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A brief memory refresher

van Tonder's calculus provides quantum concepts to the
λ-calculus

The syntax is the following:

Syntax of λq

t ::= term

x variable

(λx .t) abstraction

(t t) aplication

c constant

!t nonlinear term

(λ!x .t) nonlinear abstraction

c ::=
0|1|H|cnot|X | . . . constants

Nonlinear terms are used to distinguish de�nite terms from
not-de�nite terms
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A brief memory refresher (II)

De�nition

Let us call a subexpresion de�nite with respect to a computational
basis if it is textually the same in all branches of the superposition.

Example

1√
2

(|(λx .0) 0〉+ |(λx .0) 1〉)

the subexpresion (λx .0) is de�nite

the argument 1√
2

(|0〉+ |1〉) is non-de�nite
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A brief memory refresher (III)

�Rules of use�

Nonlinear terms will be guaranteed to be de�nite with respect
to the computational basis

(λ!x .t): denotes functions of nonlinear arguments

(λx .t): denotes functions of linear arguments

A linear abstraction may use a nonlinear argument any
number of times in its body, or not at all,

but a linear
argument must appear exactly once in the function body

All this rules are given formally in a set of well-formedness rules
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A brief memory refresher (IV)

To prevent terms of the form !t from being evaluated, he
extends the de�nition of values as follows:

Values in λq

v ::= values:

x variable

c constant

(λx .t) linear abstraction

(λ!x .t) nonlinear abstraction

!t !-suspension



A brief memory refresher (V)

To make the process reversible, he adds a history track which
saves the reduced terms in each step and the operation that
has been applied

Example of transition rule with history track

H ; ((λx .t) v)→ H ; ((λx .tx) _); t[v/x ]
(β)

where tx is obtained from t by recursively replacing all subterms that do not

contain x with the placeholder simbol and keeping x

For gates there are some speci�c rules

Example of Hadamard rule

H 0 reduces to 1√
2

(|0〉+ |1〉)
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Motivation

André van Tonder's linear untyped λ-calculus does not include
Measurement Operation

He declares that any algorithm can be redesigned to defer
measurements

But it can generate misunderstanding in some algorithms

Example: Teleportation with deferred measurement

|ψ〉 • H •

|0〉 H • �������� •

|0〉 �������� X Z |?〉

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

Here it is not clear that Alice and Bob can be away from each other
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Motivation (II)

Same example in λq

teleport x −→ let (e1, e2) = epr in

let (x ′, y ′) = alice (x , e1) in

bob (x ′, y ′, e2)

where
alice (x , e1) −→ let (x ′, y ′) = cnot (x , e1) in ((H x ′), y ′)
bob (x ′, y ′, e2) −→ let (y ′′, e ′2) = cX (y ′, e2) in

let (x ′′, e ′′2 ) = cZ (x ′, e ′2) in

(x ′′, y ′′, e ′′2 )
epr ≡ cnot ((H 0), 0)
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Motivation (III)
Goal

The intention of this work is to add the measurement

operation to the untyped λq, keeping it untyped



1st step: Probabilistic Transition Rules

Measurements are inherently probabilistic

We need probabilistic transition rules

Following Di Pierro et. al., we use a simple model in which
each transition rule may have several conclusions, each with
an associated happening probability

Example

Premises over P

P →p Q1

P →q Q2

P goes to Q1 with probability p and to Q2

with probability q

Problem

To know the probability of making a transition to each state,
we need to know the "shape" of the qubit

The λq syntax has no restriction on the shape of the qubits,
they are taken as constants
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2nd step: Providing Syntax for Qubits

We need to split the constants into qubits, gates and
measurements:

Syntax for λMq

t ::= terms:

x variable

(λx .t) abstraction

(t t) aplication

!t nonlinear term

(λ!x .t) nonlinear abstraction

cU constant for gates

q constant for qubits

Mn constant for measurement
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2nd step: Providing Syntax for Qubits (II)

Measurements are represented by constants Mn, where n is
the number of qubits to measure

Gates are constants like

cU ::= H | cnot | X | Z | q(q)T + q(q)T | . . .

For qubits, we provide the following syntax

Syntax for qubits

q ::= qubits:

|0〉 | |1〉 de�nite qubits

(q ⊗ q) tensorial product

(q + q) superposition

α(q) scalar product
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2nd step: Providing Syntax for Qubits (III)

Problem

We need to restrict when a string is a qubit and when it is
not. We need to add rules for well-formed terms



3rd step: Rules for well-formed terms

Rules for well-formedness. We add the following rules to van
Tonder's:

Rules for well-formedness (I)

n ∈ N
` Mn

M

` cU
Gate

`! |0〉
Zero

`! |1〉
One

Γ ` q1 ∆ ` q2
Γ,∆ ` q1 ⊗ q2

Tensor

Γ `!q1 ∆ `!q2
Γ,∆ `!q1⊗!q2

!Tensor
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3rd step: Rules for well-formed terms (II)

Rules for well-formed terms (II)

2n∑
i=1

|αi |2 = 1 αi ∈ C, i = 1, . . . , 2n

` α0(! |0〉 ⊗ · · · ⊗! |0〉) + · · ·+ α2n(! |1〉 ⊗ · · · ⊗! |1〉)
Superpos

αr = 0, r ∈ {1, . . . , 2n} Γ `
2n∑
i=1

αiqi

Γ `
2n∑
i=1
i 6=r

αiqi

Simplif

The syntax previously de�ned will be the syntax of
"pre-terms"

A term is a pre-term ẗ if ` ẗ can be infered from the rules for
well-formedness
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Operational Semantic

Now, we can to add a transition rule for measurements

Transition rule for measurements

M:

q =
2n∑
i=1

αiqi

H ; (Mn q)→|αi |2 qi

Where

qi =!q1i⊗!q2i ⊗ · · ·⊗!qni

with

!qki =! |0〉 or ! |1〉 ∀k = 1 . . . n

This rule discards the history track because measurement
operations are irreversible



A remark about con�uence

Let us consider the following expresion

(λx .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

It is not well-formed! (the linear argument appears twice in
the body function)

Abstraction must be nonlinear

(λ!x .(x x)) (M1 (
1√
2

! |0〉+
1√
2

! |1〉))

The argument is linear, so M1 has to apply �rst, producing a
nonlinear output (! |0〉 or ! |1〉)
Let us consider a promotion of the argument

(λ!x .(x x)) !(M1 (
1√
2

! |0〉+
1√
2

! |1〉))

In this case, it is allowed to copy the measurement twice, but
this is the only reduction strategy because of the ! mark
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Example: Teleportation algorithm

Teleportation in λMq

teleport q →1 let x ⊗ y = epr in

let b1 ⊗ b2 = M2 alice (q, x) in

bob (b1, b2, y)

where
epr ≡ cnot ((H ! |0〉⊗! |0〉)
alice (q, x)→1 let r ⊗ w = cnot q ⊗ x in

((H r)⊗ w)
bob (b1, b2, y)→1 (zed b1) (ex b2) y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ex b2 →1! |0〉 b2T+! |1〉 (X b2)T

zed b1 →1 Z (! |0〉 (! |0〉)T+b1(! |1〉)T )−! |0〉 (! |1〉)T+(X b1)(! |1〉)T

(ex b2) is just X b2 and (zed b1) is Zb1



Conclusions

The four most important properties of quantum computing,
reversibility, entanglement, no-clonning and measurement, are now
in the calculus

To add reversibility, van Tonder added a history track

To avoid having entanglement between the history track and
the computational registry, he used the concepts of linear
algebra to distinguish when a term is de�nite and when it is
not

To prevent cloning, he made rules for well-formed terms

To add measurement, we used probabilistic transition rules
and provided a more detailed syntax with rules for well-formed
terms
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