Adding Measurement to van Tonder’s Calculus

Computer Science Undegraduate Thesis

Alejandro Diaz-Caro

Universidad Nacional de Rosario - Argentina

Advisor
Dr. Manuel Gadella
Universidad de Valladolid - Spain

Co-Advisor

Dr. Pablo Martinez Lopez
Universidad Nacional de La Plata - Argentina

RO
£

7
R
28

RS

&

)
&rson

@ Introduction
@ A brief memory refresher
@ Motivation

© Adding Measurement
@ 15t step: Probabilistic Transition Rules
e 2" step: Providing Syntax for Qubits
@ 3 step: Rules for well-formed terms
@ Operational Semantic
@ A remark about confluence
@ Example: Teleportation algorithm

© Conclusions

A brief memory refresher

@ van Tonder’s calculus provides quantum concepts to the
M-calculus

A brief memory refresher

@ van Tonder’s calculus provides quantum concepts to the
M-calculus

@ The syntax is the following:

ti= term
X variable
Ax.t) abstraction
tt) aplication
c constant
It nonlinear term
Alx.t) nounlinear abstraction
cu=
0|1|H|cnot|X|... constants

A brief memory refresher

@ van Tonder’s calculus provides quantum concepts to the
M-calculus

@ The syntax is the following:

ti= term
X variable
Ax.t) abstraction
tt) aplication
c constant
It nonlinear term
Alx.t) nounlinear abstraction
cu=
0|1|H|cnot|X|... constants

@ Nonlinear terms are used to distinguish definite terms from
not-definite terms

A brief memory refresher (I1)

Definition

Let us call a subexpresion definite with respect to a computational
basis if it is textually the same in all branches of the superposition.

A brief memory refresher (I1)

Definition

Let us call a subexpresion definite with respect to a computational
basis if it is textually the same in all branches of the superposition.

Example

1
—5(0x.0) 0) +](Ax.0) 1))

@ the subexpresion (Ax.0) is definite

@ the argument %(|0) + |1)) is non-definite

A brief memory refresher (111)

“Rules of use”

@ Nonlinear terms will be guaranteed to be definite with respect
to the computational basis

A brief memory refresher (111)

“Rules of use”

@ Nonlinear terms will be guaranteed to be definite with respect
to the computational basis

@ (Alx.t): denotes functions of nonlinear arguments

@ (Ax.t): denotes functions of linear arguments

A brief memory refresher (111)

“Rules of use”

@ Nonlinear terms will be guaranteed to be definite with respect
to the computational basis

e (Alx.t): denotes functions of nonlinear arguments
@ (Ax.t): denotes functions of linear arguments

@ A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all, but a linear
argument must appear exactly once in the function body

A brief memory refresher (111)

“Rules of use”

@ Nonlinear terms will be guaranteed to be definite with respect
to the computational basis

e (Alx.t): denotes functions of nonlinear arguments
@ (Ax.t): denotes functions of linear arguments

@ A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all, but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

A brief memory refresher (1V)

@ To prevent terms of the form !t from being evaluated, he
extends the definition of values as follows:

Values in \q

Vo= values:

variable

constant

Ax.t) linear abstraction
Alx.t) nonlinear abstraction
t l-suspension

o X

— e~~~

A brief memory refresher (V)

@ To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

A brief memory refresher (V)

@ To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

(8)

H; (Ax.t) v) — 2 (Ax.tx)) t[v/x]

where t, is obtained from t by recursively replacing all subterms that do not
contain x with the placeholder simbol and keeping x

A brief memory refresher (V)

@ To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

H; (Ax.t) v) — H; (Ax.tx)) t[v/x] (8)

where t, is obtained from t by recursively replacing all subterms that do not
contain x with the placeholder simbol and keeping x

o For gates there are some specific rules

Example of Hadamard rule

H 0 reduces to %(|0) +11))

@ André van Tonder's linear untyped A-calculus does not include
Measurement Operation

@ André van Tonder's linear untyped A-calculus does not include
Measurement Operation

@ He declares that any algorithm can be redesigned to defer
measurements

@ André van Tonder's linear untyped A-calculus does not include
Measurement Operation

@ He declares that any algorithm can be redesigned to defer
measurements

@ But it can generate misunderstanding in some algorithms

@ André van Tonder's linear untyped A-calculus does not include
Measurement Operation

@ He declares that any algorithm can be redesigned to defer
measurements

@ But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

%) H]
— =
‘r
\

0 ~{H}
0) —¢, é@)

Here it is not clear that Alice and Bob can be away from each other

'
]

Motivation (II)

Same example in \q

teleport x — let (e, &) =eprin
let (x',y’) = alice (x, e) in
bob (x',y’, &)
where
alice (x,e1) — let (x',y') = cnot (x,e1) in ((H X'),y")
bob (x',y’, &) — let (y",e5) = cX (¥, e) in
let (x”,€)) = cZ (X', ¢€)) in

(X”,_y//, eé/)
epr = cnot ((H 0),0)

Motivation (II)

Same example in \q

teleport x — let (e, &) =eprin
let (x',y’) = alice (x,e1) in
bob (x',y’, &)
where
alice (x,e1) — let (x',y") = cnot (x,e1) in ((H X'),y")
bob (x',y’, &) — let (y",e5) = cX (¥, e) in
let (x”,€)) = cZ (X', ¢€)) in

(X”,_y//, eé/)
epr = cnot ((H 0),0)

Motivation (II)

Same example in \q

teleport x — let (e, &) =eprin
let (x',y") = M, alice (x,e1) in
bob (x',y’, &)
where
alice (x,e1) — let (x',y") = cnot (x,e1) in ((H x'),y")
bob (x',y’, &) — let (y",e5) = cX (¥, e) in
let (x”,€)) = cZ (X', ¢€)) in

(X”,_y//, eé/)
epr = cnot ((H 0),0)

Motivation (II)

Same example in \q

teleport x — let (e, &) =eprin
let (x',y") = M, alice (x,e1) in
bob (x',y’, €2)
where

alice (x,e1) — let (x',y") = cnot (x,e1) in ((H x'),y")
bob (x',y’, &) —

epr = cnot ((H 0),0)

Motivation (III)
Goal

The intention of this work is to add the measurement
operation to the untyped)\, keeping it untyped

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic
@ We need probabilistic transition rules

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic
@ We need probabilistic transition rules

@ Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic
@ We need probabilistic transition rules

@ Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Premises over P

P goes to @1 with probability p and to Q>

P
—p @ with probability g

Pﬂq Qz

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic
@ We need probabilistic transition rules

@ Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Premises over P
P —>p Q]_
P *>q Qz

P goes to @1 with probability p and to Q>
with probability g

o

@ To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

15t step: Probabilistic Transition Rules

@ Measurements are inherently probabilistic
@ We need probabilistic transition rules

@ Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Premises over P
P —>p Q]_
P *>q Qz

P goes to @1 with probability p and to Q>
with probability g

o

@ To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

@ The)4 syntax has no restriction on the shape of the qubits,
they are taken as constants

279 step: Providing Syntax for Qubits

@ We need to split the constants into qubits, gates and
measurements:

279 step: Providing Syntax for Qubits

@ We need to split the constants into qubits, gates and

measurements:
M
Syntax for Ag
t.= terms:
X variable

(Ax.t) abstraction
(tt) aplication

It nonlinear term
(A!x.t) nonlinear abstraction
cy constant for gates

q constant for qubits
M, constant for measurement

2" step: Providing Syntax for Qubits (1)

@ Measurements are represented by constants M,, where n is
the number of qubits to measure

2" step: Providing Syntax for Qubits (1)

@ Measurements are represented by constants M,, where n is
the number of qubits to measure

@ Gates are constants like

cy = Hlcnot | X|Z|q(q)" +aq(a)7| ...

2" step: Providing Syntax for Qubits (1)

@ Measurements are represented by constants M,, where n is
the number of qubits to measure

@ Gates are constants like

cy = Hlcnot | X|Z|q(q)" +aq(a)7| ...

@ For qubits, we provide the following syntax

2" step: Providing Syntax for Qubits (1)

@ Measurements are represented by constants M,, where n is
the number of qubits to measure

@ Gates are constants like

cy = Hlcnot | X|Z|q(q)" +aq(a)7| ...

@ For qubits, we provide the following syntax

Syntax for qubits

g .= qubits:
|0) | |1) definite qubits
(g®q) tensorial product
(g+q) superposition
a(q) scalar product

2" step: Providing Syntax for Qubits (II1)

Problem

@ We need to restrict when a string is a qubit and when it is
not. We need to add rules for well-formed terms

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

neN
—= M
M,

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

neN

_— M
=M,

Gate

|—CU

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

neN
_— M
=M,
ey Gate
Zero

10y

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

neN

=M, M
ey Gate
W Zero
One

HL L)

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

neN
=M, M
ey Gate
W Zero
0)
F11) ne
I' |— qi1 A |— a»
NAF g ®q Tensor

3 step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (1)

ETL I
ey Gate
W Zero
1) One
M AF
F,i T q2CI2 Tensor
! A F!
F,CE I—!q1®!q2q2 I'Tensor

3" step: Rules for well-formed terms (I1)

Rules for well-formed terms (1)

2”
Z’ai‘zzl ajeC,i=1,...,27
i=1

Fag('l0)®@---@!0))+ - +am(! 1) @ ---®!|1))

Superpos

3" step: Rules for well-formed terms (I1)

Rules for well-formed terms (1)

2”
Z’ai‘zzl ajeC,i=1,...,27
i=1
Superpos
Fag(l0) ® - ®!0)) + -+ axn(![1) ® - ®! 1)) perp
2'1
OérZO,I‘G{].,...,Zn} FFZOz,‘q,'
o = Simplif
M= _Za,-q,-
=

3" step: Rules for well-formed terms (I1)

Rules for well-formed terms (1)

2”
Z’ai‘zzl ajeC,i=1,...,27
i=1
Superpos
Fag(l0) ® - ®!0)) + -+ axn(![1) ® - ®! 1)) perp
2'1
OérZO,I‘G{].,...,Zn} FFZOz,‘q,’
o = Simplif
I _Za,-q,-
=

@ The syntax previously defined will be the syntax of
"pre-terms"

3" step: Rules for well-formed terms (I1)

Rules for well-formed terms (1)

2”
Z’ai‘zzl ajeC,i=1,...,27
i=1
Superpos
Fag(l0) ® - ®!0)) + -+ axn(![1) ® - ®! 1)) perp
2'1
OérZO,I‘G{].,...,Zn} FFZOz,‘q,’
o = Simplif
I _Za,-q,-
=

@ The syntax previously defined will be the syntax of
"pre-terms"

@ A term is a pre-term t if - t can be infered from the rules for
well-formedness

Operational Semantic

Now, we can to add a transition rule for measurements

Transition rule for measurements

2”
qg=>_ aigi
M: =1
H; (Mn q) =i Gi
Where
gi =!q1i®!q2i ® - - - ®lqpi
with

lgi ='10) or I|1) Yk=1...n

This rule discards the history track because measurement
operations are irreversible

A remark about confluence

A remark about confluence

@ Let us consider the following expresion

éwowl!m))

(Ax.(x x)) (M (7

A remark about confluence

@ Let us consider the following expresion

(A (x %)) (My (1[0) + f 1))

It is not well-formed! (the linear argument appears twice in
the body function)

A remark about confluence

@ Let us consider the following expresion
1
(Ax.(x x)) (M1 (—10) + —11)))
710+ 75
It is not well-formed! (the linear argument appears twice in

the body function)
@ Abstraction must be nonlinear

(Mx.(x x)) (My (—=1 L,

/2 0) + /2 11)))

A remark about confluence

@ Let us consider the following expresion
1
(Ax.(x x)) (M1 (—10) + —11)))
710+ 75
It is not well-formed! (the linear argument appears twice in
the body function)
@ Abstraction must be nonlinear
1
AMx.(x x)) (My (—=!]0 1
(Alx.(x x)) (1(\@|> \fH))
The argument is linear, so My has to apply first, producing a
nonlinear output (!]0) or !|1))

A remark about confluence

@ Let us consider the following expresion

1
Ax.(x x)) (My (— 1
(Ax.(x x)) (1(\[|> \[H))
It is not well-formed! (the linear argument appears twice in
the body function)

@ Abstraction must be nonlinear

1
Alx.(x x)) (M1 (—=!10 1
(Alx.(x x)) (1(\@\> \fH))
The argument is linear, so My has to apply first, producing a
nonlinear output (!]0) or !|1))
@ Let us consider a promotion of the argument

Ox(x %)) (M (—21j0) +

510 D)

1
11
\@’

A remark about confluence

@ Let us consider the following expresion
1
(Ax.(x x)) (M1 (—10) + —11)))
710+ 75
It is not well-formed! (the linear argument appears twice in
the body function)
@ Abstraction must be nonlinear

(Alx(x %)) (My (\1@! 0) + f 1))

The argument is linear, so My has to apply first, producing a
nonlinear output (!]0) or !|1))
@ Let us consider a promotion of the argument

(Mx.(x x)) |(My (\1@! 0) + \2! 1))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

Example: Teleportation algorithm

teleport ¢ —1 let x ® y = epr in
let by ® by = M5 alice (g, x) in
bob (bl, bz,y)
where
epr = cnot ((H !]0) ®!]0))
alice (g,x) —1 let r® w = cnot g ® x in

(Hr)®w)
bob (b1, b2, y) —1 (zed by) (ex by) y

ex by —1110) by T+ 1) (X b)T
zed by —1 Z(1]0) (1]0)) "+b1(!]1))T)—10) (1 [1)) TH(X br)(t[1))T

(ex by) is just X2 and (zed by) is Z2

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

@ To add reversibility, van Tonder added a history track

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

@ To add reversibility, van Tonder added a history track

@ To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is definite and when it is
not

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

@ To add reversibility, van Tonder added a history track

@ To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is definite and when it is
not

@ To prevent cloning, he made rules for well-formed terms

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus
@ To add reversibility, van Tonder added a history track
@ To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is definite and when it is
not

@ To prevent cloning, he made rules for well-formed terms

@ To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

	Introduction
	
	A brief memory refresher
	Motivation

	Adding Measurement
	1st step: Probabilistic Transition Rules
	2nd step: Providing Syntax for Qubits
	3rd step: Rules for well-formed terms
	Operational Semantic
	A remark about confluence
	Example: Teleportation algorithm

	Conclusions

