
Adding Measurement to van Tonder's Calculus
Computer Science Undegraduate Thesis

Alejandro Díaz-Caro
Universidad Nacional de Rosario - Argentina

Advisor

Dr. Manuel Gadella

Universidad de Valladolid - Spain

Co-Advisor

Dr. Pablo Martínez Lopez

Universidad Nacional de La Plata - Argentina

Outline

1 Introduction
A brief memory refresher
Motivation

2 Adding Measurement
1st step: Probabilistic Transition Rules
2nd step: Providing Syntax for Qubits
3rd step: Rules for well-formed terms
Operational Semantic
A remark about con�uence
Example: Teleportation algorithm

3 Conclusions

A brief memory refresher

van Tonder's calculus provides quantum concepts to the
λ-calculus

The syntax is the following:

Syntax of λq

t ::= term

x variable

(λx .t) abstraction

(t t) aplication

c constant

!t nonlinear term

(λ!x .t) nonlinear abstraction

c ::=
0|1|H|cnot|X | . . . constants

Nonlinear terms are used to distinguish de�nite terms from
not-de�nite terms

A brief memory refresher

van Tonder's calculus provides quantum concepts to the
λ-calculus

The syntax is the following:

Syntax of λq

t ::= term

x variable

(λx .t) abstraction

(t t) aplication

c constant

!t nonlinear term

(λ!x .t) nonlinear abstraction

c ::=
0|1|H|cnot|X | . . . constants

Nonlinear terms are used to distinguish de�nite terms from
not-de�nite terms

A brief memory refresher

van Tonder's calculus provides quantum concepts to the
λ-calculus

The syntax is the following:

Syntax of λq

t ::= term

x variable

(λx .t) abstraction

(t t) aplication

c constant

!t nonlinear term

(λ!x .t) nonlinear abstraction

c ::=
0|1|H|cnot|X | . . . constants

Nonlinear terms are used to distinguish de�nite terms from
not-de�nite terms

A brief memory refresher (II)

De�nition

Let us call a subexpresion de�nite with respect to a computational
basis if it is textually the same in all branches of the superposition.

Example

1√
2

(|(λx .0) 0〉+ |(λx .0) 1〉)

the subexpresion (λx .0) is de�nite

the argument 1√
2

(|0〉+ |1〉) is non-de�nite

A brief memory refresher (II)

De�nition

Let us call a subexpresion de�nite with respect to a computational
basis if it is textually the same in all branches of the superposition.

Example

1√
2

(|(λx .0) 0〉+ |(λx .0) 1〉)

the subexpresion (λx .0) is de�nite

the argument 1√
2

(|0〉+ |1〉) is non-de�nite

A brief memory refresher (III)

�Rules of use�

Nonlinear terms will be guaranteed to be de�nite with respect
to the computational basis

(λ!x .t): denotes functions of nonlinear arguments

(λx .t): denotes functions of linear arguments

A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all,

but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

A brief memory refresher (III)

�Rules of use�

Nonlinear terms will be guaranteed to be de�nite with respect
to the computational basis

(λ!x .t): denotes functions of nonlinear arguments

(λx .t): denotes functions of linear arguments

A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all,

but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

A brief memory refresher (III)

�Rules of use�

Nonlinear terms will be guaranteed to be de�nite with respect
to the computational basis

(λ!x .t): denotes functions of nonlinear arguments

(λx .t): denotes functions of linear arguments

A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all, but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

A brief memory refresher (III)

�Rules of use�

Nonlinear terms will be guaranteed to be de�nite with respect
to the computational basis

(λ!x .t): denotes functions of nonlinear arguments

(λx .t): denotes functions of linear arguments

A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all, but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules

A brief memory refresher (IV)

To prevent terms of the form !t from being evaluated, he
extends the de�nition of values as follows:

Values in λq

v ::= values:

x variable

c constant

(λx .t) linear abstraction

(λ!x .t) nonlinear abstraction

!t !-suspension

A brief memory refresher (V)

To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

H ; ((λx .t) v)→ H ; ((λx .tx) _); t[v/x]
(β)

where tx is obtained from t by recursively replacing all subterms that do not

contain x with the placeholder simbol and keeping x

For gates there are some speci�c rules

Example of Hadamard rule

H 0 reduces to 1√
2

(|0〉+ |1〉)

A brief memory refresher (V)

To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

H ; ((λx .t) v)→ H ; ((λx .tx) _); t[v/x]
(β)

where tx is obtained from t by recursively replacing all subterms that do not

contain x with the placeholder simbol and keeping x

For gates there are some speci�c rules

Example of Hadamard rule

H 0 reduces to 1√
2

(|0〉+ |1〉)

A brief memory refresher (V)

To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

H ; ((λx .t) v)→ H ; ((λx .tx) _); t[v/x]
(β)

where tx is obtained from t by recursively replacing all subterms that do not

contain x with the placeholder simbol and keeping x

For gates there are some speci�c rules

Example of Hadamard rule

H 0 reduces to 1√
2

(|0〉+ |1〉)

Motivation

André van Tonder's linear untyped λ-calculus does not include
Measurement Operation

He declares that any algorithm can be redesigned to defer
measurements

But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

|ψ〉 • H •

|0〉 H • �������� •

|0〉 �������� X Z |?〉

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

Here it is not clear that Alice and Bob can be away from each other

Motivation

André van Tonder's linear untyped λ-calculus does not include
Measurement Operation

He declares that any algorithm can be redesigned to defer
measurements

But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

|ψ〉 • H •

|0〉 H • �������� •

|0〉 �������� X Z |?〉

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

Here it is not clear that Alice and Bob can be away from each other

Motivation

André van Tonder's linear untyped λ-calculus does not include
Measurement Operation

He declares that any algorithm can be redesigned to defer
measurements

But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

|ψ〉 • H •

|0〉 H • �������� •

|0〉 �������� X Z |?〉

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

Here it is not clear that Alice and Bob can be away from each other

Motivation

André van Tonder's linear untyped λ-calculus does not include
Measurement Operation

He declares that any algorithm can be redesigned to defer
measurements

But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

|ψ〉 • H •

|0〉 H • �������� •

|0〉 �������� X Z |?〉

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

Here it is not clear that Alice and Bob can be away from each other

Motivation (II)

Same example in λq

teleport x −→ let (e1, e2) = epr in

let (x ′, y ′) = alice (x , e1) in

bob (x ′, y ′, e2)

where
alice (x , e1) −→ let (x ′, y ′) = cnot (x , e1) in ((H x ′), y ′)
bob (x ′, y ′, e2) −→ let (y ′′, e ′2) = cX (y ′, e2) in

let (x ′′, e ′′2) = cZ (x ′, e ′2) in

(x ′′, y ′′, e ′′2)
epr ≡ cnot ((H 0), 0)

Motivation (II)

Same example in λq

teleport x −→ let (e1, e2) = epr in

let (x ′, y ′) = alice (x , e1) in

bob (x ′, y ′, e2)

where
alice (x , e1) −→ let (x ′, y ′) = cnot (x , e1) in ((H x ′), y ′)
bob (x ′, y ′, e2) −→ let (y ′′, e ′2) = cX (y ′, e2) in

let (x ′′, e ′′2) = cZ (x ′, e ′2) in

(x ′′, y ′′, e ′′2)
epr ≡ cnot ((H 0), 0)

Motivation (II)

Same example in λq

teleport x −→ let (e1, e2) = epr in

let (x ′, y ′) = M2 alice (x , e1) in

bob (x ′, y ′, e2)

where
alice (x , e1) −→ let (x ′, y ′) = cnot (x , e1) in ((H x ′), y ′)
bob (x ′, y ′, e2) −→ let (y ′′, e ′2) = cX (y ′, e2) in

let (x ′′, e ′′2) = cZ (x ′, e ′2) in

(x ′′, y ′′, e ′′2)
epr ≡ cnot ((H 0), 0)

Motivation (II)

Same example in λq

teleport x −→ let (e1, e2) = epr in

let (x ′, y ′) = M2 alice (x , e1) in

bob (x ′, y ′, e2)

where
alice (x , e1) −→ let (x ′, y ′) = cnot (x , e1) in ((H x ′), y ′)
bob (x ′, y ′, e2) −→

epr ≡ cnot ((H 0), 0)

Motivation (III)
Goal

The intention of this work is to add the measurement

operation to the untyped λq, keeping it untyped

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants

2nd step: Providing Syntax for Qubits

We need to split the constants into qubits, gates and
measurements:

Syntax for λMq

t ::= terms:

x variable

(λx .t) abstraction

(t t) aplication

!t nonlinear term

(λ!x .t) nonlinear abstraction

cU constant for gates

q constant for qubits

Mn constant for measurement

2nd step: Providing Syntax for Qubits

We need to split the constants into qubits, gates and
measurements:

Syntax for λMq

t ::= terms:

x variable

(λx .t) abstraction

(t t) aplication

!t nonlinear term

(λ!x .t) nonlinear abstraction

cU constant for gates

q constant for qubits

Mn constant for measurement

2nd step: Providing Syntax for Qubits (II)

Measurements are represented by constants Mn, where n is
the number of qubits to measure

Gates are constants like

cU ::= H | cnot | X | Z | q(q)T + q(q)T | . . .

For qubits, we provide the following syntax

Syntax for qubits

q ::= qubits:

|0〉 | |1〉 de�nite qubits

(q ⊗ q) tensorial product

(q + q) superposition

α(q) scalar product

2nd step: Providing Syntax for Qubits (II)

Measurements are represented by constants Mn, where n is
the number of qubits to measure

Gates are constants like

cU ::= H | cnot | X | Z | q(q)T + q(q)T | . . .

For qubits, we provide the following syntax

Syntax for qubits

q ::= qubits:

|0〉 | |1〉 de�nite qubits

(q ⊗ q) tensorial product

(q + q) superposition

α(q) scalar product

2nd step: Providing Syntax for Qubits (II)

Measurements are represented by constants Mn, where n is
the number of qubits to measure

Gates are constants like

cU ::= H | cnot | X | Z | q(q)T + q(q)T | . . .

For qubits, we provide the following syntax

Syntax for qubits

q ::= qubits:

|0〉 | |1〉 de�nite qubits

(q ⊗ q) tensorial product

(q + q) superposition

α(q) scalar product

2nd step: Providing Syntax for Qubits (II)

Measurements are represented by constants Mn, where n is
the number of qubits to measure

Gates are constants like

cU ::= H | cnot | X | Z | q(q)T + q(q)T | . . .

For qubits, we provide the following syntax

Syntax for qubits

q ::= qubits:

|0〉 | |1〉 de�nite qubits

(q ⊗ q) tensorial product

(q + q) superposition

α(q) scalar product

2nd step: Providing Syntax for Qubits (III)

Problem

We need to restrict when a string is a qubit and when it is
not. We need to add rules for well-formed terms

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor

3rd step: Rules for well-formed terms (II)

Rules for well-formed terms (II)

2n∑
i=1

|αi |2 = 1 αi ∈ C, i = 1, . . . , 2n

` α0(! |0〉 ⊗ · · · ⊗! |0〉) + · · ·+ α2n(! |1〉 ⊗ · · · ⊗! |1〉)
Superpos

αr = 0, r ∈ {1, . . . , 2n} Γ `
2n∑
i=1

αiqi

Γ `
2n∑
i=1
i 6=r

αiqi

Simplif

The syntax previously de�ned will be the syntax of
"pre-terms"

A term is a pre-term ẗ if ` ẗ can be infered from the rules for
well-formedness

3rd step: Rules for well-formed terms (II)

Rules for well-formed terms (II)

2n∑
i=1

|αi |2 = 1 αi ∈ C, i = 1, . . . , 2n

` α0(! |0〉 ⊗ · · · ⊗! |0〉) + · · ·+ α2n(! |1〉 ⊗ · · · ⊗! |1〉)
Superpos

αr = 0, r ∈ {1, . . . , 2n} Γ `
2n∑
i=1

αiqi

Γ `
2n∑
i=1
i 6=r

αiqi

Simplif

The syntax previously de�ned will be the syntax of
"pre-terms"

A term is a pre-term ẗ if ` ẗ can be infered from the rules for
well-formedness

3rd step: Rules for well-formed terms (II)

Rules for well-formed terms (II)

2n∑
i=1

|αi |2 = 1 αi ∈ C, i = 1, . . . , 2n

` α0(! |0〉 ⊗ · · · ⊗! |0〉) + · · ·+ α2n(! |1〉 ⊗ · · · ⊗! |1〉)
Superpos

αr = 0, r ∈ {1, . . . , 2n} Γ `
2n∑
i=1

αiqi

Γ `
2n∑
i=1
i 6=r

αiqi

Simplif

The syntax previously de�ned will be the syntax of
"pre-terms"

A term is a pre-term ẗ if ` ẗ can be infered from the rules for
well-formedness

3rd step: Rules for well-formed terms (II)

Rules for well-formed terms (II)

2n∑
i=1

|αi |2 = 1 αi ∈ C, i = 1, . . . , 2n

` α0(! |0〉 ⊗ · · · ⊗! |0〉) + · · ·+ α2n(! |1〉 ⊗ · · · ⊗! |1〉)
Superpos

αr = 0, r ∈ {1, . . . , 2n} Γ `
2n∑
i=1

αiqi

Γ `
2n∑
i=1
i 6=r

αiqi

Simplif

The syntax previously de�ned will be the syntax of
"pre-terms"

A term is a pre-term ẗ if ` ẗ can be infered from the rules for
well-formedness

Operational Semantic

Now, we can to add a transition rule for measurements

Transition rule for measurements

M:

q =
2n∑
i=1

αiqi

H ; (Mn q)→|αi |2 qi

Where

qi =!q1i⊗!q2i ⊗ · · ·⊗!qni

with

!qki =! |0〉 or ! |1〉 ∀k = 1 . . . n

This rule discards the history track because measurement
operations are irreversible

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)

Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark

Example: Teleportation algorithm

Teleportation in λMq

teleport q →1 let x ⊗ y = epr in

let b1 ⊗ b2 = M2 alice (q, x) in

bob (b1, b2, y)

where
epr ≡ cnot ((H ! |0〉⊗! |0〉)
alice (q, x)→1 let r ⊗ w = cnot q ⊗ x in

((H r)⊗ w)
bob (b1, b2, y)→1 (zed b1) (ex b2) y

. .

ex b2 →1! |0〉 b2T+! |1〉 (X b2)T

zed b1 →1 Z (! |0〉 (! |0〉)T+b1(! |1〉)T)−! |0〉 (! |1〉)T+(X b1)(! |1〉)T

(ex b2) is just X b2 and (zed b1) is Zb1

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms

	Introduction
	
	A brief memory refresher
	Motivation

	Adding Measurement
	1st step: Probabilistic Transition Rules
	2nd step: Providing Syntax for Qubits
	3rd step: Rules for well-formed terms
	Operational Semantic
	A remark about confluence
	Example: Teleportation algorithm

	Conclusions

