Let \(p \) be a prime with \(p \neq 2, 3 \) and let \(\mathbb{F}_p \) be the finite field with \(p \) elements. Let \(A \in \mathbb{F}_p \) and consider the equations:

\[
E_M^M: y^2 = x^3 + Ax^2 + x
\]

\[
E_M^M: Y^2Z = X^3 + AX^2Z + XZ^2
\]

1. **Group law**

Question 1. Show that the equations define an elliptic curve \(E_M^M \) in \(\mathbb{A}^2 \) (eq. (1)) and \(\mathbb{P}^2 \) (eq. (2)) if and only if \(A \neq \pm 2 \). This is called an elliptic curve in Montgomery form.

Solution 1. For the affine equation of the curve, one option is to compute the discriminant (denominator of the \(j \)-invariant) and check when it is non-zero. In Montgomery coordinates, the \(j \)-invariant is

\[
j(E_M^M) = \frac{256(A^2 - 3)^3}{A^2 - 4}
\]

and its denominator is non-zero when \(A \neq \pm 2 \).

Alternatively, one could check the condition so that \(f(x) = x^3 + Ax^2 + x \) has no multiple root: \(x_0 = 0 \) is a root of \(f(x) = x(x^2 + Ax + 1) \). The other two roots are \(x_1 = (-A + \sqrt{A^2 - 4})/2, x_2 = (-A - \sqrt{A^2 - 4})/2 \). They are both non-zero (because the constant coefficient of \(x^2 + Ax + 1 \) is non-zero), then distinct from \(x_0 \). We only need to ensure that \(x_1 \neq x_2 \), that is, \(\sqrt{A^2 - 4} \neq 0 \), equivalently, \(A^2 \neq 4 \iff A \neq \pm 2 \).

Long version, but it’s better to use one of the shortcuts above. The curve is defined by a cubic equation, and \((0, 0)\) is a \(\mathbb{F}_p \)-rational point on the curve in affine coordinates, \((0 : 0 : 1)\) in projective coordinates. We only need to check that the curve has no singular point (in other words, that the curve is smooth).

In affine coordinates, a singular point of the curve is a solution to a system of two equations, where \(f(x, y) = y^2 - x^3 - Ax^2 - x \),

\[
\begin{align*}
\left\{ \begin{array}{l}
(x, y) \in E \\
\frac{\partial f}{\partial y} = -3x^2 - 2Ax - 1 = 0 \\
\frac{\partial f}{\partial x} = 2y = 0
\end{array} \right. \iff \left\{ \begin{array}{l}
y^2 = x(x^2 + Ax + 1) \\
-3x^2 - 2Ax - 1 = 0 \\
y = 0
\end{array} \right.
\end{align*}
\]

We immediately get \(y = 0 \), and see that \(x = 0 \) gives no solution, so we focus on \(x^2 + Ax + 1 = 0 \) for the first equation. It would not be very direct to start writing \(x = \frac{-A \pm \sqrt{A^2 - 4}}{2} \). Instead, we solve simultaneously the two equations in \(x \): three times the first equation added to the second cancels the squares and we obtain \(Ax + 2 = 0 \). Inserting \(Ax = -2 \) in the first equation, we obtain \(x^2 = 1 \) hence \(x = \pm 1 \) then \(A = \mp 2 \). Finally, a singular point is \((\pm 1, 0)\) with
We know that \((\pm y, x) \) with print statements and assert statements, that will compute and validate the weierstrass_affine.sage in Week 1 on Brightspace), but with your own comments.

The third intersection point of the line with \(E \) is \(\lambda \) doubling formula below. Define the slope in the file.

You have two possibilities to answer this question: either write down the formulas or provide a detailed SageMath script (one single file with extension .py or .sage) with print statements and assert statements, that will compute and validate the formulas, like in the 1st lecture for the affine formulas (file short_weierstrass_affine.sage in Week 1 on Brightspace), but with your own comments in the file.

Solution. We the help of SageMath, we give the formulas in affine coordinates

\[E: y^2 = x^3 + Ax^2 + x \]

for points \(P(x_1, y_1) \) and \(Q(x_2, y_2) \) on the curve.

Negation. Consider \(P(x_1, y_1) \in E \). We have \(-P = (x_1, -y_1) \).

Addition. Assume \(P \neq \pm Q \). If \(P = -Q \), the result is \(O \). If \(P = Q \), use the doubling formula below. Define the slope \(\lambda \) of the line through \(P \) and \(Q \), and find the third intersection point of the line with \(E \). With \(\lambda \) as above, the line equation is

\[L: y = \lambda(x - x_1) + y_1 \]

We plug in the \(y \)-expression from \(L \) into \(E \):

\[X^3 - (\lambda^2 - A)X^2 + (2\lambda^2 x_1 - 2\lambda y_1 + 1)X - \lambda^2 x_1^2 + 2\lambda x_1 y_1 - y_1^2 = 0 \]

We know that \((x_1, y_1) \) and \((x_2, y_2) \) are solutions, and there is a third unknown root \(x_3 \). Notice that

\[(X - x_1)(X - x_2)(X - x_3) = X^3 - (x_1 + x_2 + x_3)X^2 + (x_1 x_2 + x_1 x_3 + x_2 x_3)X - x_1 x_2 x_3 \]

Hence the coefficients of \(X^2 \) in (3) and (4) should be equal, and

\[x_1 + x_2 + x_3 = \lambda^2 - A \iff x_3 = \lambda^2 - A - x_1 - x_2 \]

To compute \(y_3 \), consider \(L: y = \lambda(x - x_1) + y_1 \), hence \(-y_3 = \lambda(x_3 - x_1) + y_1 \iff y_3 = \lambda(x_1 - x_3) - y_1 \).
With SageMath. See the code in the file `group_law_montgomery.sage`. The remainder of \((3) \mod (X - x_1)\) is \(y_1^2 - x_1^3 - Ax_1^2 - x_1 = f_E(x_1, y_1) = 0\). The quotient is
\[
- X^2 + (\lambda^2 - A - x_1)X - \lambda^2 x_1 - Ax_1 - x_1^2 + 2\lambda y_1 - 1
\]
now we simplify with \((x_2, y_2)\) which is a solution. The remainder of \((5) \mod (X - x_2)\) is again 0 modulo the curve equation evaluated at \((x_2, y_2)\). The quotient is now linear in \(X\): \(- X + \lambda^2 - A - x_1 - x_2 = 0\,\), and we deduce \(x_3 = \lambda^2 - A - x_1 - x_2\). For computing \(y_3\), we use the equation of \(L\) as above, and obtain \(y_3 = \lambda(x_1 - x_3) - y_1\).

Doubling. This time \(\lambda\) changes, we need the partial derivatives w.r.t. (with respect to) \(x\), resp. \(y\). We have \(\frac{\partial f}{\partial x}(x_1, y_1) = -3x_1^2 - 2Ax_1 - 1\), \(\frac{\partial f}{\partial y}(x_1, y_1) = 2y_1\), and
\[
\lambda = \frac{-3x_1^2 - 2Ax_1 + 1}{2y_1}.
\]
The line tangent at the curve at \((x_1, y_1)\) has equation
\[
L: y = \lambda(x - x_1) + y_1 \text{ where } \lambda = \frac{3x_1^2 + 2Ax_1 + 1}{2y_1}.
\]
Plug this \(y\) value into \(E\), we get a cubic equation
\[
X^3 - (\lambda^2 - A)X^2 + (2\lambda^2 x_1^2 - 2\lambda y_1 + 1)X - \lambda^2 x_1^2 + 2\lambda x_1 y_1 - y_1^2 = 0
\]
And we know that it has the form
\[
(X - x_1)^2(X - x_3) = X^3 - (x_3 + 2x_1)X^2 + (2x_3x_1 + x_1^3)X - x_1^3 x_3 = 0
\]
hence we solve equality for the coefficients of the \(X^2\) term:
\[
x_3 + 2x_1 = \lambda^2 - A \iff x_3 = \lambda^2 - A - 2x_1.
\]
We obtain \(y_3\) as before thanks to the line equation \(L: y = \lambda(x - x_1) + y_1\), with \(x_3\), we get \(y_3 = \lambda(x_1 - x_3) - y_1\).

Wrapping up, the group law on \(E^M\) with \(P(x_1, y_1), Q(x_2, y_2)\) is
- \(-P = (x_1, -y_1)\)
- \(P + Q = \mathcal{O}\) if \(P = -Q\),
- if \(P \neq -Q\), (including \(P \neq (x_1, 0)\)) then \(P + Q = (x_3, y_3)\) where
\[
\begin{cases}
 x_3 = \lambda^2 - x_1 - x_2 - A \\
 y_3 = \lambda(x_1 - x_3) - y_1
\end{cases}
\]
with \(\lambda = \begin{cases} y_2 - y_1 \\
\frac{3x_1^2 + 2Ax_1 + 1}{2y_1}
\end{cases} \) if \(P \neq \pm Q\);
\[
\frac{y_2 - y_1}{x_2 + x_1^3 + 2Ax_1 + 1}
\]
if \(P = Q\).

Question 3. Let \(P_1 = (x_1, y_1)\) and \(P_2 = (x_2, y_2)\) be two points on \(E^M\). Let \(P_3 = P_1 + P_2 = (x_3, y_3)\) and \(P_1 - P_2 = (x_4, y_4)\).

Assume that \(x_1 \neq x_2, x_1 \neq 0\) and \(x_2 \neq 0\). Show that
\[
x_3(x_1 - x_2)^2 = \frac{(x_2y_1 - x_1y_2)^2}{x_1x_2}
\]
\[
x_4(x_1 - x_2)^2 = \frac{(x_2y_1 + x_1y_2)^2}{x_1x_2}
\]
\[
x_3x_4(x_1 - x_2)^2 = (x_1x_2 - 1)^2
\]
Solution 3. The curve has equation \(y^2 = x^3 + Ax^2 + x\). The line through \(P_1\) and \(P_2\) has slope \(\lambda = (y_1 - y_2)/(x_1 - x_2)\). This line has equation
\[
L: y = \lambda(x - x_1) + y_1 = \lambda x + y_1 - \lambda x_1, \text{ where } \lambda = \frac{y_1 - y_2}{x_1 - x_2}.
\]
We plug into \(E^M\):
\[
E^M \cap L \ : \ y^2 = ((\lambda x) + (y_1 - \lambda x_1))^2 = x^3 + Ax^2 + x
\]
\[
x^3 + Ax^2 + x - \lambda^2 x^2 - \lambda(x_1 - x_3) - (y_1 - \lambda x_1)^2 = 0
\]
Because x_1, x_2, and x_3 are the three roots of this cubic polynomial, their product is the negative of the constant coefficient, and

$$x_1 x_2 x_3 = (y_1 - \lambda x_1)^2$$

$$x_3 = \frac{(y_1 - \lambda x_1)^2}{x_1 x_2}$$

where we assume that $x_1 x_2 \neq 0$

$$x_3 (x_1 - x_2)^2 = \frac{(y_1 (x_1 - x_2) - (y_1 - y_2) x_1)^2}{x_1 x_2}$$

where $\lambda = \frac{y_1 - y_2}{x_1 - x_2}$

$$x_3 (x_1 - x_2)^2 = \frac{(-y_1 x_2 + y_2 x_1)^2}{x_1 x_2} = \frac{(y_1 x_2 - y_2 x_1)^2}{x_1 x_2}$$

Finally,

For x_4, we do the same strategy but with $-y_2$ instead of y_2 and obtain

$$x_4 (x_1 - x_2)^2 = \frac{(y_1 x_2 + y_2 x_1)^2}{x_1 x_2}$$

For the third equation, we will multiply together the two other ones, but first we rewrite

$$x_3 (x_1 - x_2)^2 = \frac{(x_1 x_2 (y_1/x_1 - y_2/x_2))^2}{x_1 x_2} = x_1 x_2 \left(\frac{y_1}{x_1} - \frac{y_2}{x_2} \right)^2$$

$$x_4 (x_1 - x_2)^2 = \frac{(x_1 x_2 (y_1/x_1 + y_2/x_2))^2}{x_1 x_2} = x_1 x_2 \left(\frac{y_1}{x_1} + \frac{y_2}{x_2} \right)^2$$

Their product is

$$x_3 x_4 (x_1 - x_2)^4 = x_1^2 x_2^2 \left(\frac{y_1}{x_1} - \frac{y_2}{x_2} \right)^2$$

Now we use E^M equation to simplify:

$$E^M: y^2 = x^3 + Ax^2 + x, \quad x \neq 0 \implies \frac{y^2}{x^2} = x + A + \frac{1}{x}$$

So with

$$\begin{cases}
\frac{y_1^2}{x_1^2} = x_1 + A + \frac{1}{x_1} \\
\frac{y_2^2}{x_2^2} = x_2 + A + \frac{1}{x_2}
\end{cases} \implies \frac{y_1^2}{x_1^2} - \frac{y_2^2}{x_2^2} = x_1 - x_2 + \frac{1}{x_1} - \frac{1}{x_2},$$

$$\frac{y_1^2}{x_1^2} - \frac{y_2^2}{x_2^2} = x_1 - x_2 + \frac{x_2 - x_1}{x_1 x_2} = (x_1 - x_2) \left(1 - \frac{1}{x_1 x_2} \right)$$

Finally,

$$x_3 x_4 (x_1 - x_2)^4 = x_1^2 x_2^2 \left((x_1 - x_2) \left(1 - \frac{1}{x_1 x_2} \right) \right)^2$$

$$x_3 x_4 (x_1 - x_2)^2 = \left(x_1 x_2 \left(1 - \frac{1}{x_1 x_2} \right) \right)^2$$

$$x_3 x_4 (x_1 - x_2)^2 = (x_1 x_2 - 1)^2.$$
Now we consider $x_3(x_1 - x_2)^2$, where $x_3 = \lambda^2 - x_1 - x_2 - A$, and $\lambda = (y_2 - y_1)/(x_2 - x_1)$.

(13) $\quad x_3(x_1 - x_2)^2 = \left(\left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2 - A \right) (x_1 - x_2)^2$

(14) $\quad = (y_2 - y_1)^2 - (x_1 + x_2 + A)(x_1 - x_2)^2$

(15) $\quad = \frac{(y_2^2 - 2y_1y_2 + y_1^2)x_1x_2}{x_1x_2} - \frac{(y_1^2x_2 - y_2^2x_1)(x_1 - x_2)}{x_1x_2}$

(16) $\quad = \frac{x_1x_2}{x_1x_2} = (x_2y_1 - x_1y_2)^2$

For the second equation to prove, actually we change y_2 into $-y_2$, and we obtain directly the solution.

For the third equation, first we re-write

$x_3(x_1 - x_2)^2 = \left(\frac{y_2}{x_1} - \frac{y_2}{x_2} \right)^2 x_1x_2$, $x_4(x_1 - x_2)^2 = \left(\frac{y_1}{x_1} + \frac{y_2}{x_2} \right)^2 x_1x_2$

hence their product is

(18) $\quad x_3x_4(x_1 - x_2)^4 = \left(\frac{y_1^2}{x_1^2} - \frac{y_2^2}{x_2^2} \right)^2 x_1^2x_2^2$

and from (10) and (11),

(19) $\quad y_1^2/x_1^2 = x_1 + A + 1/x_1$, $x_1 \neq 0$

(20) $\quad y_2^2/x_2^2 = x_2 + A + 1/x_2$, $x_2 \neq 0$

their difference is

$\frac{y_1^2}{x_1^2} - \frac{y_2^2}{x_2^2} = x_1 - x_2 + \frac{1}{x_1} - \frac{1}{x_2} = x_1 - x_2 + \frac{x_2 - x_1}{x_1x_2} = (x_1 - x_2) \frac{x_1x_2 - 1}{x_1x_2}$

So finally,

(21) $\quad x_3x_4(x_1 - x_2)^2 = \frac{x_1^2x_2^2}{(x_1 - x_2)^2} \frac{(x_1 - x_2)^2(x_1x_2 - 1)^2}{(x_1x_2)^2}$

(22) $\quad = (x_1x_2 - 1)^2$

Question 4. Show that (9) remains valid also for the special cases $x_1 = 0$ or $x_2 = 0$.

Solution 4. Assume $x_1 = 0$, hence $y_1 = 0$, but $x_2, y_2 \neq 0$. Then $\lambda = y_2/x_2$, $x_3 = \lambda^2 - x_2 - A = (y_2^2 - x_2^2 - Ax_2^2)/x_2^2$ and at the numerator, we recognize the curve equation up to a term $-x_2$, consequently $x_3 = x_2/x_2^2 = 1/x_2$. We obtain the same for x_4 (starting with $-y_2$ instead of y_2, the sign disappears in the square). Hence

$x_3x_4 = \frac{1}{x_2} \iff x_3x_4x_2^2 = 1$

which is (9) with $x_1 = 0$, $x_2 \neq 0$. If $x_2 = y_2 = 0$ but $x_1 \neq 0$, then we obtain the same with x_1 instead of x_2: $x_3x_4x_1^2 = 1$.

Question 5. For $P_1 = P_2$ show that

(23) $\quad 4x_1x_3(x_1^2 + Ax_1 + 1) = (x_1^2 - 1)^2$.

Remark 1. Note that (9) and (23) do not involve y_1 or y_2 and that we can use the same formulas in all cases.
Solution 5. Now \(P_1 = P_2 \) and \(\lambda = (3x_1^2 + 2Ax_1 + 1)/(2y_1) \), \(x_3 = \lambda^2 - 2x_1 - A \). Note that \(4x_1(x_1^2 + Ax_1 + 1) = 4y_1^2 \) from the curve equation.

\[
4x_1^2 + 2Ax_1 + 1 = 4y_1^2 (\lambda^2 - 2x_1 - A)
\]

\[
= (3x_1^2 + 2Ax_1 + 1)^2 - (2x_1 + A)(4x_1^3 + 4Ax_1^2 + 4x_1)
\]

\[
= 9x_1^4 + 4A^2x_1^2 + 12Ax_1^2 + 1 + 6x_1^2 + 4Ax_1
\]

\[
- (8x_1^4 + 8Ax_1^3 + 8x_1^2 + 4Ax_1^2 + 4A^2x_1 + 4Ax_1)
\]

\[
= x_1^4 - 2x_1^2 + 1 = (x_1^2 - 1)^2.
\]

2. Divisibility by 4 of \(\#E^M(F_p) \)

The following results show that 4 is always a divisor of \(\#E^M(F_p) \). This implies that not all elliptic curves can be transformed to Montgomery form \(E^M \) over \(F_p \).

Question 6.

- Show that \(E^M \) has exactly three points of order 2 if the discriminant \(A^2 - 4 \) is a quadratic residue.
- Show that \(E^M \) has exactly one point of order 2, which is \((0, 0)\), if the discriminant \(A^2 - 4 \) is a quadratic non-residue.
- The point \((1, \pm \gamma)\) has order 4 if \(A + 2 \) is a quadratic residue, where \(\gamma \) is one of the quadratic roots of \(A + 2 \).
- The point \((-1, \pm \delta)\) has order 4 if \(A - 2 \) is a quadratic residue, where \(\delta \) is one of the quadratic roots of \(A - 2 \).

Solution 6. The points of order two are of the form \(P(x_1, 0) \) hence we compute the roots of \(x_1(x_1^2 + Ax_1 + 1) = 0 \), there are \(x_1 = 0 \) and \(x_1', x_1'' \) such that \(x_1' = (-A + \sqrt{A^2 - 4})/2 \), \(x_1'' = (-A - \sqrt{A^2 - 4})/2 \). Taking into account the point at infinity \(O \), there are always two 2-torsion points (whose order divides 2) on \(E^M \): \(\{O, (0, 0)\} \) and when \(\sqrt{A^2 - 4} \) exists in the field of definition, that is, \(A^2 - 4 \) is a square (or a quadratic residue), then there are two more points of order two, hence there are four 2-torsion points, in this case the order of the curve is a multiple of 4. If \(A^2 - 4 \) is not a square, \(x_1', x_1'' \) are not defined over the field, and there are no extra points of order two.

Consider \(P(1, \pm \gamma) \) where \(\gamma = \sqrt{A + 2} \). We compute 2P and expect to find a 2-torsion point of the form \((x_3, 0) \). We start with \(\lambda = (3x_1^2 + 2Ax_1 + 1)/(2y_1) = \pm (2 + A)/\gamma = \pm \gamma^2/\gamma = \pm \gamma^2 \). Then \(x_3 = \lambda^2 - 2x_1 - A = \gamma^2 - 2 - A = 0 \), and it follows that \(y_1 = \lambda(x_1 - x_3) - y_1 = \pm \gamma - (\pm \gamma) = 0 \). We checked that \(2P = (0, 0) \) hence \(P(1, \pm \gamma) \) are two points of order 4.

Consider \(P(-1, \pm \delta) \) where \(\delta = \sqrt{A - 2} \). We compute 2P and expect to find a 2-torsion point of the form \((x_3, 0) \). We start with \(\lambda = (3x_1^2 + 2Ax_1 + 1)/(2y_1) = \pm (2 - A)/\delta = \pm (-\delta^2)/\delta = \mp \delta \). Then \(x_3 = \lambda^2 - 2x_1 - A = \delta^2 + 2 - A = 0 \), and it follows that \(y_3 = \lambda(x_1 - x_3) - y_1 = \mp \delta(-1) - (\pm \delta) = 0 \). We checked that \(2P = (0, 0) \) hence \(P(-1, \pm \delta) \) are two points of order 4.

Question 7. Show that \(\#E^M(F_p) \) is always divisible by 4.

Solution 7. The curve has order multiple of 4 if there are 4 2-points (\(O \) and three points of order two), or if there are \(O \), one point of order two and (at least) two points of order 4.

We know that there are at least two 2-torsion points, namely \(\{P_2(0, 0), O\} \). With the notation \(\gamma = \sqrt{A + 2} \), \(\delta = \sqrt{A - 2} \), and \(\gamma \delta = \sqrt{A^2 - 4} \), the two other points of order two are \((-A \pm \delta^2)/2, 0) \), and the points of order 4 are \(P_4(-1, \delta), -P_4 \) and \(Q_4(1, \gamma), -Q_4 \), where \(2P_4 = P_2, 2Q_4 = P_2 \). Note that \(P_4 + P_2 = P_4 + 2P_4 = 3P_4 = -P_4 \) and similarly \(Q_4 + P_2 = Q_4 + 2Q_4 = 3Q_4 = -Q_4 \).

Now a reasoning about quadratic residues is required.
• If \(A + 2 \) is a square, \(\pm P_4 \) are rational and the curve order is multiple of 4.
• If \(A - 2 \) is a square, \(\pm Q_4 \) are rational and the curve order is multiple of 4.
• If none of \(A - 2, A + 2 \) is a square, there are no points of order 4, but in that case, the product of the two non-quadratic-residues \((A + 2)(A - 2) \) is a square, \(\sqrt{A^2 - 4} \) is rational, and the two other points of order two are defined.

We conclude that the curve order is always multiple of 4.

3. Curve25519

Let \(p = 2^{255} - 19 \) and let \(E^M \) have the affine equation
\[
E^M : y^2 = x^3 + 486662x^2 + x .
\]
See \url{http://cr.yp.to/ecdh.html#curve25519-paper} and \url{https://en.wikipedia.org/wiki/Curve25519}.

Question 8. This question involves SageMath.

With SageMath, check that \(p \) is a prime then define the finite field \(\mathbb{F}_p \) in SageMath.

Check that \(E^M \) is an elliptic curve in Montgomery form. Determine a point in \(E(\mathbb{F}_p) \) of order 4. Determine \(\#E^M(\mathbb{F}_p) \) (find the appropriate function call in SageMath, remember that you can use the tabulation key to show you the methods associated to an instance of a class) and compare the number with \(p + 1 \): is the curve supersingular or ordinary? Show that \(\#E^M(\mathbb{F}_p) \) has a large subgroup of prime order.

Solution 8.

```python
p = ZZ(2**255-19)
p.is_prime()
Fp = GF(p)
A = Fp(486662)
B = Fp(1)
EM = EllipticCurve([0,A,0,B,0]) # it will throw an exception if EM is singular
# points of order 4
if (A-2).is_square():
    delta = sqrt(A-2)
    P4 = EM((-1, delta))
    assert 2*P4 == EM((0,0))
    print("P_4(-1, sqrt(A-2)) is defined")
if (A+2).is_square():
    gamma = sqrt(A+2)
    P4 = EM((1, gamma))
    assert 2*P4 == EM((0,0))
    print("P_4(1, sqrt(A+2)) is defined") # this one is Fp-rational
if (A**2-4).is_square():
    alpha = sqrt(A**2-4)
    Q2 = EM((-A + alpha)/2, 0)
    R2 = EM((-A - alpha)/2, 0)
    print("Q_2((-A+sqrt(A^2-4))/2, 0) is defined")
    print("R_2((-A-sqrt(A^2-4))/2, 0) is defined")

# two options for computing the order: method EM.order() or with the trace
orderE = EM.order()  # actually the curve order is multiple of 8
assert orderE % 4 == 0
r = orderE // 8  # actually the curve order is multiple of 8
```
assert r.is_prime() # the curve order is 8 times a large prime of 253 bits
r.nbits()
tr = EM.trace_of_frobenius() # alternative
orderEtr = p + 1 - tr
assert orderE == orderEtr
base point:
x0 = Fp(9)
y02 = x0^3 + A*x0^2 + B*x0
y0 = y02.sqrt()
P = EM((x0, y0))
assert r*P == EM(0)
EM.is_supersingular() # the curve is not supersingular
assert gcd(tr, p) == 1 # alternative: the trace is coprime to the characteristic p

4. Comments on SageMath code.

What is the problem with this statement?
P4 = EM((Fp(1), (A+Fp(2)).sqrt()))
assert P4.order() == 4

The while loop can take a lot of time. Alternatively, P4.order() computes the
discrete logarithm of P4 on the curve. The help with the question mark: P4.order?
gives info on the function: it calls ellorder from PARI. IN PARI documentation,
one finds https://pari.math.u-bordeaux.fr/dokhtml/html/Elliptic_curves.html#ellorder
so first this call computes the curve order and factor it, then tries the different possibilities. If the curve has a large composite order, factoring it will take minutes, or even hours! If you only want to check that the
points has order 4, checks that
assert 4*P4 == EM(0) and 2*P4 != EM(0)
timing:
time P4.order()
CPU times: user 39.5 ms, sys: 0 ns, total: 39.5 ms
Wall time: 39.7 ms
def check(Q):
 return (4*Q == EM(0) and 2*Q != EM(0))
time check(P4)
CPU times: user 238 µs, sys: 24 µs, total: 262 µs
Wall time: 267 µs

What is the problem with this statement?
finding a generator G of order r = EM.order()//8
EMorder = EM.order()
G = EM.random_element()
while(G.order() != r):
 G = EM.random_element()
The while loop can take a lot of time. Alternatively, uses
EMorder = EM.order()
G0 = EM.random_element()
G = 8*G0 # clear cofactor
while(G == EM(0)):
 G0 = EM.random_element()
 G = 8*G0
But the way to generate G0 is randomized, and one can ask what kind of randomness
was used. Instead, defines a deterministic procedure.
EMorder = EM.order()
x0 = Fp(3) # x0 = 0 -> point of order 2, x0=1 -> point of order 4, start at 2
y02 = x0**3 + A*x0**2 + x0
while not y02.is_square():
 x0 = x0+1
 y02 = x0**3 + A*x0**2 + x0
y0 = y02.sqrt()
G0 = EM((x0,y0))

while not r*G0 == EM(0):
 x0 = x0+1
 y02 = x0**3 + A*x0**2 + x0
 while not y02.is_square():
 x0 = x0+1
 y02 = x0**3 + A*x0**2 + x0
 y0 = y02.sqrt()
 G0 = EM((x0,y0))

there is no do-while loop in Python...
We get \(G(9, \sqrt{9^3 + A \cdot 9^2 + 9}) \).

Why is it not a good idea to ask for \(EM.\text{order}.\text{factor}() \)? It can take hours if
this number has medium-size factors (for example, if it is a composite number made
of two primes of roughly the same size, it can take hours). We can instead look for
the cofactor.

\[
C = \text{prod(prime_range(10**6))}
\]

order = EM.order()
N = order
g = gcd(C, N)
cofactor = 1
while g > 1:
 cofactor = cofactor * g
 N = N // g
 g = gcd(g, N)
assert cofactor * N == order and N.is_prime()

About the order, and the prime subgroup. The cofactor is 8. What’s wrong with
this statement:

\[
r = EM.\text{order}() / 8
r.\text{is_prime}()
\]

False

The result is not an integer (Integer) but a rational in SageMath, (and in Python
3), instead, use Euclidean division:

\[
r = EM.\text{order}() // 8
r.\text{is_Prime}()
\]

True

References

montgomery-form and their cryptographic applications. In Public Key Cryptography, Third
International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Mel-
bourne, Victoria, Australia, January 18-20, 2000, volume 1751 of Lecture Notes in Computer