
Exercise sheet 6: Review – Corrections

Turing machines

1. Consider a k-head Turing machine having a single tape and k heads; more than one head can
be on the same cell at a time. At each move, the TM will read the symbols under its heads,
and consider its internal state (a unique state for whole machine), then it changes the state,
writes a symbol on each cell under a head (if there are more than one head in the same cell,
it writes the symbol with only one of them) and moves each head to the left or to the right
independently. Prove that the languages accepted by k-head Turing machines are the same
languages accepted by ordinary TM’s.

Solution We must prove that the k head TM can be simulated by an ordinary TM. Since we
already know that a multiple-tape TM can be simulated with an ordinary one, it suffices to
simulate the k-head TM with a multiple-tape TM. We call K to the k-tape TM and M to the
multiple-tape TM that simulates the former.

Assume we enumerate each head as hi with i = 1, . . . , k. We use a k + 1-tape TM M to do
the simulation. The first step is to copy the input tape of K into each tape of M . In the last
tape, we call it ‘extra’, we add a mark to each symbol where there is a head in K (add a mark
means that the alphabet of machine M is the union of the alphabet of the machine K plus the
set of all the symbols in the alphabet, with a mark).

So, we get the following picture:

Let the machine K be in the following configuration:

↓1 ↓23 ↓4
σ α β δ α σ β β σ α α

Then the machine M is in the following configuration:

↓
σ α β δ α σ β β σ α α

↓
σ α β δ α σ β β σ α α

↓
σ α β δ α σ β β σ α α

↓
σ α β δ α σ β β σ α α

↓
σ̂ α β̂ δ α σ β̂ β σ α α

At each move in machine K, we do the same movement in the corresponding tape. Then,
we check the last (extra) tape to see what are the changes with respect to each tape. We
synchronize those changes one by one in the extra tape. For example, if in the tape 2th the 3th
cell has been changed from β to σ and the head moves to the right, then after synchronizing
such tape, the extra tape will looks as follows

σ̂ α σ δ̂ α σ β̂ β σ α α

Then when we have to synchronize the 3th tape we compare all the cells except those already
synchronized (all except the 3th cell in our example), so the extra tape remain unchanged.

After having synchronized all the tapes. We replicate the extra tape in all the other tapes,
which finish the synchronization process and the movement.
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2. Consider the numeric functions f : Nk
0 → N0.

• Natural numbers can be represented in unary form: e.g. 0̄ = 1, 1̄ = 11, 2̄ = 111, . . . .
Hence we can take the input alphabet of a TM computing numeric functions to be Σ = {1}.
• Consecutive numbers on the input are separated by a blank space �.

• The TM starts its computation with the head placed on the � preceding the first number.

e.g. for f(2, 0, 3):
q0
↓

1 1 1 1 1 1 1 1

• When the computation terminates, then input has been replaced on the tape with the
result of the function.

e.g. if f(2, 0, 3) = 4:
qf
↓

1 1 1 1 1

We make some assumptions to ease composition of TM’s:

• There is a single final state qf . The TM halts with the head over the � just before the
solution.

• The only transition from q0 is δ(q0,�) = (qi,�, R) .

• There are no transitions entering q0 or of the form δ(qf ,�).

• The computation loops whenever f(m) is undefined.

This allows us to sequentially compose TM’s, as represented by the following diagram

(I)−→M1
(II)−→M2

(III)−→

I Initial state of M1 and of the combination.

II Final state of M1 and initial state of M2.

III Final state of M2 and also of the combination.

(a) Construct a TM computing the successor function s(n) = n+ 1.

Solution
δ(q0,�) = (q1,�, R)
δ(q1, 1) = (q1, 1, L)
δ(q1,�) = (qf , 1, L)

(b) Construct a TM computing the zero function z(Xk) = 0.

Solution
δ(q0,�) = (q1,�, R)
δ(q1, 1) = (q1,�, R)
δ(q1,�) = (q2,�, R)
δ(q2, 1) = (q1,�, R)
δ(q2,�) = (qf , 1, L)

(c) Construct a TM computing the empty function, i.e. the function that is undefined for
every n ∈ N0.

Solution
δ(q0,�) = (q1,�, R)
δ(q1, 1) = (q1, 1, R)
δ(q1,�) = (q1,�, R)
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(d) Construct a TM computing the projector u
(n)
k (x1, . . . , xk, . . . , xn) = xk.

Solution
δ(q0,�) = (q1,�, R)
δ(qi, 1) = (qi,�, R) with i = 1, . . . , k − 1
δ(qi,�) = (qi+1,�, R) with i = 1, . . . , k − 1
δ(qk, 1) = (qk, 1, R)
δ(qk,�) = (qm,�, R)
δ(qm, 1) = δ(qm,�, R)
δ(qm,�) = (qn,�, R)
δ(qn, 1) = (qm,�, R)
δ(qn,�) = (qv,�, L)
δ(qv,�) = (qv,�, L)
δ(qv, 1) = (qw, 1, L)
δ(qw, 1) = (qw, 1, L)
δ(qw,�) = (ql,�, L)
δ(ql,�) = (qf ,�, R)

(e) Construct a TM computing the predecesor function Pd(n) =

{
0 if n = 0
n− 1 otherwise

Solution
δ(q0,�) = (q1,�, R)
δ(q1, 1) = (q2,�, R)
δ(q2,�) = (qf , 1, R)
δ(q2, 1) = (qf , 1, L)

(f) Using sequential composition, construct a TM computing the constant function one.
Tip: one = Φ(s(1), z(n)).

Solution

z(n)


δ(q0,�) = (q1,�, R)
δ(q1, 1) = (q1,�, R)
δ(q1,�) = (q2,�, R)
δ(q2, 1) = (q1,�, R)
δ(q2,�) = (q3, 1, L)

s(1)


δ(q3,�) = (q4,�, R)
δ(q4, 1) = (q4, 1, L)
δ(q4,�) = (qf , 1, L)

Recursive functions

3. Let l be a primitive recursive relation. Show that the following functions are recursive.

(a) f1(x, y0, y) = the first value z in [y0, y] for which xl z.

Solution Notice that

f1(x, y0, y) = µz(
◦D(χ≥(z, y0).χ≥(y, z).χl(x, z)) = 0)

so let g(z, x, y0, y) be the following function

Φ(◦D,Φ(Π,Φ(Π,Φ(χ≥, u
(4)
1 , u

(4)
3 ),Φ(χ≥, u

(4)
4 , u

(4)
1 )),Φ(χl, u

(4)
2 , u

(4)
1 )))(z, x, y0, y)

Then f1 = M [g].
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(b) f2(x, y) = the second value z in [0, y] for which xl z.

Solution Notice that
f2(x, y) = f1(x, f1(x, 0, y) + 1, y)

So f2 = Φ(f1, u
(2)
1 ,Φ(f1, u

(2)
1 , z(2), u

(2)
2 ), u

(2)
2 ).

4. Let f and g be primitive recursive functions. Show that the following function is also primitive
recursive:

h(x) =

{
1 if f(i) > g(j), for all 0 ≤ i ≤ x and 0 ≤ j ≤ x
0 otherwise

Solution We define h using recursion.

h(0) =

{
1 if f(i) > g(j), for all 0 ≤ i ≤ 0 and 0 ≤ j ≤ 0
0 otherwise

=

{
1 if f(0) > g(0)
0 otherwise

= χ>(f(0), g(0)) = Φ(χ>,Φ(f, z(0)),Φ(g, z(0)))

h(x+ 1) = h(x).χ>(f(x+ 1), g(x+ 1))

= Φ(Π, u
(2)
2 ,Φ(χ>,Φ(f,Φ(s, u

(2)
1 )),Φ(g,Φ(s, u

(2)
1 ))))(x, h(x))

So h = R(Φ(χ>,Φ(f, z(0)),Φ(g, z(0))),Φ(Π, u
(2)
2 ,Φ(χ>,Φ(f,Φ(s, u

(2)
1 )),Φ(g,Φ(s, u

(2)
1 ))))).

5. Give primitive recursive definitions for the following functions

(a) half(x) = bx
2
c.

Solution We define half using recursion.

half(0) = 0 = z(0)

half(x+ 1) = half(x) + χodd(x)

= Φ(Σ, u
(2)
2 ,Φ(χodd, u

(2)
1 ))(x, half(x))

So half= R(z(0),Φ(Σ, u
(2)
2 ,Φ(χodd, u

(2)
1 ))).

(b) min(x, y).

Solution Notice that min(x, y) = y−̊(y−̊x): When x ≥ y, y−̊x = 0 so this expression is
0. When x < y, y−̊(y−̊x) = y − (y − x) = y − y + x = x. Then

min = Φ(◦d, u
(2)
2 ,Φ(◦d, u

(2)
2 , u

(2)
1 ))

(c) minn(x1, . . . , xn) for all n ≥ 2.

Solution We proceed by recursion.

minn(x1, . . . , 0) = 0 = z(n−1)(x1, . . . , xn−1)

minn(x1, . . . , xn + 1) =



minn(x1, . . . , xn) if minn(x1, . . . , xn) 6= xn

xn + 1
if minn(x1, . . . , xn) = xn
∧ ∀i ∈ {1, . . . , n− 1}, xi 6= xn

xn
if minn(x1, . . . , xn) = xn
∧ ∃i ∈ {1, . . . , n− 1}, xi = xn

4



= ◦D(E(u
(n+1)
n+1 , u(n+1)

n )).u
(n+1)
n+1 + E(u

(n+1)
n+1 , u(n+1)

n ).(u(n+1)
n +

n−1∏
i=1

◦D(E(u
(n+1)
i , u(n+1)

n )))(Xn,minn(Xn))

= Φ(Σ,Φ(Π,Φ(◦D,Φ(E, u
(n+1)
n+1 , u(n+1)

n )), u
(n+1)
n+1 ),Φ(Π,Φ(E, u

(n+1)
n+1 , u(n+1)

n ),Φ(Σ, u(n+1)
n , g)))︸ ︷︷ ︸

h

(Xn,minn(Xn))

where Xn = (x1, . . . , xn) and g is defined as follows

g(n+1)(X) =
n−1∏
i=1

◦D(E(u
(n+1)
i , u(n+1)

n ))(X) = Φ(Π, f1,Φ(Π, f2, . . . ,Φ(Π, fn−2, fn−1)))(X)

where ∀i = 1, . . . , n−1, fi = ◦D(E(u
(n+1)
i , u

(n+1)
n )). Notice that g is a well defined primitive

recursive function since n is fixed.

Then minn = R(z(n−1), h).

(d) max(x, y).

Solution Notice that max(x, y) = x + (y−̊x): When x ≥ y, y−̊x = 0 so this expression
is x. When x < y, x+ (y−̊x) = x+ (y − x) = y. Then

max = Φ(Σ, u
(2)
1 ,Φ(◦d, u

(2)
2 , u

(2)
1 ))

(e) rem(a, b) = remainder of the division of a by b (consider rem(a, 0) = a).

Solution We proceed by recursion, however we will do a recursion over a instead of a
recursion over b. Since the operator R is defined for recursion over the last argument, we
first define a function rm(b, a) = remainder of the division of a by b, and then we define
rem in terms of rm.

rm(b, 0) = 0 = z(1)(b)
rm(b, a+ 1) = (rm(b, a) + 1).◦D(E(rm(b, a) + 1, b))

= Φ(Π,Φ(s, u
(3)
3 ),Φ(◦D,Φ(E,Φ(s, u

(3)
3 ), u

(3)
1 )))(b, a, rm(b, a))

Then rm = R(z(1),Φ(Π,Φ(s, u
(3)
3 ),Φ(◦D,Φ(E,Φ(s, u

(3)
3 ), u

(3)
1 ))))

Notice that rem(a, b) = rm(b, a), then rem = Φ(rm, u
(2)
2 , u

(1)
1 ).

(f) quo(a, b) = quotient of the division of a by b, with quo(a, 0) = 0.

Solution Again we want the recursion on the first argument, so we define q(b, a) as the
quotient of the division of a by b.

q(b, 0) = 0 = z(1)(b)
q(b, a+ 1) = q(b, a) + ◦D(rem(a+ 1, b))

= Φ(Σ, u
(3)
3 ,Φ(◦D,Φ(rem,Φ(s, u

(3)
2 ), u

(3)
1 )))(b, a, q(b, a))

Then q = R(z(1),Φ(Σ, u
(3)
3 ,Φ(◦D,Φ(rem,Φ(s, u

(3)
2 ), u

(3)
1 )))) and since quo(a, b) = q(b, a),

quo = Φ(q, u
(2)
2 , u

(1)
1 ).

6. Show that the following function is primitive recursive:

f(0) = 0, f(1) = 1, f(2) = 222 , f(3) = 333
3

, . . . f(n) = nn. .
.

n

(n times)
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Solution Let P (n,m) = nn. .
.

n

(m times), then we define P recursively as follows

P (n, 0) = n = u
(1)
1 (n)

P (n,m+ 1) = (P (n,m))n = Exp(P (n,m), n)

= Φ(Exp, u
(3)
3 , u

(3)
1 )(n,m, P (n,m))

So, P = R(u
(1)
1 ,Φ(Exp, u

(3)
3 , u

(3)
1 )). Now, notice that f(n) = P (n, n), so f = Φ(P, u

(1)
1 , u

(1)
1 ).

7. Show that the following are recursive functions

(a) f(x, y) = blogx yc
Solution Notice that logx y = t⇒ xt = y. Then blogx yc = min{t | xt ≤ y ∧ xt+1 > y}.
Also notice that the condition xt ≤ y ∧ xt+1 > y can be rewritten as xt−̊y = 0 and
y−̊xt+1 = 0, or what is the same

(xt−̊y) + (y−̊xt+1) = 0

Then let f ′(t, x, y) = (xt−̊y) + (y−̊xt+1), so

f ′ = Φ(Σ,Φ(◦d,Φ(Exp, u
(3)
2 , u

(3)
1 ), u

(3)
3 ),Φ(◦d, u

(3)
3 ,Φ(Exp, u

(3)
2 ,Φ(s, u

(3)
1 ))))

And so, f(x, y) = M [f ′](x, y).

(b) g(x, y) = blogx yc+ d y
√
xe

Solution Notice that y
√
x = t ⇒ ty = x. Then d y

√
xe = min{t | (t − 1)y ≤ x ∧ ty > x}.

Also notice that the condition (t− 1)y ≤ x ∧ ty > x can be rewritten as

((t− 1)y−̊x) + (x−̊ty) = 0

Then let g′(t, x, y) = ((t− 1)y−̊x) + (x−̊ty), so

g′ = Φ(Σ,Φ(◦d,Φ(Exp,Φ(Pd, u
(3)
1 ), u

(3)
3 ), u

(3)
2 ),Φ(◦d, u

(3)
2 ,Φ(Exp, u

(3)
1 , u

(3)
3 )))

So g = Φ(Σ, f,M [g′]).

(c) g(x, y) = d 4
√
x+ ye

Solution Notice that d 4
√
x+ ye = min{t | (t − 1)4 ≤ x + y ∧ t4 > x + y}. Also notice

that the condition (t− 1)4 ≤ x+ y ∧ t4 > x+ y can be rewritten as

((t− 1)4−̊(x+ y)) + ((x+ y)−̊t4) = 0

Then let h′(t, x, y) = ((t− 1)4−̊(x+ y)) + ((x+ y)−̊t4), so

h′ = Φ(Σ,Φ(◦d,Φ(Exp,Φ(Pd, u
(3)
1 ), four(3)),Φ(Σ, u

(3)
2 , u

(3)
3 )),

Φ(◦d,Φ(Σ, u
(3)
2 , u

(3)
3 ),Φ(Exp, u

(3)
1 , four(3))))

So h = M [h′]

8. Show that the following function is recursive primitive.

f(x, y) =


x+ y if x is an even number, multiple of 3.
x−̊y if x is an odd number, multiple of 3.
x otherwise.

Solution f(x, y) = ◦D(◦D(rem(x, 3))).(χeven(x).(x+ y) + χodd.(x−̊y)) + ◦D(rem(x, 3)).x, so

f = Φ(Σ,Φ(Π,Φ(◦D,Φ(◦D,Φ(rem, u
(2)
1 , three(2)))),

Φ(Σ,Φ(Π,Φ(χeven, u
(2)
1 ),Φ(Σ, u

(2)
1 , u

(2)
2 )),

Φ(Π,Φ(χodd, u
(2)
1 ),Φ(◦d, u

(2)
1 , u

(2)
2 )))),

Φ(Π,Φ(◦D,Φ(rem, u
(2)
1 , three(2))), u

(2)
1 ))
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9. Consider the following function:

f(x, y) =
x2

y

Is it recursive primitive? In such case, write it as so, in other case, write it as recursive function
(if possible). Justify in any case.

Solution It is not recursive primitive because it is partial (it is not defined for y = 0). We

cannot write it for the general case, however we can approximate it with bx
2

y
c.

Notice that bx
2

y
c = t⇒ x2 ≥ t.y ∧ (x+ 1)2 < t.y, or what is the same (t.y−̊x2) + (x2−̊t.y) = 0.

Then let g(t, x, y) = (t.y−̊x2) + (x2−̊t.y), so

g = Φ(Σ,Φ(◦d,Φ(Π, u
(3)
1 , u

(3)
3 ),Φ(Exp, u

(3)
2 , two(3))),Φ(◦d,Φ(Exp,Φ(s, u

(3)
2 ), two(3)),Φ(Π, u

(3)
1 , u

(3)
3 )))

Then f = M [g].

Extra

10. Give the complexity (big O notation) of the Turing machines at exercise 2 and of the simulation
at exercise 1.

Solution

Exercise 1 Say the input of the machine to simulate is n and its complexity is N . There is
a number of steps at the beginning to set up the machine, which depends linearly of the
size of n (linearly since we have to copy the input (n) k + 1 times, so we read and write
(k+1).n times). At each move we do k moves (one for head) and then k.n to synchronize.
So each move of the original machine takes k + k.n moves of the new one. So, if the
machine does in total N movements, we will do (k + k.n).N plus the (k + 1).n for the
setting. So, the number of steps is k.(n + 1).N + (k + 1).n. If we consider k fixed (i.e. a
constant number), we can discard it and all the constants to take just the O notation, so
we have O(n.N). That is, if the order of the original machine was n2, the simulation will
have an order n3, and so on.

Exercise 2

Item (a) O(1). Constant. It just takes 3 steps.

Item (b) O(n). Lineal. It just passes through the tape once.

Item (c) O(∞). It never terminates.

Item (d) O(n). Lineal. It do one pass and a half.

Item (e) O(1). Constant. It just takes 3 steps.

Item (f) O(n). Lineal. It runs a lineal machine and then a constant one.
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