
Typing quantum superpositions
and measurement

Alejandro Díaz-Caro
Universidad Nacional de Quilmes & CONICET

Bernal, Buenos Aires, Argentina

Gilles Dowek
Inria, LSV, ENS Paris-Saclay

Cachan, France
To appear in LNCS 10687 (TPNC 2017)

Abstract
We propose a way to unify two approaches of non-cloning in quantum lambda-calculi. The first approach is to forbid duplicating variables,
while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of
first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide
an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.

Forbidding duplication
Applying λx.(x, x) to t reduces to (t, t). But “cloning” any unknown t is forbidden in quantum computing in general.

Linear-logic approach

&

The idea is to forbid
abstractions from
using its argument
more than once.
Which implies to for-
bid λx.(x, x). That is,
to forbid the “cloning
machine”.
Problem: Forbid-
ding λx.(x, x) may
be too restrictive:
cloning base states
is not a problem in
quantum computing.

Linear-algebra approach

&

The machine applied to a superposition enters the box and is applied
to each elementary state.

and measurement

&

The linear-algebra approach
does not make sense here. . .

&

. . . but the linear-logic
one, does

Our approach: combining both

An abstraction measuring its argument, have a linear-type argument (a
“superposition”).

(λxS(B).measure x)(α.|0〉 + β.|1〉)→ measure (α.|0〉 + β.|1〉)
An abstraction not measuring its argument, have a non-linear type (a base
type), and distributes linearly

(λxB.(x, x))(α.|0〉 + β.|1〉)→ α.(λxB.(x, x))|0〉 + β.(λxB.(x, x))|1〉
→∗ α.(|0〉, |0〉) + β.(|1〉, |1〉)

To each type we associate the subset of some vector space

JBK = {(1
0) , (0

1)},a subset of C2

JΨ⇒ AK = JΨK⇒ JAK
JA× BK = JAK× JBK
JS(A)K = SJAK, the span of the set

Remark that JS(B× B)K = S(JBK× JBK) = JBK⊗ JBK.

Conclusion and future works
In this paper we have proposed a way to unify logic-linear and
algebraic-linear quantum λ-calculi, by interpreting λ-terms as linear
functions when they expect duplicable data and as non-linear ones
when they do not, and illustrated this idea with the definition of a cal-
culus.
Semantically, we are distinguishing between vectors in the compu-
tational basis from linear combinations of them. That information is
carried on the type, even with multiple qubits, however, we added a
mechanism to forget that information in certain situations.

Indeed, the type of (|0〉, α|0〉+ β|1〉) would be B× S(B), while the type
of α.(|0〉, |0〉) +β.(|0〉, |1〉) can only be S(B×B). Hence, the first cannot
reduce to the latter but when an explicit type-casting is present.

Some ongoing continuations of this work are:
With Octavio Malherbe (UdelaR) we are studying a categorical
model for this calculus.
With Ignacio Grima (UNR) and Pablo E. Martínez López (UNQ)
we are working on an implementation of it.

