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Probabilistic vs. Quantum
Destructive interference
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Is there any computational power in the
destructive interference?
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Affine systems
Preliminaries

Probabilistic state: l1-norm-1 vector (defined on R+
0 )

Probabilistic operator: Linear operator (stochastic matrix)

Quantum state: l2-norm-1 vector (defined on C)
Quantum operator: Linear operator (unitary matrix)

Aim
I Generalization of probabilistic system

I Allowing negative values

I Linear operator

I Defined in a simple way

Affine state: Barycentric vector (defined on R)
Affine operator: Linear operator (affine transformation)
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Affine systems
Getting information

Weighting operator
I Analogous to quantum measurement
I Projects the state into the computational basis
I The weight is the absolut value
I Normalization after measurement (l1-norm can be > 1)
I Normalized magnitude = probability of observation

10 − 9

Probability of :
10
19

Probability of :
9
19

Alejandro Díaz-Caro and Abuzer Yakaryılmaz Affine computation and affine automaton 6 / 16



Affine systems (AfS)
Formal definition: Affine state

I E = {e1, . . . , en} basis states (deterministic states)
I Affine state: linear combination a1e1 + · · ·+ anen with

n∑
i=1

ai = 1 ai ∈ R

In R2

Probabilistic state
Set of states:
A segment

1

1

Quantum state
Set of states:

A circle

1

Affine state
Set of states:

A line

1

1
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Affine systems (AfS)
Formal definition: Affine transformation and weighting operator

Affine transformation

A = (aij)ij is an affine transformation ⇔ ∀j ,
∑

i aij = 1

Weighting operator
In QC, sign of amplitudes does not matter for measurement
We follow the same idea

I Magnitude of an affine state:

|v | =
∑
i

|ai |+ |a2|+ · · ·+ |an| ≥ 1 (l1 norm)

I Probability of observing the j−th state:

|aj |
|v |
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Affine finite Automaton (AfA)
Formal definition

An AfA M is a 5-tuple

M = (E ,Σ, {Aσ | σ ∈ Σ}, es ,Ea)

where
I E is the set of deterministic states
I es ∈ E is the starting state
I Ea ⊆ E set of accepting states
I Σ is the input alphabet
I Aσ is the affine transformation matrix for the symbol σ.

Idem PFA except for the transition matrices
(and a PFA with matrices consisting only of 0s and 1s is a DFA)
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Affine finite Automaton (AfA)
Language recognition

I Input: w ∈ Σ∗

I After reading the whole input, a weighting operator is applied
I Accepting probability of M in w :

fM(w) =
∑
ek∈Ea

|vf [k]|
|vf |

∈ [0, 1]

I A language is recognized by an AfA M with cutpoint λ ∈ [0, 1) iff

L = {w ∈ Σ∗ | fM(w) > λ}

I Nondeterministic AfA: cutpoint 0.
I A language is recognized by an AfA M with bound error iff

∃δ such that
{
∀w ∈ L, fM(w) ≥ λ+ δ
∀w /∈ L, fM(w) ≤ λ− δ

Alejandro Díaz-Caro and Abuzer Yakaryılmaz Affine computation and affine automaton 10 / 16



Affine finite Automaton (AfA)
Language recognition

I Input: w ∈ Σ∗

I After reading the whole input, a weighting operator is applied
I Accepting probability of M in w :

fM(w) =
∑
ek∈Ea

|vf [k]|
|vf |

∈ [0, 1]

I A language is recognized by an AfA M with cutpoint λ ∈ [0, 1) iff

L = {w ∈ Σ∗ | fM(w) > λ}

I Nondeterministic AfA: cutpoint 0.
I A language is recognized by an AfA M with bound error iff

∃δ such that
{
∀w ∈ L, fM(w) ≥ λ+ δ
∀w /∈ L, fM(w) ≤ λ− δ

Alejandro Díaz-Caro and Abuzer Yakaryılmaz Affine computation and affine automaton 10 / 16



The languages and automata zoo

Cutpoint Language Class Automaton
CP > 0 Stochastic lang. SL PFA
CP = 0 Regular lang. REG NFA

Bound error Regular lang. REG BPFA
CP > 0 Stochastic lang. SL QFA
CP = 0 Nondeterministic quantum lang. NQAL NQFA

Bound error Regular lang. REG BQFA

REG ( NQAL ( SL

Cutpoint Language Class Automaton
CP > 0 Affine lang. AfL AfA
CP = 0 Nondeterministic affine lang. NAfL NAfA

Bound error Bounded-error affine lang. BAfL BAfA
BAfL0: All non-members are accepted with value 0
BAfL1: All members are accepted with value 1.
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Bounded-error affine languages (BAfL)
Language EQ = {w ∈ {a, b}∗ | |w |a = |w |b} /∈ REG

e1 e2

(a, 2)

(b, 1/2)

(a,−1)

(b, 1/2)

(a, 1)

(b, 1)

Aa =

(
2 0
−1 1

)
Ab =

(
1/2 0
1/2 1

)

After reading m as and n bs the state is
(

2m−n

1− 2m−n

)
I ∀w ∈ EQ, vf =

(
1
0

)
(accepting value 1)

I ∀w /∈ EQ, max accepting value: vf =

(
2
−1

)
(accepting value 2/3)

Theorem
REG ( BAfL1
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Bounded-error affine languages (BAfL)

e1 e2e3

(a, 1)
(a, x)(a,−x)

(b, 1)
(b,−x)(b, x)

(a, 1)

(b, 1)

(a, 1)

(b, 1)

Aa =

 1 0 0
x 1 0
−x 0 1



Ab =

 1 0 0
−x 1 0
x 0 1


After reading m as and n bs the state is

 1
(m − n)x
(n −m)x


Accepting value:

 1 if m = n
1

2x |m − n|+ 1
if m 6= n

Taking x larger we get smaller error

Theorem
REG ( BAfL0
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Cutpoint affine languages (AfL)
LAPINS′ = {w ∈ {a, b, c}∗ | |w |2a > |w |b and |w |2b > |w |c} /∈ SL

[Jānis Lapiņš, 1974]
PFAs and QFAs can check one of the conditions, with cutpoint 1

2 , but not both

Theorem
LAPINS′ is recognized by an AfA with cutpoint 1

2

Proof (sketch).

1. Check |w |2a > |w |b with an AfA simulating the PFA
(
|w |2a
|w |b

)
2. Check |w |2b > |w |c by producing the state

(
|w |2b − |w |c

1− (|w |2b − |w |c)

)
3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

Corollary
SL ( AfL

AFAs is more powerful than PFAs and QFAs with cutpoint

Alejandro Díaz-Caro and Abuzer Yakaryılmaz Affine computation and affine automaton 14 / 16
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PFAs and QFAs can check one of the conditions, with cutpoint 1

2 , but not both

Theorem
LAPINS′ is recognized by an AfA with cutpoint 1

2

Proof (sketch).

1. Check |w |2a > |w |b with an AfA simulating the PFA
(
|w |2a
|w |b

)
2. Check |w |2b > |w |c by producing the state

(
|w |2b − |w |c

1− (|w |2b − |w |c)

)
3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

Corollary
SL ( AfL

AFAs is more powerful than PFAs and QFAs with cutpoint
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Nondeterministic affine languages (NAfL)

(NQAL contains some famous languages like the complement of EQ)

Theorem
NAfL = NQAL

Proof. We prove the double inclusion by showing how to simulate one
with the other.

NAfAs have the same power as NQFAs
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Summarising
I Bounded and unbounded error:

AfAs more powerful than QFAs and PFAs
I Nondeterministic computation:

AfAs equivalent to QFAs
(and are more powerful than PFAs)

Corroboration of the thesis:
The destructive interference

plays a role in the computational power of QC

Further results
I Language recognition power and succinctness of affine automata

(M. Villagra and A. Yakaryılmaz) To appear in UCNC’16
arXiv:1602.05432

I Can one quantum bit separate any pair of words with zero-error?
(A. Belovs, J. A. Montoya, A. Yakaryılmaz) arXiv:1602.07967
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Backup slides
Weighting operator

Can we use the weighting operator as a projective measurement?
Answer: No

v =

 1
−1
1


Weighting based on separation {e1} and {e2, e3}:

Probability 1/3 of {e1}
Probability 2/3 of {e2, e3}

But

v ′ =

 0
−1
1

 Not affine! (not even after normalization)

Conclusion: After weighting, the system must collapse to a single state
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