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Observation : in state 1, the mouse only

observes upper and left walls.
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Partially Observable Markov Decision Process

I S : state space

I Ω : observation space

I A : action space

I T : S ×A −→ Π(S)
transition function

I O : S [×A× S] −→ Π(Ω)
observation function

I r : S [×A× S] −→ R reward
function

I (b0 : initial state
distribution)
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I A POMDP describes a problem, not a solution/behavior/policy
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POMDP: a dynamical view
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Solving a POMDP
Problem

find an optimal policy, i.e. that maximises a function of the reward.
(eg. cumulative reward).

I non-markovian: existence of a value function ?

I information state: the policy is a function of what ?

Elements of solution

I classical results of MDP ( see O. Sigaud)

I convergence of “näıve” classical MDP algorithms

I belief state as valid/useful information state go direct

I Planification: when a model is known
I Witness algorithm
I Incremental prunning algorithm

I Learning: when the model is unknown
I learning useful state extensions
I learning the model
I using Predictive State Representation
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Stochastic Memoryless Policy

Stochastic memoryless
policy can be arbitraty
better than a deterministic
memoryless policy.
[Singh et al., 1994]

2

1

a (−R)

a (+R)

b (−R)

observation.

"A" is the unique

b (+R)
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No optimal memoryless policy

2a

2b

1 3

a (+R)

a (−R)

a (+R)
b (−R)

observation B

observation A observation C

a (0)

No memoryless policy leads to an optimal “adapted” value function.
[Singh et al., 1994]

ϑπ(o) =
∑
s∈S

Prπ(s|o)Vπ′(s)



Page 14

POMDP Exact Solution Approx. / Learning Conclusion

Convergence of “classical” algorithms
[Jaakkola et al., 1994]

I TD(0)

∀o ∈ Ω, ϑπ(o) =
∑
s∈S

Prπ(s|o)

[
r(s) + γ

∑
o′∈Ω

Prπ(s, o′)ϑπ(o′)

]
,

where Prπ(s, o′) =
∑

s′∈S Prπ(s ′|s)O(o′|s ′).

I Q-Learning

Q(o, a) =
∑
s∈S

Prπexp(s|o, a)

[
r(s, a) + γ

∑
o′∈Ω

Pra(s, o′)maxa′∈AQ(o′, a′)

]
,

where Prπexp(s|o, a) is the asymptotic occupation probability and
where Pra(s, o′) =

∑
s′∈S T (s ′|s, a)O(o′|s ′).
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Finding the best memoryless policy [Jaakkola et al., 1994]

I scalar value function:
∑

o∈Ω Prπ(o)
∑

s∈S Prπ(s|o)V π(s)

I Monte Carlo evaluation of a policy

I Policy improvement

I loop ...

 local maximum of scalar value function
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Belief States : sufficient statistics of past

Belief States

distribution on states : bt(s) = Pr(st = s)

I Sufficient statistics : bt(s) = Pr(st |at , st−1, . . . , s0)

 Complete information state.

I Bayesian update :

ba
o(s ′) = Pr(s ′|b, a, o)

=
O(o|s ′)

∑
s∈S T (s ′|s, a)b(s)∑

s∈S
∑

s′′∈S O(o|s ′′)T (s ′′|s, a)b(s)
.

 defines a (continuous) MDP which can be solved [Aström, 1965].
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Policy Tree

For belief states

I Deterministic optimal policy

I Kind of Conditionnal Plan.

 tree representation
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information state I

 see Tiger Example
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Piece-Wise Linear Convex Value Function

V ∗n (b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

Pr(o|b, a)V ∗n−1(T (b, o, a))

]
.

I Finite horizon n

I θ-Vector = one policy...

a
1

a
1

a
1

o
1

o
2

a
0

a
2

a
0

a
3

o
2

o
1

o
2

o
1

information state I

0b(s )

θ0

θ1

θ2

θ3

1

V (b)γ

0
Skip details
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Dynamic programming on PWLC value function (0)

Vn−1(b) = max
a∈A

[r(b, a)]

= max
a∈A

[∑
s

r(s, a).b(s)

]

a θ is mapped to a policy of one
action.

V1

10 b

r(. , a1)

r( . ,a0)

a1 a0
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Dynamic programming on PWLC value function (0)

Vn−1(b) = max
a∈A

[r(b, a)]

= max
a∈A

[∑
s

r(s, a).b(s)

]

a θ is mapped to a policy of one
action.

V1

10 b

r(. , a1)

r( . ,a0)

a1 a0

1,0
θ=

θ
1,1=

π1,0=1,1π=
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Dynamic programming on PWLC value function (1)

PWLC Vn−1 at step n − 1

Vn−1(b) = max
θ∈Θn−1

b.θ

a θ is mapped to a policy

θ
n−1,0

θ
n−1,1

V
n−1

10 b

πn−1,1 πn−1,0
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Dynamic programming on PWLC value function (2)

PWLC Vn at step n for first action a1 and observation o1

n
V
a1

θ
n−1,0

θ
n−1,1

V
n−1

10 b 10 b
a1:o1: a1:o1:

θ

n,0

n,1

θ
a1,o1

a1,o1

πn−1,1 πn−1,0
πn−1,1 πn−1,0

V ∗n (b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

Pr(o|b, a)V ∗n−1(T (b, o, a))

]
.
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Dynamic programming on PWLC value function (2)

PWLC Vn at step n for first action a1 and observation o1

n
V
a1

θ
n−1,0

θ
n−1,1

V
n−1

10 b 10 b
a1:o1: a1:o1:

θ

n,0

n,1

θ
a1,o1

a1,o1

πn−1,1 πn−1,0
πn−1,1 πn−1,0

θa1,o1
n (b, s) =

r(s, a1)

|Ω|
+ γ

∑
s′∈S

T (s, a1, s ′)O(s ′, o1)θa1,o1
n−1 (ba1,o1, s).
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Dynamic programming on PWLC value function (3)

PWLC Vn at step n for first action a1

θa1
n (b) =

∑
o∈Ω

θa1,o
n (b).

At most |Θn−1||Ω|
θ-vectors

n
V
a1

a1:o3:

a1:o2:
a1:o2:

a1:o3:

a1:o1: a1:o1:

10 b

o3

o2

o1

πn−1,0

πn−1,1
πn−1,0

πn−1,1

πn−1,1 πn−1,0
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Dynamic programming on PWLC value function (4)
PWLC Vn at step n

θn(b) = max
a∈A

θa
n(b)

n
V
a1

n
V
a2

n
V

10 b 10 b

10 b

a2:.. a1:.. a1:...a1:..

back to PI
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PWLC Value Function with Belief States

I Finite Horizon POMDP
I Optimal value function is

PWLC
[Smallwood and Sondik, 1973]

I

Vn(b) = max
θ∈Θn

b.θ

I Infinite Horizon POMDP
I ε-optimal value function is

PWLC
I Optimal only for transient

POMDP [Sondik, 1971] 0b(s )

θ0

θ1

θ2

θ3

1

V (b)γ

0

 the real problem is the size of θ-vector space.
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Parcimonious representation

θ from Θ dominated : b.θ ≤ maxθ′∈Θ b.θ′.

I Exists a minimal representation
[Littman and Szepesvári, 1996]

I θ2 : entirely dominated

I θ4 : needs Pruning

0b(s )

θ0

θ1

θ2

θ3

1

V (b)γ

0
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Algorithm Witness: concepts [Cassandra et al., 1994]

I Incremental build of parcimonious representation.

1. Start from belief state b

2. Look for the best θ-vector of its region

3. Add all “neighbors” to the agenda Υ
I Either remove from it (dominated θ-vector)
I Or add best θ-vector from region to V and its neihbors to Υ.

4. Loop
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Algorithm Witness(Θn−1, a)
Input: A parsimonious representation Θn−1 of V ∗n−1, an action a
Output: A parsimonious representation V ∗,an

b ← a belief state of B
Θ̂← {θa

n(b)}
Υ← N (θa

n(b))
while Υ 6= ∅ do

v ← RemoveElement(Υ)
if v ∈ Θ̂ then

b ← null
else

b ← FindVectInRegion(v , Θ̂)
end
if b 6= null then

Θ̂← Θ̂ ∪ {θa
n(b)}

Υ← Υ ∪ {v}
Υ← Υ ∪N (θa

n(b))
end

end

Θa
n ← Θ̂

return Θa
n

n
V
a1

a1:o3:

a1:o2:
a1:o2:

a1:o3:

a1:o1: a1:o1:

10 b

o3

o2

o1

πn−1,0

πn−1,1
πn−1,0

πn−1,1

πn−1,1 πn−1,0

more details
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IncrementalPruning: concept [Zang and Lio, 1996]

I Lots of small pruning vs global final pruning.

1. With the set Ψ of all sets of Θa,o
n θ-vectors.

2. Take two sets from it and prune them

3. Add new prunned set to Ψ, loop.
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Algo IncrementalPruning(Θn−1, a)

Input: A parsimonious representation
Θn−1 of V ∗n−1, an action a

Output: A parsimonious representation
V ∗,an

Ψ←
⋃

o{Θa,o
n }

while |Ψ| > 1 do
A← RemoveElement(Ψ)
B ← RemoveElement(Ψ)
D ← Prune(A⊕ B)
Ψ← Ψ ∪ {D}

end
return Ψ

n
a, 0+1

Θ

n
a, 0+1

Θ

n
a, 2

Θ

n
a, 0

Θ

n
a, 1

Θ

n
a, 2

Θ

more details
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Policy Iteration: concepts [Hansen, 1998]

I Grow an ε-optimal FSA controler

1. From a given FSA δ compute all new
θ-vectors

2. For each new θ-vector

2.1 If exists in δ, added to δ̂
2.2 Else modify same but dominated node i

to δ̂
2.3 Else add new node to δ̂

3. Loop

a
1

a
2

a
1

a
2

o
2

o
1o

1

o
2

o
1

o
2

o
2

o
1

information state I

I A FSA policy has
PWLC Value Function

I One node = One
θ-vector
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Algorithm Policy Iteration(δ, ε)
Input: A finite state controller δ and a positive real ε
Output: A finite state controller δ∗ which is ε-optimal

repeat
Compute V δ from δ by solving equations (??)
Build V̂ δ ← DynamicProgOperator(V δ) details on DP

δ̂ ← ∅
foreach θ̂j ∈ V̂ δ do

if there exists a node i of δ associated with θ̂j with identical
action and links then

add i to δ̂
else if there exists a node i such that θ̂j dominates θi then

add i to δ̂, with the action and the links of θ̂j

else

add a new node to δ̂ with the actions and links of θ̂j

end

Add to δ̂ all the other nodes of δ that are reachable from δ̂
δ ← δ̂

until ‖V̂ δ − V δ‖ ≤ ε(1− γ)/γ
return δ̂
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Point Based Value Iteration [Pineau et al., 2003]

I Start: set of belief states

I Alternate : update / expand

I Only approximation

b
0

See also [Spaan and Vlassis, 2005], [Seuken and Zilberstein, 2007]...
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Learn State Extensions

POMPD ≡ variable n-Markov Decision Process

I ext. states = (o, a) histories

I Start with ’obs’ as
“histories”

I Extend ambiguous states

I heuristics (Q variations)

I statistical diff. in probability
distributions.

I See [McCallum, 1995],

[Dutech, 2000]

obs
t

act
t−1

obs
t−1

act
t−2

ob
t−2

0

0 2

a b

10

a b

2120

a a b

1 10

??
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GPOMDP algorithm [Baxter and Bartlett, 2000]

I randomized policy: {µ(θ, .)}θ∈Rk

I Gradient estimate

zt+1 = γzt +
∇µat (θ, ot)

µat (θ, ot)

∆t+1 = ∆t +
1

t + 1
[rt+1zt+1 −∆t ]

I Interlaced with policy improvement with gradient ascent.

θt+1 = θt + α∆t+1

 local optimum
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Predictive State Representation

I a test: ti = o1a1o2 . . . on

I prediction. history h: Pr(o1, . . . , on|h, a1, . . . , an−1)

I set of tests: Q = {ti}i=1,...,q

Predictive State Representation

(1 × q) prediction vector p(h) = {Pr(t1|h),Pr(t2|h), . . . ,Pr(tq|h)} iff
∀h, Pr(t|h) = ft(p(h))

I linear PSR : Pr(t|h) = p(h)mT
t

I Update : pi (hao) = Pr(ti |hao) = Pr(aoti |h
Pr ao|h =

p(h)mT
aoti

p(h)mT
ao

Theorem

For any environment that can be represented by a finite POMDP model,
there exists a linear PSR with number of tests no larger than the number
of states in the minimal POMDP model.

matrix dyn. sys. skip details
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Planning with PSRs

Good news

I Value function for PSRs is PWLC. [James et al., 2004]

But

I Exact algorithms exists but not parcimonious
 DP operator does not necessarily give valid PSRs.

I Approximate algorithms with good results (PBVI-PSR
[Izadi and Precup, 2008])
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Learning PSRs [Singh et al., 2003]

I How to maintain correct predictions for the tests
 maoti and mao

I Gradient of the error

I E (t) =
∑

x∈Xt
[p(x |ht−1)− (̂p)(x |ht−1)]2

where Xt is the set of all extension tests possible from time t

I indirect solution, local optimum, huge iterations
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Discovering PSRs [James and Singh, 2004]

I for histories and tests of size 1

I build the empirical system-dynamics matrix D
I look for independant columns  core-tests QT1

I look for independant rows  core-histories QH1

I build new D = (QT1

⋃
Q+ao
T1

)
⊗

(QH1

⋃
Q+ao
H1

)

I loop

I (uses rank estimation of unknown matrix, need reset action, can
learn PSR in parallel)
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System-dynamics Matrix [Singh et al., 2004]

PSRs : set of k columns
for syst-dyn of linear
dimension k .

I n-MDP  (|A||Ω|)n

I POMDP,HMM  
< |S|

I POMDP ⊂ PSR

tjt1

1, q2,..., q k}Q = {q

h1=

h2

hi

.........

φ

...
...

D = 

core tests

(Q)D
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Conclusion

I What was here
I formalization of POMDPs
I memoryless policies
I belief states and PWLC value function
I value iteration: Witness, Incremental Pruning
I policy iteration
I others: state extension, GPOMDP, PSR

I What was left
I complexity results (from bad to worst)
I applications (robotics, H/C dialog, H/R interactions, ??)

I cognitive aspects (how good representations are build)
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Some starting references

Groupe PDMIA (2008).
Processus Décisionnels de Markov en Intelligence Artificielle.
(Edité par Olivier Buffet et Olivier Sigaud), volume 1 & 2.
Lavoisier - Hermes Science Publications.
(a translation is about to be puvlished)

http://www.pomdp.org/
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Neighbor θ-vectors

Step (3) of DP: θa,o
n = r(a)

|Ω| + γPa,oθa,o
n−1(ba,o)

With any θn−1 instead of THE BEST θa,o
n−1(ba,o)

θ̃a,o =
r(a)

|Ω|
+ γPa,oθn−1,

 Family of θ-vector

Neighbor of θa
n =

∑
o∈Ω θ

a,o
n

ν = θ̃a,o′

n +
∑

o 6=o′ θ
a,o
n where θ̃a,o′

n 6= θa,o′

n

Theorem

For a belief state b, there exists a “best” θ-vector iff it is also the case for
one of its neighbor.

Back to Witness
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Find Witness θ-vectors

Algorithm 1: FindVecInRegion(θ, Θ)

Input: A representation Θ, a θ-vector
θ ∈ Θ

Output: A point of the region or null

LP ← SetUpLinearProgram ( θ, Θ )
SolveLinearProg (LP)
if NoSolution ( LP) then

return null
end
if val( LP) ≤ 0 then

return null
end
return Solution ( LP)

Algorithm 2:
SetUpLinearProgram(θ, Θ)

Input: A representation Θ, a θ-vector
θ ∈ Θ

Output: A Linear Program Problem
solve

maxR ε
with

x .(θ − θ̃) ≥ ε, ∀θ̃ ∈ Θ, θ̃ 6= θ
x ∈ Π(S)

Back to Witness
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Find dominated θ-vectors

Algorithm 3: CheckDomination(Θ)

Input: A representation Θ
Output: A representation without any

entirely dominated θ-vector

if |Θ| ¡ 2 then
return Θ

end

Θ̃← ∅
repeat

θ ← RemoveElement(Θ)
if 6 ∃θ′ ∈ Θ̃ t.q. θ′ ≥ θ then

Θ̃← {θ′|θ′ ∈ Θ̃, θ 6 ≥θ′}
Θ̃← Θ̃ ∪ {θ}

end
until Θ = ∅
return Θ̃

Back to Incremental Prunning

Algorithm 4: Pruning(Θ̃)

Input: A representation Θ̃ of V
Output: A parsimonious representation

Θ of V

Θ̂← ∅
while Θ̃ 6= ∅ do

θ ← RemoveElement(Θ̃)
b ← FindVectInRegion(θ, Θ̂)
if b 6= null then

Θ̃← Θ̃ ∪ {θ}
θ∗ ← BestVector(Θ̃, b)
Θ̃← Θ̃− {θ}
Θ̂← Θ̂ ∪ {θ∗}

end

end

Θ← Θ̂
return Θ
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Check one θ-vector

Algorithm 5: BestVector(Θ, b)

Input: A representation Θ, a belief state
b

Output: The best θ-vector of Θ for this
state

v∗ ← −∞
foreach θ ∈ Θ do

v ← b.θ
if v = v∗ then

v∗ ←
LexicographicMaximum(θ∗, θ)

end
if v > v∗ then

v∗ ← v
θ∗ ← θ

end

end
return θ∗

θ
1,

θ
3

V

θ
2

10 b

Algorithm 6: LexicographicMaximum(θ,
θ̃)

Input: Two θ-vectors θ and θ̃ from Θ
Output: The lexicographic maximum of the two

θ-vectors

foreach s ∈ S do
if θ(s) > θ̃(s) then

return θ
end

if θ(s) < θ̃(s) then
return θ̃

end
end
return θ
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