by the loudspeakers’ manufacturer, which decays expo-

nentially from 200 Hz downward.

B. Reference absorption values

A major difficulty in evaluating the considered models

on real in situ measures is the unavailability of ground truth

for the mean absorption coefficients, which would require

knowing the true absorption profiles of every material in the

room. Although some of them could be inferred from the

manufacturer’s data, only coarse values of �aðbÞ would be

obtained in this way. To overcome this difficulty while

ensuring that a single, stable, and reliable mean absorption

profile is used as a reference for each room, we propose a

technique based on the aggregation of multiple RIR

measurements.

For each room configuration, the Schroeder curves of

the 90 measured RIRs in 4 octave bands were traced

(Schroeder, 1965). Then, the Schroeder curves were visually

inspected and separated into two sets. Set A contains

Schroeder curves featuring sufficient linear log-energy

decay from �5 to �15 dB at least. Set B contains all of the

other curves. In practice, 49% of the 3600 Schroeder curves

were discarded to the set B in this way. These mostly corre-

sponded to challenging measurement situations contained in

the dEchorate dataset, such as a receiver near a surface or a

loudspeaker facing toward a surface and away from

receivers. Then, for each room configuration and each

octave band b, the reference mean absorption coefficient

�arefðbÞ is taken to be the median value of Eyring’s model

based on the RT10ðbÞ computed from the Schroeder curves

in A only and the known room’s volume and total surface.

This median value �arefðbÞ is taken over at least 5 and, on

average, 47 estimates (see Table I), yielding a reliable and

robust value. As can be seen in Table I, a diversity of the

mean absorption coefficients �arefðbÞ between 0.12 and 0.52

is represented. This matches quite well with the range of

values considered in this study [see Figs. 1 and 2(c)].

To further validate this choice of reference value, the

left part of Fig. 9 shows the means and standard deviations

(stds) of the absolute differences between the single-RIR

Eyring estimates and the proposed median-based reference

for each room configuration and each octave band using

TABLE I. Absorption coefficients �arefðbÞ calculated in the ten room configurations. For each coefficient, the number of corresponding Schroeder curves in

A used to compute the median Eyring’s estimate is given in parentheses. Room 10 contains furniture.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Room 9 Room 10

Configuration 000000 011000 011100 011110 011111 001000 000100 000010 000001 010001

500 Hz 0.42 (11) 0.23 (7) 0.20 (20) 0.17 (51) 0.13 (48) 0.39 (8) 0.38 (5) 0.40 (8) 0.35 (7) 0.23 (12)

1000 Hz 0.52 (62) 0.28 (83) 0.25 (86) 0.17 (89) 0.13 (90) 0.44 (79) 0.41 (74) 0.44 (69) 0.43 (70) 0.33 (72)

2000 Hz 0.50 (65) 0.34 (81) 0.30 (86) 0.19 (82) 0.14 (88) 0.44 (74) 0.42 (64) 0.44 (66) 0.44 (67) 0.37 (69)

4000 Hz 0.37 (15) 0.35 (17) 0.29 (22) 0.16 (16) 0.12 (29) 0.38 (17) 0.33 (12) 0.32 (14) 0.34 (18) 0.32 (14)
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RIRs from set A only. The rooms are sorted from left-to-

right from the most reverberant room to the least reverberant

room. Clearly, it appears that both the means and stds of the

differences between the single and median-based estimates

increase as the reverberation time decreases consistently

with the reverberation theory (Hodgson, 1994, 1996).

Nevertheless, both these means and stds remain reasonably

low (below 0.1) under all configurations, despite measure-

ments being taken from many different source-receiver

placements in the room. This validates our premise of a

close-to-DSF in these experiments, at least when restricting

to the RIRs inside of the set A for each octave band.

C. Real data results

On real RIRs, the MLP models appeared to perform sig-

nificantly worse than the CNN models, yielding errors up to

twice as large. This is consistent with the better generaliza-

tion capabilities of the CNN models observed in Fig. 5 and

discussed in Sec. IV B. We, hence, omit the MLP results in

the remainder of this section for compactness.

The right part of Fig. 9 reports the mean and stds of the

absolute errors for the CNN-RB model using only the RIRs

in A. Encouragingly, for the 1, 2, and 4 kHz octave bands,

the learning-based method yields errors below or around 0.1

for all rooms, which is a reasonable uncertainty in the con-

text of the acoustic diagnosis. The errors are comparable to

those obtained with Eyring’s formula except in the three

most reverberant rooms (R3, R4, and R5) for which the latter

performs very well. For the octave band centered at 4 kHz,

the CNN-RB errors increase slightly. A possible explanation

could lie in the stronger directivity of the source at this fre-

quency as observed in the manufacturer’s data (recall that

the neural network has only been trained on omnidirectional

sources). For the octave band centered at 500 Hz, the

CNN-RB errors are much larger in all of the rooms except

R1 and R8. One of the preferred hypotheses is the existence

of a wave phenomenon in this band that could not be learned

by the neural network trained on Roomsim. These hypothe-

ses will need to be validated by further research on real data.

Figure 10 shows the same results in the form of bar plots for

the 1 kHz octave band, further confirming that the CNN-RB

model yields error distributions comparable to those o

fEyring in this band.

Finally, Fig. 11 compares errors obtained with the

CNN-RB on measured RIRs whose 1 kHz Schroeder curves

are in A against those whose Schroeder curves are in B.

Note that rooms R3, R4, and R5 are omitted here because an

insufficient number of curves were placed in B for these

rooms. Encouragingly, we observe that the CNN is largely

unaffected by the nonlinear or insufficient log-energy

decays of Schroeder curves in B. This suggests that the net-

work learned to rely on more elaborate and more robust fea-

tures than those used by the reverberation-based techniques.

In contrast, obtaining reliable absorption estimates from

these curves using Eyring’s model was fundamentally

impossible due to its reliance on the reverberation time.

VII. CONCLUSION

In this work, we tackled the inverse problem of estimat-

ing the area-weighted mean absorption coefficients of a

room from a single RIR using virtually supervised learning

in a broad range of acoustical conditions pertaining to the

field of building acoustic diagnoses. Different neural net-

work designs and simulated training strategies were pro-

posed, explored, and tested. The developed methods were

FIG. 9. (Color online) The comparison of the �aðbÞ mean estimation errors over measured RIRs in 10 rooms and 4 octave bands with Eyring and CNN-RB.

Only selected RIRs with Schroeder curves in A are included.

FIG. 10. (Color online) The comparison of the �að1000 HzÞ estimation

errors over measured RIRs in ten rooms using Eyring and CNN-RB. Only

selected RIRs with Schroeder curves in A are included.
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compared to classical formulas that hinge on the room’s vol-

ume, total surface, reverberation time, and DSF hypothesis.

In close-to-DSF conditions, our experiments on both simu-

lated and real data revealed that the best learned models

yielded estimation errors comparable to classical errors

without needing the room’s geometry. As expected and pre-

dicted by the reverberation theory, the performances of the

DSF-based models degraded under conditions departing

from the DSF. These include rooms featuring less reverber-

ation, less diffusion, non-homogenous geometries, and,

more generally, RIRs featuring insufficient or nonlinear

decays of their Schroeder curves. In contrast, the proposed

virtually trained models showed remarkable robustness in

estimating the target quantity under such conditions, sug-

gesting that they learned to rely on more elaborate and

more robust features than those used by the reverberation-

based techniques.

This first extensive experimental study on virtually

supervised mean absorption estimation aimed at paving the

way toward simpler and more robust acoustic diagnosis

techniques. Future work will include further experimental

investigations on the poorer performance of the learned

models at lower frequencies on real data, notably by

employing higher-end sound sources. Leads for improving

the learned models include domain adaption, data augmen-

tation, and probabilistic uncertainty modeling. We also plan

to build on our findings to tackle the much more difficult

problem of estimating the absorption coefficients of individ-
ual surfaces from the RIRs. For this, geometrically informed

models and the aggregation of the RIRs from multiple

source-receiver pairs will be leveraged.

1The full lists of materials and associated absorption profiles considered in

this study are available at https://members.loria.fr/ADeleforge/files/

jasa2021_supplementary_material.zip (Last viewed August 16, 2021).
2We denote by RTXðbÞ a reverberation time calculated on a Schroeder

curve’s slope from �5 to �5� X dB (Schroeder, 1965).

Allard, J. F., and Aknine, A. (1985). “Acoustic impedance measurements

with a sound intensity meter,” Appl. Acoust. 18, 69–75.

Allard, J. F., and Sieben, B. (1985). “Measurements of acoustic impedance

in a free field with two microphones and a spectrum analyzer,” J. Acoust.

Soc. Am. 77, 1617–1618.

Allen, J. B., and Berkley, D. A. (1979). “Image method for efficiently simu-

lating small-room acoustics,” J. Acoust. Soc. Am. 65(4), 943–950.

Ando, Y. (1968). “The interference pattern method of measuring the com-

plex reflection coefficient of acoustic materials at oblique incidence,” in

Proc. 6 th International Congress on Acoustics (ICA, Tokyo, Japan).

Aoshima, N. (1981). “Computer-generated pulse signal applied for sound

measurement,” J. Acoust. Soc. Am. 69, 1484–1488.

ASTM (2006). E1050-98. “Standard test method for impedance and absorp-

tion of acoustical materials using a tube, two microphones, and a digital

frequency analysis system” (American Society for Testing and Materials,

Philadelphia, PA).

Barry, T. (1974). “Measurement of the absorption spectrum using correla-

tion/spectral density techniques,” J. Acoust. Soc. Am. 55, 1349–1351.

Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S.,

and Deledalle, C.-A. (2019). “Machine learning in acoustics: Theory and

applications,” J. Acoust. Soc. Am. 146(5), 3590–3628.

Borish, J. (1984). “Extension of the image model to arbitrary polyhedra,”

J. Acoust. Soc. Am. 75(6), 1827–1836.

Botteldooren, D. (1995). “Finite-difference time-domain simulation of low-

frequency room acoustic problems,” J. Acoust. Soc. Am. 98(6),

3302–3308.

Brand~ao, E., Lenzi, A., and Paul, S. (2015). “A review of the in situ imped-

ance and sound absorption measurement techniques,” Acta Acust. Acust.

101(3), 443–463.

Chakrabarty, S., and Habets, E. A. (2017). “Broadband doa estimation using

convolutional neural networks trained with noise signals,” in 2017 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA) (IEEE, New York), pp. 136–140.

Champoux, Y., and L’esp�erance, A. (1988). “Numerical evaluation of errors

associated with the measurement of acoustic impedance in a free field

using two microphones and a spectrum analyzer,” J. Acoust. Soc. Am. 84,

30–38.

Champoux, Y., Nicolas, J., and Allard, J. F. (1988). “Measurement of

acoustic impedance in a free field at low frequencies,” J. Sound Vib. 125,

313–323.

Chung, J., and Blaser, D. (1980a). “Transfer function method of measuring

in-duct acoustic properties. I. Theory,” J. Acoust. Soc. Am. 68(3),

907–913.

Chung, J., and Blaser, D. (1980b). “Transfer function method of measuring

in-duct acoustic properties. II: Experiment,” J. Acoust. Soc. Am. 68(3),

914–921.

Cramond, A. J., and Don, C. G. (1984). “Reflection of impulses as a method

of determining acoustic impedance,” J. Acoust. Soc. Am. 75, 382–389.

Davies, J. C., and Mulholland, K. A. (1979). “An impulse method of mea-

suring normal impedance at oblique incidence,” J. Sound Vib. 67,

135–149.

Deecke, V. B., and Janik, V. M. (2006). “Automated categorization of bioa-

coustic signals: Avoiding perceptual pitfalls,” J. Acoust. Soc. Am. 119(1),

645–653.

Deleforge, A., Forbes, F., and Horaud, R. (2015a). “Acoustic space learning

for sound-source separation and localization on binaural manifolds,” Int.

J. Neural Syst. 25(01), 1440003.

Deleforge, A., Horaud, R., Schechner, Y. Y., and Girin, L. (2015b). “Co-

localization of audio sources in images using binaural features and

locally-linear regression,” IEEE/ACM Trans. Audio, Speech, Lang.

Process. 23(4), 718–731.

Di Carlo, D., Deleforge, A., and Bertin, N. (2019). “MIRAGE: 2D source

localization using microphone pair augmentation with echoes,” in

ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (IEEE, New York), pp. 775–779.

Di Carlo, D., Tandeitnik, P., Foy, C., Deleforge, A., Bertin, N., and Gannot,

S. (2021). “dechorate: A calibrated room impulse response database for

echo-aware signal processing,” arXiv:2104.13168.

Farina, A. (2000). “Simultaneous measurement of impulse response and

distortion with a swept-sine technique,” in Audio Engineering Society
Convention 108 (Audio Engineering Society, New York).

FIG. 11. (Color online) The comparison of the �að1000 HzÞ CNN-RB esti-

mation errors over measured RIRs with 1 kHz Schroeder curves in A vs

those in B.

J. Acoust. Soc. Am. 150 (2), August 2021 Foy et al. 1297

https://doi.org/10.1121/10.0005888

https://members.loria.fr/ADeleforge/files/jasa2021_supplementary_material.zip
https://members.loria.fr/ADeleforge/files/jasa2021_supplementary_material.zip
https://doi.org/10.1016/0003-682X(85)90007-6
https://doi.org/10.1121/1.392008
https://doi.org/10.1121/1.392008
https://doi.org/10.1121/1.382599
https://doi.org/10.1121/1.385782
https://doi.org/10.1121/1.1914711
https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/1.390983
https://doi.org/10.1121/1.413817
https://doi.org/10.3813/AAA.918840
https://doi.org/10.1121/1.396986
https://doi.org/10.1016/0022-460X(88)90286-6
https://doi.org/10.1121/1.384778
https://doi.org/10.1121/1.384779
https://doi.org/10.1121/1.390482
https://doi.org/10.1016/0022-460X(79)90508-X
https://doi.org/10.1121/1.2139067
https://doi.org/10.1142/S0129065714400036
https://doi.org/10.1142/S0129065714400036
https://doi.org/10.1109/TASLP.2015.2405475
https://doi.org/10.1109/TASLP.2015.2405475
http://arxiv.org/abs/arXiv:2104.13168
https://doi.org/10.1121/10.0005888


Farina, A. (2007). “Advancements in impulse response measurements by

sine sweeps,” in Audio Engineering Society Convention 122 (Audio

Engineering Society, New York).

Gamper, H., and Tashev, I. J. (2018). “Blind reverberation time estimation

using a convolutional neural network,” in 2018 16th International
Workshop on Acoustic Signal Enhancement (IWAENC) (IEEE, New

York), pp. 136–140.

Garai, M. (1993). “Measurement of the sound-absorption coefficient in situ:

The reflection method using periodic pseudorandom sequences of maxi-

mum length,” Appl. Acoust. 39, 119–139.

Gaultier, C., Kataria, S., and Deleforge, A. (2017). “Vast: The virtual acoustic

space traveler dataset,” in International Conference on Latent Variable
Analysis and Signal Separation (Springer, New York), pp. 68–79.

Genovese, A. F., Gamper, H., Pulkki, V., Raghuvanshi, N., and Tashev, I. J.

(2019). “Blind room volume estimation from single-channel noisy speech,”

in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (IEEE, New York), pp. 231–235.
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