Topological Concatenation of 2D Color Codes

Alexandre Guernut Christophe Vuillot

June 19, 2021

1/26

Guernut Vuillot

- 2 Topological concatenation of color codes
- Oharacteristics of concatenated codes
 - Decoding the concatenated color codes
- 5 Further prospects

A topological stabilizer code

• Stabilizers are associated to the faces of a tiling of a sphere

A topological stabilizer code

- Stabilizers are associated to the faces of a tiling of a sphere
- Qubits are at the vertices of the tiling

A topological stabilizer code

- Stabilizers are associated to the faces of a tiling of a sphere
- Qubits are at the vertices of the tiling
- Each face is associated to an X and a Z stabilizer acting on the vertices

A topological stabilizer code

- Stabilizers are associated to the faces of a tiling of a sphere
- Qubits are at the vertices of the tiling
- Each face is associated to an X and a Z stabilizer acting on the vertices
- One vertex and three faces are removed to obtain one logical qubit

A topological stabilizer code

- Stabilizers are associated to the faces of a tiling of a sphere
- Qubits are at the vertices of the tiling
- Each face is associated to an X and a Z stabilizer acting on the vertices
- One vertex and three faces are removed to obtain one logical qubit

Dual representation

• The dual graph is often more useful

Dual representation

- The dual graph is often more useful
- Stabilizers are now vertices that act on triangular faces (the qubits)

Dual representation

- The dual graph is often more useful
- Stabilizers are now vertices that act on triangular faces (the qubits)
- Colored boundaries are now boundary nodes

• Any 3-colorable, 3-valent tiling of a sphere could be used

- Any 3-colorable, 3-valent tiling of a sphere could be used
- We limit our interest to two particular regular tilings

- Any 3-colorable, 3-valent tiling of a sphere could be used
- We limit our interest to two particular regular tilings

- Any 3-colorable, 3-valent tiling of a sphere could be used
- We limit our interest to two particular regular tilings

- Any 3-colorable, 3-valent tiling of a sphere could be used
- We limit our interest to two particular regular tilings
- They are the only ones whose leading coefficient in the number of qubits representation as a function of the distance is less than 1

• A colored string is a sequence of edges of the same color

- A colored string is a sequence of edges of the same color
- Three strings crossing at the same point form a non-trivial logical operator if they start on the boundaries

- A colored string is a sequence of edges of the same color
- Three strings crossing at the same point form a non-trivial logical operator if they start on the boundaries

- A colored string is a sequence of edges of the same color
- Three strings crossing at the same point form a non-trivial logical operator if they start on the boundaries

Topological concatenation of color codes

• Once one has both a quantum code and a decoding procedure whose threshold is above the physical error rate

- Once one has both a quantum code and a decoding procedure whose threshold is above the physical error rate
- There are two ways of improving the logical error rate

- Once one has both a quantum code and a decoding procedure whose threshold is above the physical error rate
- There are two ways of improving the logical error rate
- Doing usual concatenation¹, which can make non-planar stabilizers appear

Guernut

- Once one has both a quantum code and a decoding procedure whose threshold is above the physical error rate
- There are two ways of improving the logical error rate
- Doing usual concatenation¹, which can make non-planar stabilizers appear
- In the case of topological codes, we can increase the distance, with a quadratic cost in the number of qubits used (BPT bound)

- Once one has both a quantum code and a decoding procedure whose threshold is above the physical error rate
- There are two ways of improving the logical error rate
- Doing usual concatenation¹, which can make non-planar stabilizers appear
- In the case of topological codes, we can increase the distance, with a quadratic cost in the number of qubits used (BPT bound)
- Topological concatenation is a hybrid of these two methods

Plain surgery

• Plain surgery merges topological codes while keeping encoded qubits

Plain surgery

- Plain surgery merges topological codes while keeping encoded qubits
- The merge process can be tuned to trade between distance and ease of measurement

Plain surgery

- Plain surgery merges topological codes while keeping encoded qubits
- The merge process can be tuned to trade between distance and ease of measurement

Topological concatenation of color codes

Merging two color codes

• It is not obvious which form the stabilizers should have while concatenating two triangular color codes

Merging two color codes

- It is not obvious which form the stabilizers should have while concatenating two triangular color codes
- The dual view makes it clearer, as stabilizers are vertices and qubits triangles

Merging two color codes

- It is not obvious which form the stabilizers should have while concatenating two triangular color codes
- The dual view makes it clearer, as stabilizers are vertices and qubits triangles
- Boundary nodes are merged and stabilizers in the overlap regions are linked

Merging two color codes

- It is not obvious which form the stabilizers should have while concatenating two triangular color codes
- The dual view makes it clearer, as stabilizers are vertices and qubits triangles
- Boundary nodes are merged and stabilizers in the overlap regions are linked

Topological concatenation of color codes

Non-trivial measurements

• Y operators on several qubits can be combined to measure product operators

Non-trivial measurements

• Y operators on several qubits can be combined to measure product operators

Schematic of logical operators

Non-trivial measurements

• Y operators on several qubits can be combined to measure product operators

Schematic of logical operators

Non-trivial measurements

• Y operators on several qubits can be combined to measure product operators

Schematic of logical operators

Non-trivial measurements

• Y operators on several qubits can be combined to measure product operators

Schematic of logical operators

Non-trivial measurements

- Y operators on several qubits can be combined to measure product operators
- The product of the two logical operators can be represented by a red-string from left to right:

Schematic of logical operators

Topological concatenation of color codes

Non-trivial measurements

Guernut Vuillot

Stabilizers are product operators on some qubits:

We can have a look at the dual view:

Guernut Vuillot

We can then replace the physical qubits by logical ones:

We can apply the merge procedure to neighboring qubits:

Topological concatenation of color codes

Upper level stabilizers

In the primal view:

The large stabilizer can me measured by measuring colored edges in its surroundings:

Topologically concatenated color codes

Repeating the process around all the stabilizers with all qubits considered:

Characteristics of concatenated codes

• Any kind of 2D triangular color code can be used at any level of encoding

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- Suppose we use lpha to parametrize the concatenation

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- ullet Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- ullet Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- ullet Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

$[\![n_1 n_0]\!]$

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- ullet Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

$$[n_1 n_0, 1]$$

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

$$[[n_1n_0, 1, ?]]$$

- Any kind of 2D triangular color code can be used at any level of encoding
- Suppose we use a [[n₁, 1, d₁]] code as an upper-level template and [[n₀, 1, d₀]] codes to encode physical qubits
- Suppose we use lpha to parametrize the concatenation
- What do we expect to get for the concatenated code ?

$$[[n_1n_0, 1, f(\alpha, d_0, d_1)]]$$

• Determining the distance of a code is hard as we need to find the smallest-weighted non-trivial logical operator

- Determining the distance of a code is hard as we need to find the smallest-weighted non-trivial logical operator
- The minimal weight can be upper bounded by the weight of the edge operator, which is easy to compute

- Determining the distance of a code is hard as we need to find the smallest-weighted non-trivial logical operator
- The minimal weight can be upper bounded by the weight of the edge operator, which is easy to compute

- Determining the distance of a code is hard as we need to find the smallest-weighted non-trivial logical operator
- The minimal weight can be upper bounded by the weight of the edge operator, which is easy to compute

$$d_0\left(\left(d_1-1
ight)rac{lpha+1}{2}+1
ight)$$

Distance evaluation

Lattice type	$d_0 = d_1$	α	Concatenated distance	п	Qubit gain
6-6-6	11	$\frac{3}{11}$	81	8281	+68%
6-6-6	11	$\frac{7}{11}$	101	8281	+8%
6-6-6	11	$\frac{9}{11}$	111	8281	-11%
6-6-6	111	$\frac{81}{111}$	10671	85.10 ⁶	+0%
6-6-6	111	<u>91</u> 111	11221	85.10 ⁶	-10%
4-8-8	11	$\frac{3}{11}$	81	5041	+50%
4-8-8	11	$\frac{7}{11}$	101	5041	-3%
4-8-8	11	$\frac{9}{11}$	111	5041	-20%
4-8-8	111	<u>49</u> 111	10671	40.10 ⁶	-1%
4-8-8	111	$\frac{91}{111}$	11221	40.10 ⁶	-37%

Decoding the concatenated color codes

Triangular color code decoder

 \bullet A computationally efficient decoder for triangular color codes as been presented by 2

²Chamberland, Triangular color codes on trivalent graphs with flag qubits (2020)
 ³https://github.com/networkx/networkx
 ⁴https://github.com/oscarhiggott/PyMatching

Guernut Vuillot

Topological Concatenation

Triangular color code decoder

- \bullet A computationally efficient decoder for triangular color codes as been presented by 2
- Our Python implementation uses NetworkX³ for graphs and PyMatching⁴ for syndrome pairings.

²Chamberland, Triangular color codes on trivalent graphs with flag qubits (2020)
 ³https://github.com/networkx/networkx
 ⁴https://github.com/oscarhiggott/PyMatching

Guernut Vuillot

Topological Concatenation

QRE2021 - June 19, 2021

Decoder limitations

Decoding the concatenated color codes

Logical error rate (non concatenated case)

Logical error rate (concatenated case)

Concatenation of a distance 21 code with itself (39601 qubits)

• We might want to try using a better decoder

- We might want to try using a better decoder
- We might want to try decoding recursively

- We might want to try using a better decoder
- We might want to try decoding recursively
- We might want to try choosing a different geometry for the upper level code (toric geometry)