Adding Measurement to van Tonder's Calculus

Computer Science Undegraduate Thesis

Alejandro Díaz-Caro Universidad Nacional de Rosario - Argentina

Advisor Dr. Manuel Gadella Universidad de Valladolid - Spain

Co-Advisor Dr. Pablo Martínez Lopez Universidad Nacional de La Plata - Argentina

Outline

- Introduction
 - A brief memory refresher
 - Motivation
- 2 Adding Measurement
 - 1st step: Probabilistic Transition Rules
 - 2nd step: Providing Syntax for Qubits
 - 3rd step: Rules for well-formed terms
 - Operational Semantic
 - A remark about confluence
 - Example: Teleportation algorithm
- Conclusions

A brief memory refresher

ullet van Tonder's calculus provides quantum concepts to the λ -calculus

A brief memory refresher

- ullet van Tonder's calculus provides quantum concepts to the λ -calculus
- The syntax is the following:

```
Syntax of \lambda_a
          t ::=
                                        term
                                        variable
                  Χ
                  (\lambda x.t)
                                        abstraction
                  (t t)
                                        aplication
                                        constant
                  !t
                                        nonlinear term
                  (\lambda!x.t)
                                        nonlinear abstraction
          c ::=
                  0|1|H|cnot|X|... constants
```

A brief memory refresher

- ullet van Tonder's calculus provides quantum concepts to the λ -calculus
- The syntax is the following:

```
Syntax of \lambda_a
          t ::=
                                        term
                                        variable
                  X
                  (\lambda x.t)
                                        abstraction
                  (t t)
                                        aplication
                                        constant
                  !t
                                        nonlinear term
                  (\lambda!x.t)
                                        nonlinear abstraction
          c ::=
                  0|1|H|cnot|X|... constants
```

 Nonlinear terms are used to distinguish <u>definite</u> terms from not-definite terms

Definition

Let us call a subexpresion definite with respect to a computational basis if it is textually the same in all branches of the superposition.

Definition

Let us call a subexpresion definite with respect to a computational basis if it is textually the same in all branches of the superposition.

Example

$$\frac{1}{\sqrt{2}}(|(\lambda x.0) 0\rangle + |(\lambda x.0) 1\rangle)$$

- the subexpresion $(\lambda x.0)$ is definite
- the argument $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ is non-definite

"Rules of use"

 Nonlinear terms will be guaranteed to be definite with respect to the computational basis

"Rules of use"

- Nonlinear terms will be guaranteed to be definite with respect to the computational basis
- $(\lambda!x.t)$: denotes functions of nonlinear arguments
- $(\lambda x.t)$: denotes functions of linear arguments

"Rules of use"

- Nonlinear terms will be guaranteed to be definite with respect to the computational basis
- $(\lambda!x.t)$: denotes functions of nonlinear arguments
- $(\lambda x.t)$: denotes functions of linear arguments
- A linear abstraction may use a nonlinear argument any number of times in its body, or not at all, but a linear argument must appear exactly once in the function body

"Rules of use"

- Nonlinear terms will be guaranteed to be definite with respect to the computational basis
- $(\lambda!x.t)$: denotes functions of nonlinear arguments
- $(\lambda x.t)$: denotes functions of linear arguments
- A linear abstraction may use a nonlinear argument any number of times in its body, or not at all, but a linear argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

• To prevent terms of the form !t from being evaluated, he extends the definition of values as follows:

 To make the process reversible, he adds a history track which saves the reduced terms in each step and the operation that has been applied

 To make the process reversible, he adds a history track which saves the reduced terms in each step and the operation that has been applied

Example of transition rule with history track

$$\frac{}{\mathcal{H};((\lambda x.t) \ v) \to \mathcal{H};((\lambda x.\overline{t}_x) \ _);t[v/x]}$$
 (\beta)

where \overline{t}_x is obtained from t by recursively replacing all subterms that do not contain x with the placeholder simbol and keeping x

 To make the process reversible, he adds a history track which saves the reduced terms in each step and the operation that has been applied

Example of transition rule with history track

$$\mathcal{H}; ((\lambda x.t) \ v) \to \mathcal{H}; ((\lambda x.\overline{t}_x) \ _); t[v/x]$$
 (\beta)

where \overline{t}_x is obtained from t by recursively replacing all subterms that do not contain x with the placeholder simbol and keeping x

For gates there are some specific rules

Example of Hadamard rule

H 0 reduces to
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

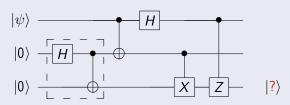
• André van Tonder's linear untyped λ -calculus does not include Measurement Operation

- André van Tonder's linear untyped λ -calculus does not include Measurement Operation
- He declares that any algorithm can be redesigned to defer measurements

- André van Tonder's linear untyped λ -calculus does not include Measurement Operation
- He declares that any algorithm can be redesigned to defer measurements
- But it can generate misunderstanding in some algorithms

- André van Tonder's linear untyped λ -calculus does not include Measurement Operation
- He declares that any algorithm can be redesigned to defer measurements
- But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement



Here it is not clear that Alice and Bob can be away from each other

Same example in λ_q

teleport
$$x \longrightarrow \mathbf{let}\ (e_1,e_2) = \mathsf{epr}\ \mathbf{in}$$

$$\mathbf{let}\ (x',y') = \mathsf{alice}\ (x,e_1)\ \mathbf{in}$$

$$\mathsf{bob}\ (x',y',e_2)$$

where

alice
$$(x, e_1) \longrightarrow \text{let } (x', y') = cnot \ (x, e_1) \text{ in } ((H \ x'), y')$$

bob $(x', y', e_2) \longrightarrow \text{let } (y'', e_2') = cX \ (y', e_2) \text{ in}$
$$\text{let } (x'', e_2'') = cZ \ (x', e_2') \text{ in}$$

 (x'', y'', e_2'') epr $\equiv cnot ((H 0), 0)$

```
Same example in \lambda_a
              teleport x \longrightarrow \mathbf{let}(e_1, e_2) = \mathbf{epr} \mathbf{in}
                                        let (x', y') = alice (x, e_1) in
                                          bob (x', y', e_2)
where
alice (x, e_1) \longrightarrow \operatorname{let}(x', y') = \operatorname{cnot}(x, e_1) \operatorname{in}((H x'), y')
bob (x', y', e_2) \longrightarrow \text{let } (y'', e_2') = cX (y', e_2) \text{ in}
                                 let (x'', e_2'') = cZ(x', e_2') in
                                 (x'', y'', e_2'')
epr \equiv cnot ((H 0), 0)
```

Same example in λ_q

teleport
$$x \longrightarrow \mathbf{let} (e_1, e_2) = \mathbf{epr} \mathbf{in}$$

$$\mathbf{let} (x', y') = M_2 \text{ alice } (x, e_1) \mathbf{in}$$

$$\mathsf{bob} (x', y', e_2)$$

where

alice
$$(x, e_1) \longrightarrow \text{let } (x', y') = cnot \ (x, e_1) \text{ in } ((H \ x'), y')$$

bob $(x', y', e_2) \longrightarrow \text{let } (y'', e_2') = cX \ (y', e_2) \text{ in}$
$$\text{let } (x'', e_2'') = cZ \ (x', e_2') \text{ in}$$
$$(x'', y'', e_2'')$$

 $\mathsf{epr} \equiv \mathit{cnot}\ ((H\ 0), 0)$

Same example in λ_q

teleport
$$x \longrightarrow \text{let } (e_1, e_2) = \text{epr in}$$

$$\text{let } (x', y') = M_2 \text{ alice } (x, e_1) \text{ in}$$

$$\text{bob } (x', y', e_2)$$

where

alice
$$(x, e_1) \longrightarrow \text{let } (x', y') = cnot (x, e_1) \text{ in } ((H x'), y')$$

bob $(x', y', e_2) \longrightarrow$

 $\mathsf{epr} \equiv \mathit{cnot}\ ((H\ 0), 0)$

The intention of this work is to add the measurement operation to the untyped λ_a , keeping it untyped

• Measurements are inherently probabilistic

- Measurements are inherently probabilistic
- We need probabilistic transition rules

- Measurements are inherently probabilistic
- We need probabilistic transition rules
- Following Di Pierro et. al., we use a simple model in which each transition rule may have several conclusions, each with an associated happening probability

- Measurements are inherently probabilistic
- We need probabilistic transition rules
- Following Di Pierro et. al., we use a simple model in which each transition rule may have several conclusions, each with an associated happening probability

Example

 $rac{Premises \ over \ P}{P
ightarrow_{p} \ Q_{1}} \ P
ightarrow_{q} \ Q_{2}$

P goes to Q_1 with probability p and to Q_2 with probability q

- Measurements are inherently probabilistic
- We need probabilistic transition rules
- Following Di Pierro et. al., we use a simple model in which each transition rule may have several conclusions, each with an associated happening probability

Example

Premises over P	
$P \rightarrow_{p} Q_{1}$	
$P \rightarrow_q Q_2$	

P goes to Q_1 with probability p and to Q_2 with probability q

Problem

• To know the probability of making a transition to each state, we need to know the "shape" of the qubit

- Measurements are inherently probabilistic
- We need probabilistic transition rules
- Following Di Pierro et. al., we use a simple model in which each transition rule may have several conclusions, each with an associated happening probability

Example

Premises over	Ρ
$P \rightarrow_{p} Q_{1}$	
$P ightarrow_q Q_2$	

P goes to Q_1 with probability p and to Q_2 with probability q

Problem

- To know the probability of making a transition to each state, we need to know the "shape" of the qubit
- The λ_q syntax has no restriction on the shape of the qubits, they are taken as constants

2nd step: Providing Syntax for Qubits

 We need to split the constants into qubits, gates and measurements:

2nd step: Providing Syntax for Qubits

 We need to split the constants into qubits, gates and measurements:

```
Syntax for \lambda_a^{M'}
            t ::=
                            terms:
                      variable
                   (\lambda x.t) abstraction
                   (t t) aplication
                      nonlinear term
                   (\lambda!x.t) nonlinear abstraction
                   cu constant for gates
                            constant for qubits
                          constant for measurement
```

2^{nd} step: Providing Syntax for Qubits (II)

• Measurements are represented by constants M_n , where n is the number of qubits to measure

2nd step: Providing Syntax for Qubits (II)

- Measurements are represented by constants M_n , where n is the number of qubits to measure
- Gates are constants like

$$c_U ::= H \mid cnot \mid X \mid Z \mid q(q)^T + q(q)^T \mid \dots$$

- Measurements are represented by constants M_n , where n is the number of qubits to measure
- Gates are constants like

$$c_U ::= H \mid cnot \mid X \mid Z \mid q(q)^T + q(q)^T \mid \dots$$

For qubits, we provide the following syntax

2nd step: Providing Syntax for Qubits (II)

- Measurements are represented by constants M_n , where n is the number of qubits to measure
- Gates are constants like

$$c_U ::= H \mid cnot \mid X \mid Z \mid q(q)^T + q(q)^T \mid \dots$$

For qubits, we provide the following syntax

Syntax for qubits

$$q ::= qubits:$$
 $|0
angle \mid |1
angle definite qubits$
 $(q \otimes q)$ tensorial product
 $(q+q)$ superposition
 $lpha(q)$ scalar product

2nd step: Providing Syntax for Qubits (III)

Problem

 We need to restrict when a string is a qubit and when it is not. We need to add rules for well-formed terms

Rules for well-formedness. We add the following rules to van Tonder's:

Rules for well-formedness. We add the following rules to van Tonder's:

Rules for well-formedness (I)

$$n \in \mathbb{N}$$

$$\vdash M_n$$

Μ

Rules for well-formedness. We add the following rules to van Tonder's:

Rules for well-formedness. We add the following rules to van Tonder's:

$n \in \mathbb{N}$	М
$\vdash M_n$	<i>C</i> .
$\overline{}$	Gate
<u>⊢! 0⟩</u>	Zero

Rules for well-formedness. We add the following rules to van Tonder's:

$n \in \mathbb{N}$	М
$\frac{\vdash M_n}{\vdash c_U}$	Gate
<u>⊢! 0⟩</u>	Zero
	One

Rules for well-formedness. We add the following rules to van Tonder's:

$\underline{\begin{array}{c} n \in \mathbb{N} \\ \vdash M_n \end{array}}$	М
—————————————————————————————————————	Gate
<u>⊢! 0⟩</u>	Zero
<u> </u>	One
$rac{\Gamma dash q_1 \qquad \Delta dash q_2}{\Gamma, \Delta dash q_1 \otimes q_2}$	Tensor

Rules for well-formedness. We add the following rules to van Tonder's:

$\frac{n \in \mathbb{N}}{\vdash M_n}$	М
—————————————————————————————————————	Gate
<u>⊢i 0⟩</u>	Zero
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	One
$rac{\Gamma dash q_1 \qquad \Delta dash q_2}{\Gamma, \Delta dash q_1 \otimes q_2}$	Tensor
$\frac{ \begin{array}{ccccccccccccccccccccccccccccccccccc$!Tensor

Rules for well-formed terms (II)

$$\frac{\sum\limits_{i=1}^{2^{n}}|\alpha_{i}|^{2}=1}{\vdash\alpha_{0}(!\left|0\right\rangle\otimes\cdots\otimes!\left|0\right\rangle)+\cdots+\alpha_{2^{n}}(!\left|1\right\rangle\otimes\cdots\otimes!\left|1\right\rangle)} \quad \textit{Superpos}$$

Rules for well-formed terms (II)

$$\frac{\sum\limits_{i=1}^{2^{n}}|\alpha_{i}|^{2}=1}{\vdash\alpha_{0}(!\left|0\right\rangle\otimes\cdots\otimes!\left|0\right\rangle)+\cdots+\alpha_{2^{n}}(!\left|1\right\rangle\otimes\cdots\otimes!\left|1\right\rangle)} \quad \textit{Superpos}$$

$$\frac{\alpha_r = 0, r \in \{1, \dots, 2^n\} \qquad \Gamma \vdash \sum_{i=1}^{2^n} \alpha_i q_i}{\Gamma \vdash \sum_{\substack{i=1 \ i \neq r}}^{2^n} \alpha_i q_i} \quad \textit{Simplif}$$

Rules for well-formed terms (II)

$$\frac{\sum\limits_{i=1}^{2^{n}}|\alpha_{i}|^{2}=1 \qquad \alpha_{i}\in\mathbb{C}, i=1,\ldots,2^{n}}{\vdash \alpha_{0}(!\,|0\rangle\otimes\cdots\otimes!\,|0\rangle)+\cdots+\alpha_{2^{n}}(!\,|1\rangle\otimes\cdots\otimes!\,|1\rangle)} \quad \textit{Superpos}$$

$$\frac{\alpha_{r}=0, r\in\{1,\ldots,2^{n}\} \qquad \Gamma\vdash \sum\limits_{i=1}^{2^{n}}\alpha_{i}q_{i}}{\Gamma\vdash \sum\limits_{\substack{i=1\\i\neq r}}^{2^{n}}\alpha_{i}q_{i}} \quad \textit{Simplif}$$

The syntax previously defined will be the syntax of "pre-terms"

Rules for well-formed terms (II)

$$\frac{\sum\limits_{i=1}^{2^{n}}|\alpha_{i}|^{2}=1 \qquad \alpha_{i}\in\mathbb{C}, i=1,\ldots,2^{n}}{\vdash \alpha_{0}(!\,|0\rangle\otimes\cdots\otimes!\,|0\rangle)+\cdots+\alpha_{2^{n}}(!\,|1\rangle\otimes\cdots\otimes!\,|1\rangle)} \quad \textit{Superpos}$$

$$\frac{\alpha_{r}=0, r\in\{1,\ldots,2^{n}\} \qquad \Gamma\vdash \sum\limits_{\substack{i=1\\i\neq r}}^{2^{n}}\alpha_{i}q_{i}}{\Gamma\vdash \sum\limits_{\substack{i=1\\i\neq r}}^{2^{n}}\alpha_{i}q_{i}} \quad \textit{Simplif}$$

- The syntax previously defined will be the syntax of "pre-terms"
- A term is a pre-term \ddot{t} if $\vdash \ddot{t}$ can be inferred from the rules for well-formedness

Operational Semantic

Now, we can to add a transition rule for measurements

Transition rule for measurements

M:
$$\frac{q = \sum\limits_{i=1}^{2^n} \alpha_i q_i}{\mathcal{H}; \left(M_n \ q \right) \rightarrow_{|\alpha_i|^2} q_i}$$

Where

$$q_i = !q_{1i} \otimes !q_{2i} \otimes \cdots \otimes !q_{ni}$$

with

$$|q_{ki}| = |0\rangle$$
 or $|1\rangle$ $\forall k = 1 \dots n$

This rule discards the history track because measurement operations are irreversible

• Let us consider the following expresion

$$(\lambda x.(x \ x)) (M_1 (\frac{1}{\sqrt{2}}! |0\rangle + \frac{1}{\sqrt{2}}! |1\rangle))$$

• Let us consider the following expresion

$$(\lambda x.(x \ x)) (M_1 (\frac{1}{\sqrt{2}}! |0\rangle + \frac{1}{\sqrt{2}}! |1\rangle))$$

It is not well-formed! (the linear argument appears twice in the body function)

• Let us consider the following expresion

$$(\lambda x.(x \ x)) \ (M_1 \ (\frac{1}{\sqrt{2}}! \ |0\rangle + \frac{1}{\sqrt{2}}! \ |1\rangle))$$

It is not well-formed! (the linear argument appears twice in the body function)

Abstraction must be nonlinear

$$(\lambda!x.(x\ x))\ (M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

Let us consider the following expresion

$$(\lambda x.(x \ x)) \ (M_1 \ (\frac{1}{\sqrt{2}}! \ |0\rangle + \frac{1}{\sqrt{2}}! \ |1\rangle))$$

It is not well-formed! (the linear argument appears twice in the body function)

Abstraction must be nonlinear

$$(\lambda!x.(x\ x))\ (M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

The argument is linear, so M_1 has to apply first, producing a nonlinear output $(!\,|0\rangle$ or $!\,|1\rangle)$

Let us consider the following expresion

$$(\lambda x.(x \ x)) \ (M_1 \ (\frac{1}{\sqrt{2}}! \ |0\rangle + \frac{1}{\sqrt{2}}! \ |1\rangle))$$

It is not well-formed! (the linear argument appears twice in the body function)

Abstraction must be nonlinear

$$(\lambda!x.(x\ x))\ (M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

The argument is linear, so M_1 has to apply first, producing a nonlinear output $(!|0\rangle$ or $!|1\rangle)$

• Let us consider a promotion of the argument

$$(\lambda!x.(x\ x))\ !(M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

Let us consider the following expresion

$$(\lambda x.(x \ x)) \ (M_1 \ (\frac{1}{\sqrt{2}}! \ |0\rangle + \frac{1}{\sqrt{2}}! \ |1\rangle))$$

It is not well-formed! (the linear argument appears twice in the body function)

Abstraction must be nonlinear

$$(\lambda!x.(x\ x))\ (M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

The argument is linear, so M_1 has to apply first, producing a nonlinear output $(! |0\rangle \text{ or } ! |1\rangle)$

• Let us consider a promotion of the argument

$$(\lambda!x.(x\ x))\ !(M_1\ (\frac{1}{\sqrt{2}}!\ |0\rangle + \frac{1}{\sqrt{2}}!\ |1\rangle))$$

In this case, it is allowed to copy the measurement twice, but this is the only reduction strategy because of the ! mark

Example: Teleportation algorithm

Teleportation in $\lambda_a^{M'}$ teleport $q \rightarrow_1$ let $x \otimes y = \text{epr in}$ let $b_1 \otimes b_2 = M_2$ alice (q, x) in bob (b_1, b_2, y) where $epr \equiv cnot ((H!|0\rangle \otimes !|0\rangle)$ alice $(q, x) \rightarrow_1$ let $r \otimes w = cnot \ q \otimes x$ in $((H r) \otimes w)$ bob $(b_1, b_2, y) \to_1 (\text{zed } b_1) (\text{ex } b_2) y$ $|ex b_2 \rightarrow_1 ! |0\rangle b_2^T + ! |1\rangle (X b_2)^T$ zed $b_1 \to_1 Z(! |0\rangle (! |0\rangle)^T + b_1(! |1\rangle)^T) - ! |0\rangle (! |1\rangle)^T + (X b_1)(! |1\rangle)^T$

(ex b_2) is just X^{b_2} and (zed b_1) is Z^{b_1}

The four most important properties of quantum computing, reversibility, entanglement, no-clonning and measurement, are now in the calculus

• To add reversibility, van Tonder added a history track

- To add reversibility, van Tonder added a history track
- To avoid having entanglement between the history track and the computational registry, he used the concepts of linear algebra to distinguish when a term is definite and when it is not

- To add reversibility, van Tonder added a history track
- To avoid having entanglement between the history track and the computational registry, he used the concepts of linear algebra to distinguish when a term is definite and when it is not
- To prevent cloning, he made rules for well-formed terms

- To add reversibility, van Tonder added a history track
- To avoid having entanglement between the history track and the computational registry, he used the concepts of linear algebra to distinguish when a term is definite and when it is not
- To prevent cloning, he made rules for well-formed terms
- To add measurement, we used probabilistic transition rules and provided a more detailed syntax with rules for well-formed terms